// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "math" "regexp" "sort" "strconv" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/storage/metric" ) // Function represents a function of the expression language and is // used by function nodes. type Function struct { Name string ArgTypes []model.ValueType OptionalArgs int ReturnType model.ValueType Call func(ev *evaluator, args Expressions) model.Value } // === time() model.SampleValue === func funcTime(ev *evaluator, args Expressions) model.Value { return &model.Scalar{ Value: model.SampleValue(ev.Timestamp.Unix()), Timestamp: ev.Timestamp, } } // extrapolatedRate is a utility function for rate/increase/delta. // It calculates the rate (allowing for counter resets if isCounter is true), // extrapolates if the first/last sample is close to the boundary, and returns // the result as either per-second (if isRate is true) or overall. func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) model.Value { ms := arg.(*MatrixSelector) rangeStart := ev.Timestamp.Add(-ms.Range - ms.Offset) rangeEnd := ev.Timestamp.Add(-ms.Offset) resultVector := vector{} matrixValue := ev.evalMatrix(ms) for _, samples := range matrixValue { // No sense in trying to compute a rate without at least two points. Drop // this vector element. if len(samples.Values) < 2 { continue } var ( counterCorrection model.SampleValue lastValue model.SampleValue ) for _, sample := range samples.Values { currentValue := sample.Value if isCounter && currentValue < lastValue { counterCorrection += lastValue - currentValue } lastValue = currentValue } resultValue := lastValue - samples.Values[0].Value + counterCorrection // Duration between first/last samples and boundary of range. durationToStart := samples.Values[0].Timestamp.Sub(rangeStart).Seconds() durationToEnd := rangeEnd.Sub(samples.Values[len(samples.Values)-1].Timestamp).Seconds() sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp).Seconds() averageDurationBetweenSamples := sampledInterval / float64(len(samples.Values)-1) if isCounter && resultValue > 0 && samples.Values[0].Value >= 0 { // Counters cannot be negative. If we have any slope at // all (i.e. resultValue went up), we can extrapolate // the zero point of the counter. If the duration to the // zero point is shorter than the durationToStart, we // take the zero point as the start of the series, // thereby avoiding extrapolation to negative counter // values. durationToZero := sampledInterval * float64(samples.Values[0].Value/resultValue) if durationToZero < durationToStart { durationToStart = durationToZero } } // If the first/last samples are close to the boundaries of the range, // extrapolate the result. This is as we expect that another sample // will exist given the spacing between samples we've seen thus far, // with an allowance for noise. extrapolationThreshold := averageDurationBetweenSamples * 1.1 extrapolateToInterval := sampledInterval if durationToStart < extrapolationThreshold { extrapolateToInterval += durationToStart } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } if durationToEnd < extrapolationThreshold { extrapolateToInterval += durationToEnd } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } resultValue = resultValue * model.SampleValue(extrapolateToInterval/sampledInterval) if isRate { resultValue = resultValue / model.SampleValue(ms.Range.Seconds()) } resultSample := &sample{ Metric: samples.Metric, Value: resultValue, Timestamp: ev.Timestamp, } resultSample.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, resultSample) } return resultVector } // === delta(matrix model.ValMatrix) Vector === func funcDelta(ev *evaluator, args Expressions) model.Value { return extrapolatedRate(ev, args[0], false, false) } // === rate(node model.ValMatrix) Vector === func funcRate(ev *evaluator, args Expressions) model.Value { return extrapolatedRate(ev, args[0], true, true) } // === increase(node model.ValMatrix) Vector === func funcIncrease(ev *evaluator, args Expressions) model.Value { return extrapolatedRate(ev, args[0], true, false) } // === irate(node model.ValMatrix) Vector === func funcIrate(ev *evaluator, args Expressions) model.Value { return instantValue(ev, args[0], true) } // === idelta(node model.ValMatric) Vector === func funcIdelta(ev *evaluator, args Expressions) model.Value { return instantValue(ev, args[0], false) } func instantValue(ev *evaluator, arg Expr, isRate bool) model.Value { resultVector := vector{} for _, samples := range ev.evalMatrix(arg) { // No sense in trying to compute a rate without at least two points. Drop // this vector element. if len(samples.Values) < 2 { continue } lastSample := samples.Values[len(samples.Values)-1] previousSample := samples.Values[len(samples.Values)-2] var resultValue model.SampleValue if isRate && lastSample.Value < previousSample.Value { // Counter reset. resultValue = lastSample.Value } else { resultValue = lastSample.Value - previousSample.Value } sampledInterval := lastSample.Timestamp.Sub(previousSample.Timestamp) if sampledInterval == 0 { // Avoid dividing by 0. continue } if isRate { // Convert to per-second. resultValue /= model.SampleValue(sampledInterval.Seconds()) } resultSample := &sample{ Metric: samples.Metric, Value: resultValue, Timestamp: ev.Timestamp, } resultSample.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, resultSample) } return resultVector } // Calculate the trend value at the given index i in raw data d. // This is somewhat analogous to the slope of the trend at the given index. // The argument "s" is the set of computed smoothed values. // The argument "b" is the set of computed trend factors. // The argument "d" is the set of raw input values. func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 { if i == 0 { return b[0] } x := tf * (s[i] - s[i-1]) y := (1 - tf) * b[i-1] // Cache the computed value. b[i] = x + y return b[i] } // Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. // Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current // data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects // how trends in historical data will affect the current data. A higher trend factor increases the influence. // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". func funcHoltWinters(ev *evaluator, args Expressions) model.Value { mat := ev.evalMatrix(args[0]) // The smoothing factor argument. sf := ev.evalFloat(args[1]) // The trend factor argument. tf := ev.evalFloat(args[2]) // Sanity check the input. if sf <= 0 || sf >= 1 { ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 got: %f", sf) } if tf <= 0 || tf >= 1 { ev.errorf("invalid trend factor. Expected: 0 < tf < 1 got: %f", sf) } // Make an output vector large enough to hold the entire result. resultVector := make(vector, 0, len(mat)) // Create scratch values. var s, b, d []float64 var l int for _, samples := range mat { l = len(samples.Values) // Can't do the smoothing operation with less than two points. if l < 2 { continue } // Resize scratch values. if l != len(s) { s = make([]float64, l) b = make([]float64, l) d = make([]float64, l) } // Fill in the d values with the raw values from the input. for i, v := range samples.Values { d[i] = float64(v.Value) } // Set initial values. s[0] = d[0] b[0] = d[1] - d[0] // Run the smoothing operation. var x, y float64 for i := 1; i < len(d); i++ { // Scale the raw value against the smoothing factor. x = sf * d[i] // Scale the last smoothed value with the trend at this point. y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d)) s[i] = x + y } samples.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, &sample{ Metric: samples.Metric, Value: model.SampleValue(s[len(s)-1]), // The last value in the vector is the smoothed result. Timestamp: ev.Timestamp, }) } return resultVector } // === sort(node model.ValVector) Vector === func funcSort(ev *evaluator, args Expressions) model.Value { // NaN should sort to the bottom, so take descending sort with NaN first and // reverse it. byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0])) sort.Sort(sort.Reverse(byValueSorter)) return vector(byValueSorter) } // === sortDesc(node model.ValVector) Vector === func funcSortDesc(ev *evaluator, args Expressions) model.Value { // NaN should sort to the bottom, so take ascending sort with NaN first and // reverse it. byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) sort.Sort(sort.Reverse(byValueSorter)) return vector(byValueSorter) } // === clamp_max(vector model.ValVector, max Scalar) Vector === func funcClampMax(ev *evaluator, args Expressions) model.Value { vec := ev.evalVector(args[0]) max := ev.evalFloat(args[1]) for _, el := range vec { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Min(max, float64(el.Value))) } return vec } // === clamp_min(vector model.ValVector, min Scalar) Vector === func funcClampMin(ev *evaluator, args Expressions) model.Value { vec := ev.evalVector(args[0]) min := ev.evalFloat(args[1]) for _, el := range vec { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Max(min, float64(el.Value))) } return vec } // === drop_common_labels(node model.ValVector) Vector === func funcDropCommonLabels(ev *evaluator, args Expressions) model.Value { vec := ev.evalVector(args[0]) if len(vec) < 1 { return vector{} } common := model.LabelSet{} for k, v := range vec[0].Metric.Metric { // TODO(julius): Should we also drop common metric names? if k == model.MetricNameLabel { continue } common[k] = v } for _, el := range vec[1:] { for k, v := range common { if el.Metric.Metric[k] != v { // Deletion of map entries while iterating over them is safe. // From http://golang.org/ref/spec#For_statements: // "If map entries that have not yet been reached are deleted during // iteration, the corresponding iteration values will not be produced." delete(common, k) } } } for _, el := range vec { for k := range el.Metric.Metric { if _, ok := common[k]; ok { el.Metric.Del(k) } } } return vec } // === round(vector model.ValVector, toNearest=1 Scalar) Vector === func funcRound(ev *evaluator, args Expressions) model.Value { // round returns a number rounded to toNearest. // Ties are solved by rounding up. toNearest := float64(1) if len(args) >= 2 { toNearest = ev.evalFloat(args[1]) } // Invert as it seems to cause fewer floating point accuracy issues. toNearestInverse := 1.0 / toNearest vec := ev.evalVector(args[0]) for _, el := range vec { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse) } return vec } // === scalar(node model.ValVector) Scalar === func funcScalar(ev *evaluator, args Expressions) model.Value { v := ev.evalVector(args[0]) if len(v) != 1 { return &model.Scalar{ Value: model.SampleValue(math.NaN()), Timestamp: ev.Timestamp, } } return &model.Scalar{ Value: model.SampleValue(v[0].Value), Timestamp: ev.Timestamp, } } // === count_scalar(vector model.ValVector) model.SampleValue === func funcCountScalar(ev *evaluator, args Expressions) model.Value { return &model.Scalar{ Value: model.SampleValue(len(ev.evalVector(args[0]))), Timestamp: ev.Timestamp, } } func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePair) model.SampleValue) model.Value { mat := ev.evalMatrix(args[0]) resultVector := vector{} for _, el := range mat { if len(el.Values) == 0 { continue } el.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, &sample{ Metric: el.Metric, Value: aggrFn(el.Values), Timestamp: ev.Timestamp, }) } return resultVector } // === avg_over_time(matrix model.ValMatrix) Vector === func funcAvgOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { var sum model.SampleValue for _, v := range values { sum += v.Value } return sum / model.SampleValue(len(values)) }) } // === count_over_time(matrix model.ValMatrix) Vector === func funcCountOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { return model.SampleValue(len(values)) }) } // === floor(vector model.ValVector) Vector === func funcFloor(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Floor(float64(el.Value))) } return vector } // === max_over_time(matrix model.ValMatrix) Vector === func funcMaxOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { max := math.Inf(-1) for _, v := range values { max = math.Max(max, float64(v.Value)) } return model.SampleValue(max) }) } // === min_over_time(matrix model.ValMatrix) Vector === func funcMinOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { min := math.Inf(1) for _, v := range values { min = math.Min(min, float64(v.Value)) } return model.SampleValue(min) }) } // === sum_over_time(matrix model.ValMatrix) Vector === func funcSumOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { var sum model.SampleValue for _, v := range values { sum += v.Value } return sum }) } // === quantile_over_time(matrix model.ValMatrix) Vector === func funcQuantileOverTime(ev *evaluator, args Expressions) model.Value { q := ev.evalFloat(args[0]) mat := ev.evalMatrix(args[1]) resultVector := vector{} for _, el := range mat { if len(el.Values) == 0 { continue } el.Metric.Del(model.MetricNameLabel) values := make(vectorByValueHeap, 0, len(el.Values)) for _, v := range el.Values { values = append(values, &sample{Value: v.Value}) } resultVector = append(resultVector, &sample{ Metric: el.Metric, Value: model.SampleValue(quantile(q, values)), Timestamp: ev.Timestamp, }) } return resultVector } // === stddev_over_time(matrix model.ValMatrix) Vector === func funcStddevOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { var sum, squaredSum, count model.SampleValue for _, v := range values { sum += v.Value squaredSum += v.Value * v.Value count += 1 } avg := sum / count return model.SampleValue(math.Sqrt(float64(squaredSum/count - avg*avg))) }) } // === stdvar_over_time(matrix model.ValMatrix) Vector === func funcStdvarOverTime(ev *evaluator, args Expressions) model.Value { return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue { var sum, squaredSum, count model.SampleValue for _, v := range values { sum += v.Value squaredSum += v.Value * v.Value count += 1 } avg := sum / count return squaredSum/count - avg*avg }) } // === abs(vector model.ValVector) Vector === func funcAbs(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Abs(float64(el.Value))) } return vector } // === absent(vector model.ValVector) Vector === func funcAbsent(ev *evaluator, args Expressions) model.Value { if len(ev.evalVector(args[0])) > 0 { return vector{} } m := model.Metric{} if vs, ok := args[0].(*VectorSelector); ok { for _, matcher := range vs.LabelMatchers { if matcher.Type == metric.Equal && matcher.Name != model.MetricNameLabel { m[matcher.Name] = matcher.Value } } } return vector{ &sample{ Metric: metric.Metric{ Metric: m, Copied: true, }, Value: 1, Timestamp: ev.Timestamp, }, } } // === ceil(vector model.ValVector) Vector === func funcCeil(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Ceil(float64(el.Value))) } return vector } // === exp(vector model.ValVector) Vector === func funcExp(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Exp(float64(el.Value))) } return vector } // === sqrt(vector VectorNode) Vector === func funcSqrt(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Sqrt(float64(el.Value))) } return vector } // === ln(vector model.ValVector) Vector === func funcLn(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Log(float64(el.Value))) } return vector } // === log2(vector model.ValVector) Vector === func funcLog2(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Log2(float64(el.Value))) } return vector } // === log10(vector model.ValVector) Vector === func funcLog10(ev *evaluator, args Expressions) model.Value { vector := ev.evalVector(args[0]) for _, el := range vector { el.Metric.Del(model.MetricNameLabel) el.Value = model.SampleValue(math.Log10(float64(el.Value))) } return vector } // linearRegression performs a least-square linear regression analysis on the // provided SamplePairs. It returns the slope, and the intercept value at the // provided time. func linearRegression(samples []model.SamplePair, interceptTime model.Time) (slope, intercept model.SampleValue) { var ( n model.SampleValue sumX, sumY model.SampleValue sumXY, sumX2 model.SampleValue ) for _, sample := range samples { x := model.SampleValue( model.Time(sample.Timestamp-interceptTime).UnixNano(), ) / 1e9 n += 1.0 sumY += sample.Value sumX += x sumXY += x * sample.Value sumX2 += x * x } covXY := sumXY - sumX*sumY/n varX := sumX2 - sumX*sumX/n slope = covXY / varX intercept = sumY/n - slope*sumX/n return slope, intercept } // === deriv(node model.ValMatrix) Vector === func funcDeriv(ev *evaluator, args Expressions) model.Value { mat := ev.evalMatrix(args[0]) resultVector := make(vector, 0, len(mat)) for _, samples := range mat { // No sense in trying to compute a derivative without at least two points. // Drop this vector element. if len(samples.Values) < 2 { continue } slope, _ := linearRegression(samples.Values, 0) resultSample := &sample{ Metric: samples.Metric, Value: slope, Timestamp: ev.Timestamp, } resultSample.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, resultSample) } return resultVector } // === predict_linear(node model.ValMatrix, k model.ValScalar) Vector === func funcPredictLinear(ev *evaluator, args Expressions) model.Value { mat := ev.evalMatrix(args[0]) resultVector := make(vector, 0, len(mat)) duration := model.SampleValue(ev.evalFloat(args[1])) for _, samples := range mat { // No sense in trying to predict anything without at least two points. // Drop this vector element. if len(samples.Values) < 2 { continue } slope, intercept := linearRegression(samples.Values, ev.Timestamp) resultSample := &sample{ Metric: samples.Metric, Value: slope*duration + intercept, Timestamp: ev.Timestamp, } resultSample.Metric.Del(model.MetricNameLabel) resultVector = append(resultVector, resultSample) } return resultVector } // === histogram_quantile(k model.ValScalar, vector model.ValVector) Vector === func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value { q := model.SampleValue(ev.evalFloat(args[0])) inVec := ev.evalVector(args[1]) outVec := vector{} signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} for _, el := range inVec { upperBound, err := strconv.ParseFloat( string(el.Metric.Metric[model.BucketLabel]), 64, ) if err != nil { // Oops, no bucket label or malformed label value. Skip. // TODO(beorn7): Issue a warning somehow. continue } signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels) mb, ok := signatureToMetricWithBuckets[signature] if !ok { el.Metric.Del(model.BucketLabel) el.Metric.Del(model.MetricNameLabel) mb = &metricWithBuckets{el.Metric, nil} signatureToMetricWithBuckets[signature] = mb } mb.buckets = append(mb.buckets, bucket{upperBound, el.Value}) } for _, mb := range signatureToMetricWithBuckets { outVec = append(outVec, &sample{ Metric: mb.metric, Value: model.SampleValue(bucketQuantile(q, mb.buckets)), Timestamp: ev.Timestamp, }) } return outVec } // === resets(matrix model.ValMatrix) Vector === func funcResets(ev *evaluator, args Expressions) model.Value { in := ev.evalMatrix(args[0]) out := make(vector, 0, len(in)) for _, samples := range in { resets := 0 prev := model.SampleValue(samples.Values[0].Value) for _, sample := range samples.Values[1:] { current := sample.Value if current < prev { resets++ } prev = current } rs := &sample{ Metric: samples.Metric, Value: model.SampleValue(resets), Timestamp: ev.Timestamp, } rs.Metric.Del(model.MetricNameLabel) out = append(out, rs) } return out } // === changes(matrix model.ValMatrix) Vector === func funcChanges(ev *evaluator, args Expressions) model.Value { in := ev.evalMatrix(args[0]) out := make(vector, 0, len(in)) for _, samples := range in { changes := 0 prev := model.SampleValue(samples.Values[0].Value) for _, sample := range samples.Values[1:] { current := sample.Value if current != prev { changes++ } prev = current } rs := &sample{ Metric: samples.Metric, Value: model.SampleValue(changes), Timestamp: ev.Timestamp, } rs.Metric.Del(model.MetricNameLabel) out = append(out, rs) } return out } // === label_replace(vector model.ValVector, dst_label, replacement, src_labelname, regex model.ValString) Vector === func funcLabelReplace(ev *evaluator, args Expressions) model.Value { var ( vector = ev.evalVector(args[0]) dst = model.LabelName(ev.evalString(args[1]).Value) repl = ev.evalString(args[2]).Value src = model.LabelName(ev.evalString(args[3]).Value) regexStr = ev.evalString(args[4]).Value ) regex, err := regexp.Compile("^(?:" + regexStr + ")$") if err != nil { ev.errorf("invalid regular expression in label_replace(): %s", regexStr) } if !model.LabelNameRE.MatchString(string(dst)) { ev.errorf("invalid destination label name in label_replace(): %s", dst) } outSet := make(map[model.Fingerprint]struct{}, len(vector)) for _, el := range vector { srcVal := string(el.Metric.Metric[src]) indexes := regex.FindStringSubmatchIndex(srcVal) // If there is no match, no replacement should take place. if indexes == nil { continue } res := regex.ExpandString([]byte{}, repl, srcVal, indexes) if len(res) == 0 { el.Metric.Del(dst) } else { el.Metric.Set(dst, model.LabelValue(res)) } fp := el.Metric.Metric.Fingerprint() if _, exists := outSet[fp]; exists { ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric.Metric) } else { outSet[fp] = struct{}{} } } return vector } // === vector(s scalar) Vector === func funcVector(ev *evaluator, args Expressions) model.Value { return vector{ &sample{ Metric: metric.Metric{}, Value: model.SampleValue(ev.evalFloat(args[0])), Timestamp: ev.Timestamp, }, } } var functions = map[string]*Function{ "abs": { Name: "abs", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcAbs, }, "absent": { Name: "absent", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcAbsent, }, "increase": { Name: "increase", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcIncrease, }, "avg_over_time": { Name: "avg_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcAvgOverTime, }, "ceil": { Name: "ceil", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcCeil, }, "changes": { Name: "changes", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcChanges, }, "clamp_max": { Name: "clamp_max", ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, ReturnType: model.ValVector, Call: funcClampMax, }, "clamp_min": { Name: "clamp_min", ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, ReturnType: model.ValVector, Call: funcClampMin, }, "count_over_time": { Name: "count_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcCountOverTime, }, "count_scalar": { Name: "count_scalar", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValScalar, Call: funcCountScalar, }, "delta": { Name: "delta", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcDelta, }, "deriv": { Name: "deriv", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcDeriv, }, "drop_common_labels": { Name: "drop_common_labels", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcDropCommonLabels, }, "exp": { Name: "exp", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcExp, }, "floor": { Name: "floor", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcFloor, }, "histogram_quantile": { Name: "histogram_quantile", ArgTypes: []model.ValueType{model.ValScalar, model.ValVector}, ReturnType: model.ValVector, Call: funcHistogramQuantile, }, "holt_winters": { Name: "holt_winters", ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar, model.ValScalar}, ReturnType: model.ValVector, Call: funcHoltWinters, }, "irate": { Name: "irate", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcIrate, }, "idelta": { Name: "idelta", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcIdelta, }, "label_replace": { Name: "label_replace", ArgTypes: []model.ValueType{model.ValVector, model.ValString, model.ValString, model.ValString, model.ValString}, ReturnType: model.ValVector, Call: funcLabelReplace, }, "ln": { Name: "ln", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcLn, }, "log10": { Name: "log10", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcLog10, }, "log2": { Name: "log2", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcLog2, }, "max_over_time": { Name: "max_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcMaxOverTime, }, "min_over_time": { Name: "min_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcMinOverTime, }, "predict_linear": { Name: "predict_linear", ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar}, ReturnType: model.ValVector, Call: funcPredictLinear, }, "quantile_over_time": { Name: "quantile_over_time", ArgTypes: []model.ValueType{model.ValScalar, model.ValMatrix}, ReturnType: model.ValVector, Call: funcQuantileOverTime, }, "rate": { Name: "rate", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcRate, }, "resets": { Name: "resets", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcResets, }, "round": { Name: "round", ArgTypes: []model.ValueType{model.ValVector, model.ValScalar}, OptionalArgs: 1, ReturnType: model.ValVector, Call: funcRound, }, "scalar": { Name: "scalar", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValScalar, Call: funcScalar, }, "sort": { Name: "sort", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcSort, }, "sort_desc": { Name: "sort_desc", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcSortDesc, }, "sqrt": { Name: "sqrt", ArgTypes: []model.ValueType{model.ValVector}, ReturnType: model.ValVector, Call: funcSqrt, }, "stddev_over_time": { Name: "stddev_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcStddevOverTime, }, "stdvar_over_time": { Name: "stdvar_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcStdvarOverTime, }, "sum_over_time": { Name: "sum_over_time", ArgTypes: []model.ValueType{model.ValMatrix}, ReturnType: model.ValVector, Call: funcSumOverTime, }, "time": { Name: "time", ArgTypes: []model.ValueType{}, ReturnType: model.ValScalar, Call: funcTime, }, "vector": { Name: "vector", ArgTypes: []model.ValueType{model.ValScalar}, ReturnType: model.ValVector, Call: funcVector, }, } // getFunction returns a predefined Function object for the given name. func getFunction(name string) (*Function, bool) { function, ok := functions[name] return function, ok } type vectorByValueHeap vector func (s vectorByValueHeap) Len() int { return len(s) } func (s vectorByValueHeap) Less(i, j int) bool { if math.IsNaN(float64(s[i].Value)) { return true } return s[i].Value < s[j].Value } func (s vectorByValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByValueHeap) Push(x interface{}) { *s = append(*s, x.(*sample)) } func (s *vectorByValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } type vectorByReverseValueHeap vector func (s vectorByReverseValueHeap) Len() int { return len(s) } func (s vectorByReverseValueHeap) Less(i, j int) bool { if math.IsNaN(float64(s[i].Value)) { return true } return s[i].Value > s[j].Value } func (s vectorByReverseValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByReverseValueHeap) Push(x interface{}) { *s = append(*s, x.(*sample)) } func (s *vectorByReverseValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el }