// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "math" "path/filepath" "runtime" "sort" "strings" "sync" "sync/atomic" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/pkg/errors" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/tsdb/chunkenc" "github.com/prometheus/tsdb/chunks" "github.com/prometheus/tsdb/index" "github.com/prometheus/tsdb/labels" "github.com/prometheus/tsdb/wal" ) var ( // ErrNotFound is returned if a looked up resource was not found. ErrNotFound = errors.Errorf("not found") // ErrOutOfOrderSample is returned if an appended sample has a // timestamp larger than the most recent sample. ErrOutOfOrderSample = errors.New("out of order sample") // ErrAmendSample is returned if an appended sample has the same timestamp // as the most recent sample but a different value. ErrAmendSample = errors.New("amending sample") // ErrOutOfBounds is returned if an appended sample is out of the // writable time range. ErrOutOfBounds = errors.New("out of bounds") ) // Head handles reads and writes of time series data within a time window. type Head struct { chunkRange int64 metrics *headMetrics wal *wal.WAL logger log.Logger appendPool sync.Pool bytesPool sync.Pool minTime, maxTime int64 lastSeriesID uint64 // All series addressable by their ID or hash. series *stripeSeries symMtx sync.RWMutex symbols map[string]struct{} values map[string]stringset // label names to possible values postings *index.MemPostings // postings lists for terms tombstones *memTombstones } type headMetrics struct { activeAppenders prometheus.Gauge series prometheus.Gauge seriesCreated prometheus.Counter seriesRemoved prometheus.Counter seriesNotFound prometheus.Counter chunks prometheus.Gauge chunksCreated prometheus.Counter chunksRemoved prometheus.Counter gcDuration prometheus.Summary minTime prometheus.GaugeFunc maxTime prometheus.GaugeFunc samplesAppended prometheus.Counter walTruncateDuration prometheus.Summary } func newHeadMetrics(h *Head, r prometheus.Registerer) *headMetrics { m := &headMetrics{} m.activeAppenders = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_active_appenders", Help: "Number of currently active appender transactions", }) m.series = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_series", Help: "Total number of series in the head block.", }) m.seriesCreated = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_created_total", Help: "Total number of series created in the head", }) m.seriesRemoved = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_removed_total", Help: "Total number of series removed in the head", }) m.seriesNotFound = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_not_found_total", Help: "Total number of requests for series that were not found.", }) m.chunks = prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_chunks", Help: "Total number of chunks in the head block.", }) m.chunksCreated = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_chunks_created_total", Help: "Total number of chunks created in the head", }) m.chunksRemoved = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_chunks_removed_total", Help: "Total number of chunks removed in the head", }) m.gcDuration = prometheus.NewSummary(prometheus.SummaryOpts{ Name: "prometheus_tsdb_head_gc_duration_seconds", Help: "Runtime of garbage collection in the head block.", }) m.maxTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_max_time", Help: "Maximum timestamp of the head block.", }, func() float64 { return float64(h.MaxTime()) }) m.minTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_min_time", Help: "Minimum time bound of the head block.", }, func() float64 { return float64(h.MinTime()) }) m.walTruncateDuration = prometheus.NewSummary(prometheus.SummaryOpts{ Name: "prometheus_tsdb_wal_truncate_duration_seconds", Help: "Duration of WAL truncation.", }) m.samplesAppended = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_samples_appended_total", Help: "Total number of appended samples.", }) if r != nil { r.MustRegister( m.activeAppenders, m.chunks, m.chunksCreated, m.chunksRemoved, m.series, m.seriesCreated, m.seriesRemoved, m.seriesNotFound, m.minTime, m.maxTime, m.gcDuration, m.walTruncateDuration, m.samplesAppended, ) } return m } // NewHead opens the head block in dir. func NewHead(r prometheus.Registerer, l log.Logger, wal *wal.WAL, chunkRange int64) (*Head, error) { if l == nil { l = log.NewNopLogger() } if chunkRange < 1 { return nil, errors.Errorf("invalid chunk range %d", chunkRange) } h := &Head{ wal: wal, logger: l, chunkRange: chunkRange, minTime: math.MaxInt64, maxTime: math.MinInt64, series: newStripeSeries(), values: map[string]stringset{}, symbols: map[string]struct{}{}, postings: index.NewUnorderedMemPostings(), tombstones: NewMemTombstones(), } h.metrics = newHeadMetrics(h, r) return h, nil } // processWALSamples adds a partition of samples it receives to the head and passes // them on to other workers. // Samples before the mint timestamp are discarded. func (h *Head) processWALSamples( minValidTime int64, partition, total uint64, input <-chan []RefSample, output chan<- []RefSample, ) (unknownRefs uint64) { defer close(output) mint, maxt := int64(math.MaxInt64), int64(math.MinInt64) for samples := range input { for _, s := range samples { if s.T < minValidTime || s.Ref%total != partition { continue } ms := h.series.getByID(s.Ref) if ms == nil { unknownRefs++ continue } _, chunkCreated := ms.append(s.T, s.V) if chunkCreated { h.metrics.chunksCreated.Inc() h.metrics.chunks.Inc() } if s.T > maxt { maxt = s.T } if s.T < mint { mint = s.T } } output <- samples } h.updateMinMaxTime(mint, maxt) return unknownRefs } func (h *Head) updateMinMaxTime(mint, maxt int64) { for { lt := h.MinTime() if mint >= lt { break } if atomic.CompareAndSwapInt64(&h.minTime, lt, mint) { break } } for { ht := h.MaxTime() if maxt <= ht { break } if atomic.CompareAndSwapInt64(&h.maxTime, ht, maxt) { break } } } func (h *Head) loadWAL(r *wal.Reader) error { minValidTime := h.MinTime() // If the min time is still uninitialized (no persisted blocks yet), // we accept all sample timestamps from the WAL. if minValidTime == math.MaxInt64 { minValidTime = math.MinInt64 } // Track number of samples that referenced a series we don't know about // for error reporting. var unknownRefs uint64 // Start workers that each process samples for a partition of the series ID space. // They are connected through a ring of channels which ensures that all sample batches // read from the WAL are processed in order. var ( wg sync.WaitGroup n = runtime.GOMAXPROCS(0) firstInput = make(chan []RefSample, 300) input = firstInput ) wg.Add(n) for i := 0; i < n; i++ { output := make(chan []RefSample, 300) go func(i int, input <-chan []RefSample, output chan<- []RefSample) { unknown := h.processWALSamples(minValidTime, uint64(i), uint64(n), input, output) atomic.AddUint64(&unknownRefs, unknown) wg.Done() }(i, input, output) // The output feeds the next worker goroutine. For the last worker, // it feeds the initial input again to reuse the RefSample slices. input = output } var ( dec RecordDecoder series []RefSeries samples []RefSample tstones []Stone ) for r.Next() { series, samples, tstones = series[:0], samples[:0], tstones[:0] rec := r.Record() switch dec.Type(rec) { case RecordSeries: series, err := dec.Series(rec, series) if err != nil { return errors.Wrap(err, "decode series") } for _, s := range series { h.getOrCreateWithID(s.Ref, s.Labels.Hash(), s.Labels) if h.lastSeriesID < s.Ref { h.lastSeriesID = s.Ref } } case RecordSamples: samples, err := dec.Samples(rec, samples) if err != nil { return errors.Wrap(err, "decode samples") } // We split up the samples into chunks of 5000 samples or less. // With O(300 * #cores) in-flight sample batches, large scrapes could otherwise // cause thousands of very large in flight buffers occupying large amounts // of unused memory. for len(samples) > 0 { n := 5000 if len(samples) < n { n = len(samples) } var buf []RefSample select { case buf = <-input: default: } firstInput <- append(buf[:0], samples[:n]...) samples = samples[n:] } case RecordTombstones: tstones, err := dec.Tombstones(rec, tstones) if err != nil { return errors.Wrap(err, "decode tombstones") } for _, s := range tstones { for _, itv := range s.intervals { if itv.Maxt < minValidTime { continue } h.tombstones.addInterval(s.ref, itv) } } default: return errors.Errorf("invalid record type %v", dec.Type(rec)) } } if r.Err() != nil { return errors.Wrap(r.Err(), "read records") } // Signal termination to first worker and wait for last one to close its output channel. close(firstInput) for range input { } wg.Wait() if unknownRefs > 0 { level.Warn(h.logger).Log("msg", "unknown series references", "count", unknownRefs) } return nil } // Init loads data from the write ahead log and prepares the head for writes. func (h *Head) Init() error { defer h.postings.EnsureOrder() if h.wal == nil { return nil } // Backfill the checkpoint first if it exists. cp, n, err := LastCheckpoint(h.wal.Dir()) if err != nil && err != ErrNotFound { return errors.Wrap(err, "find last checkpoint") } if err == nil { sr, err := wal.NewSegmentsReader(filepath.Join(h.wal.Dir(), cp)) if err != nil { return errors.Wrap(err, "open checkpoint") } defer sr.Close() // A corrupted checkpoint is a hard error for now and requires user // intervention. There's likely little data that can be recovered anyway. if err := h.loadWAL(wal.NewReader(sr)); err != nil { return errors.Wrap(err, "backfill checkpoint") } n++ } // Backfill segments from the last checkpoint onwards sr, err := wal.NewSegmentsRangeReader(h.wal.Dir(), n, -1) if err != nil { return errors.Wrap(err, "open WAL segments") } defer sr.Close() err = h.loadWAL(wal.NewReader(sr)) if err == nil { return nil } level.Warn(h.logger).Log("msg", "encountered WAL error, attempting repair", "err", err) if err := h.wal.Repair(err); err != nil { return errors.Wrap(err, "repair corrupted WAL") } return nil } // Truncate removes old data before mint from the head. func (h *Head) Truncate(mint int64) error { initialize := h.MinTime() == math.MaxInt64 if h.MinTime() >= mint && !initialize { return nil } atomic.StoreInt64(&h.minTime, mint) // Ensure that max time is at least as high as min time. for h.MaxTime() < mint { atomic.CompareAndSwapInt64(&h.maxTime, h.MaxTime(), mint) } // This was an initial call to Truncate after loading blocks on startup. // We haven't read back the WAL yet, so do not attempt to truncate it. if initialize { return nil } start := time.Now() h.gc() level.Info(h.logger).Log("msg", "head GC completed", "duration", time.Since(start)) h.metrics.gcDuration.Observe(time.Since(start).Seconds()) if h.wal == nil { return nil } start = time.Now() m, n, err := h.wal.Segments() if err != nil { return errors.Wrap(err, "get segment range") } n-- // Never consider last segment for checkpoint. if n < 0 { return nil // no segments yet. } // The lower third of segments should contain mostly obsolete samples. // If we have less than three segments, it's not worth checkpointing yet. n = m + (n-m)/3 if n <= m { return nil } keep := func(id uint64) bool { return h.series.getByID(id) != nil } if _, err = Checkpoint(h.logger, h.wal, m, n, keep, mint); err != nil { return errors.Wrap(err, "create checkpoint") } h.metrics.walTruncateDuration.Observe(time.Since(start).Seconds()) level.Info(h.logger).Log("msg", "WAL checkpoint complete", "low", m, "high", n, "duration", time.Since(start)) return nil } // initTime initializes a head with the first timestamp. This only needs to be called // for a compltely fresh head with an empty WAL. // Returns true if the initialization took an effect. func (h *Head) initTime(t int64) (initialized bool) { if !atomic.CompareAndSwapInt64(&h.minTime, math.MaxInt64, t) { return false } // Ensure that max time is initialized to at least the min time we just set. // Concurrent appenders may already have set it to a higher value. atomic.CompareAndSwapInt64(&h.maxTime, math.MinInt64, t) return true } type rangeHead struct { head *Head mint, maxt int64 } func (h *rangeHead) Index() (IndexReader, error) { return h.head.indexRange(h.mint, h.maxt), nil } func (h *rangeHead) Chunks() (ChunkReader, error) { return h.head.chunksRange(h.mint, h.maxt), nil } func (h *rangeHead) Tombstones() (TombstoneReader, error) { return h.head.tombstones, nil } // initAppender is a helper to initialize the time bounds of the head // upon the first sample it receives. type initAppender struct { app Appender head *Head } func (a *initAppender) Add(lset labels.Labels, t int64, v float64) (uint64, error) { if a.app != nil { return a.app.Add(lset, t, v) } a.head.initTime(t) a.app = a.head.appender() return a.app.Add(lset, t, v) } func (a *initAppender) AddFast(ref uint64, t int64, v float64) error { if a.app == nil { return ErrNotFound } return a.app.AddFast(ref, t, v) } func (a *initAppender) Commit() error { if a.app == nil { return nil } return a.app.Commit() } func (a *initAppender) Rollback() error { if a.app == nil { return nil } return a.app.Rollback() } // Appender returns a new Appender on the database. func (h *Head) Appender() Appender { h.metrics.activeAppenders.Inc() // The head cache might not have a starting point yet. The init appender // picks up the first appended timestamp as the base. if h.MinTime() == math.MaxInt64 { return &initAppender{head: h} } return h.appender() } func (h *Head) appender() *headAppender { return &headAppender{ head: h, minValidTime: h.MaxTime() - h.chunkRange/2, mint: math.MaxInt64, maxt: math.MinInt64, samples: h.getAppendBuffer(), } } func (h *Head) getAppendBuffer() []RefSample { b := h.appendPool.Get() if b == nil { return make([]RefSample, 0, 512) } return b.([]RefSample) } func (h *Head) putAppendBuffer(b []RefSample) { h.appendPool.Put(b[:0]) } func (h *Head) getBytesBuffer() []byte { b := h.bytesPool.Get() if b == nil { return make([]byte, 0, 1024) } return b.([]byte) } func (h *Head) putBytesBuffer(b []byte) { h.bytesPool.Put(b[:0]) } type headAppender struct { head *Head minValidTime int64 // No samples below this timestamp are allowed. mint, maxt int64 series []RefSeries samples []RefSample } func (a *headAppender) Add(lset labels.Labels, t int64, v float64) (uint64, error) { if t < a.minValidTime { return 0, ErrOutOfBounds } s, created := a.head.getOrCreate(lset.Hash(), lset) if created { a.series = append(a.series, RefSeries{ Ref: s.ref, Labels: lset, }) } return s.ref, a.AddFast(s.ref, t, v) } func (a *headAppender) AddFast(ref uint64, t int64, v float64) error { if t < a.minValidTime { return ErrOutOfBounds } s := a.head.series.getByID(ref) if s == nil { return errors.Wrap(ErrNotFound, "unknown series") } s.Lock() if err := s.appendable(t, v); err != nil { s.Unlock() return err } s.pendingCommit = true s.Unlock() if t < a.mint { a.mint = t } if t > a.maxt { a.maxt = t } a.samples = append(a.samples, RefSample{ Ref: ref, T: t, V: v, series: s, }) return nil } func (a *headAppender) log() error { if a.head.wal == nil { return nil } buf := a.head.getBytesBuffer() defer func() { a.head.putBytesBuffer(buf) }() var rec []byte var enc RecordEncoder if len(a.series) > 0 { rec = enc.Series(a.series, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log series") } } if len(a.samples) > 0 { rec = enc.Samples(a.samples, buf) buf = rec[:0] if err := a.head.wal.Log(rec); err != nil { return errors.Wrap(err, "log samples") } } return nil } func (a *headAppender) Commit() error { defer a.head.metrics.activeAppenders.Dec() defer a.head.putAppendBuffer(a.samples) if err := a.log(); err != nil { return errors.Wrap(err, "write to WAL") } total := len(a.samples) for _, s := range a.samples { s.series.Lock() ok, chunkCreated := s.series.append(s.T, s.V) s.series.pendingCommit = false s.series.Unlock() if !ok { total-- } if chunkCreated { a.head.metrics.chunks.Inc() a.head.metrics.chunksCreated.Inc() } } a.head.metrics.samplesAppended.Add(float64(total)) a.head.updateMinMaxTime(a.mint, a.maxt) return nil } func (a *headAppender) Rollback() error { a.head.metrics.activeAppenders.Dec() for _, s := range a.samples { s.series.Lock() s.series.pendingCommit = false s.series.Unlock() } a.head.putAppendBuffer(a.samples) // Series are created in the head memory regardless of rollback. Thus we have // to log them to the WAL in any case. a.samples = nil return a.log() } // Delete all samples in the range of [mint, maxt] for series that satisfy the given // label matchers. func (h *Head) Delete(mint, maxt int64, ms ...labels.Matcher) error { // Do not delete anything beyond the currently valid range. mint, maxt = clampInterval(mint, maxt, h.MinTime(), h.MaxTime()) ir := h.indexRange(mint, maxt) p, err := PostingsForMatchers(ir, ms...) if err != nil { return errors.Wrap(err, "select series") } var stones []Stone for p.Next() { series := h.series.getByID(p.At()) t0, t1 := series.minTime(), series.maxTime() if t0 == math.MinInt64 || t1 == math.MinInt64 { continue } // Delete only until the current values and not beyond. t0, t1 = clampInterval(mint, maxt, t0, t1) stones = append(stones, Stone{p.At(), Intervals{{t0, t1}}}) } if p.Err() != nil { return p.Err() } var enc RecordEncoder if h.wal != nil { if err := h.wal.Log(enc.Tombstones(stones, nil)); err != nil { return err } } for _, s := range stones { h.tombstones.addInterval(s.ref, s.intervals[0]) } return nil } // gc removes data before the minimum timestamp from the head. func (h *Head) gc() { // Only data strictly lower than this timestamp must be deleted. mint := h.MinTime() // Drop old chunks and remember series IDs and hashes if they can be // deleted entirely. deleted, chunksRemoved := h.series.gc(mint) seriesRemoved := len(deleted) h.metrics.seriesRemoved.Add(float64(seriesRemoved)) h.metrics.series.Sub(float64(seriesRemoved)) h.metrics.chunksRemoved.Add(float64(chunksRemoved)) h.metrics.chunks.Sub(float64(chunksRemoved)) // Remove deleted series IDs from the postings lists. h.postings.Delete(deleted) // Rebuild symbols and label value indices from what is left in the postings terms. symbols := make(map[string]struct{}) values := make(map[string]stringset, len(h.values)) h.postings.Iter(func(t labels.Label, _ index.Postings) error { symbols[t.Name] = struct{}{} symbols[t.Value] = struct{}{} ss, ok := values[t.Name] if !ok { ss = stringset{} values[t.Name] = ss } ss.set(t.Value) return nil }) h.symMtx.Lock() h.symbols = symbols h.values = values h.symMtx.Unlock() } // Tombstones returns a new reader over the head's tombstones func (h *Head) Tombstones() (TombstoneReader, error) { return h.tombstones, nil } // Index returns an IndexReader against the block. func (h *Head) Index() (IndexReader, error) { return h.indexRange(math.MinInt64, math.MaxInt64), nil } func (h *Head) indexRange(mint, maxt int64) *headIndexReader { if hmin := h.MinTime(); hmin > mint { mint = hmin } return &headIndexReader{head: h, mint: mint, maxt: maxt} } // Chunks returns a ChunkReader against the block. func (h *Head) Chunks() (ChunkReader, error) { return h.chunksRange(math.MinInt64, math.MaxInt64), nil } func (h *Head) chunksRange(mint, maxt int64) *headChunkReader { if hmin := h.MinTime(); hmin > mint { mint = hmin } return &headChunkReader{head: h, mint: mint, maxt: maxt} } // MinTime returns the lowest time bound on visible data in the head. func (h *Head) MinTime() int64 { return atomic.LoadInt64(&h.minTime) } // MaxTime returns the highest timestamp seen in data of the head. func (h *Head) MaxTime() int64 { return atomic.LoadInt64(&h.maxTime) } // Close flushes the WAL and closes the head. func (h *Head) Close() error { if h.wal == nil { return nil } return h.wal.Close() } type headChunkReader struct { head *Head mint, maxt int64 } func (h *headChunkReader) Close() error { return nil } // packChunkID packs a seriesID and a chunkID within it into a global 8 byte ID. // It panicks if the seriesID exceeds 5 bytes or the chunk ID 3 bytes. func packChunkID(seriesID, chunkID uint64) uint64 { if seriesID > (1<<40)-1 { panic("series ID exceeds 5 bytes") } if chunkID > (1<<24)-1 { panic("chunk ID exceeds 3 bytes") } return (seriesID << 24) | chunkID } func unpackChunkID(id uint64) (seriesID, chunkID uint64) { return id >> 24, (id << 40) >> 40 } // Chunk returns the chunk for the reference number. func (h *headChunkReader) Chunk(ref uint64) (chunkenc.Chunk, error) { sid, cid := unpackChunkID(ref) s := h.head.series.getByID(sid) // This means that the series has been garbage collected. if s == nil { return nil, ErrNotFound } s.Lock() c := s.chunk(int(cid)) // This means that the chunk has been garbage collected or is outside // the specified range. if c == nil || !c.OverlapsClosedInterval(h.mint, h.maxt) { s.Unlock() return nil, ErrNotFound } s.Unlock() return &safeChunk{ Chunk: c.chunk, s: s, cid: int(cid), }, nil } type safeChunk struct { chunkenc.Chunk s *memSeries cid int } func (c *safeChunk) Iterator() chunkenc.Iterator { c.s.Lock() it := c.s.iterator(c.cid) c.s.Unlock() return it } type headIndexReader struct { head *Head mint, maxt int64 } func (h *headIndexReader) Close() error { return nil } func (h *headIndexReader) Symbols() (map[string]struct{}, error) { h.head.symMtx.RLock() defer h.head.symMtx.RUnlock() res := make(map[string]struct{}, len(h.head.symbols)) for s := range h.head.symbols { res[s] = struct{}{} } return res, nil } // LabelValues returns the possible label values func (h *headIndexReader) LabelValues(names ...string) (index.StringTuples, error) { if len(names) != 1 { return nil, errInvalidSize } var sl []string h.head.symMtx.RLock() defer h.head.symMtx.RUnlock() for s := range h.head.values[names[0]] { sl = append(sl, s) } sort.Strings(sl) return index.NewStringTuples(sl, len(names)) } // Postings returns the postings list iterator for the label pair. func (h *headIndexReader) Postings(name, value string) (index.Postings, error) { return h.head.postings.Get(name, value), nil } func (h *headIndexReader) SortedPostings(p index.Postings) index.Postings { ep := make([]uint64, 0, 128) for p.Next() { ep = append(ep, p.At()) } if err := p.Err(); err != nil { return index.ErrPostings(errors.Wrap(err, "expand postings")) } sort.Slice(ep, func(i, j int) bool { a := h.head.series.getByID(ep[i]) b := h.head.series.getByID(ep[j]) if a == nil || b == nil { level.Debug(h.head.logger).Log("msg", "looked up series not found") return false } return labels.Compare(a.lset, b.lset) < 0 }) return index.NewListPostings(ep) } // Series returns the series for the given reference. func (h *headIndexReader) Series(ref uint64, lbls *labels.Labels, chks *[]chunks.Meta) error { s := h.head.series.getByID(ref) if s == nil { h.head.metrics.seriesNotFound.Inc() return ErrNotFound } *lbls = append((*lbls)[:0], s.lset...) s.Lock() defer s.Unlock() *chks = (*chks)[:0] for i, c := range s.chunks { // Do not expose chunks that are outside of the specified range. if !c.OverlapsClosedInterval(h.mint, h.maxt) { continue } *chks = append(*chks, chunks.Meta{ MinTime: c.minTime, MaxTime: c.maxTime, Ref: packChunkID(s.ref, uint64(s.chunkID(i))), }) } return nil } func (h *headIndexReader) LabelIndices() ([][]string, error) { h.head.symMtx.RLock() defer h.head.symMtx.RUnlock() res := [][]string{} for s := range h.head.values { res = append(res, []string{s}) } return res, nil } func (h *Head) getOrCreate(hash uint64, lset labels.Labels) (*memSeries, bool) { // Just using `getOrSet` below would be semantically sufficient, but we'd create // a new series on every sample inserted via Add(), which causes allocations // and makes our series IDs rather random and harder to compress in postings. s := h.series.getByHash(hash, lset) if s != nil { return s, false } // Optimistically assume that we are the first one to create the series. id := atomic.AddUint64(&h.lastSeriesID, 1) return h.getOrCreateWithID(id, hash, lset) } func (h *Head) getOrCreateWithID(id, hash uint64, lset labels.Labels) (*memSeries, bool) { s := newMemSeries(lset, id, h.chunkRange) s, created := h.series.getOrSet(hash, s) if !created { return s, false } h.metrics.series.Inc() h.metrics.seriesCreated.Inc() h.postings.Add(id, lset) h.symMtx.Lock() defer h.symMtx.Unlock() for _, l := range lset { valset, ok := h.values[l.Name] if !ok { valset = stringset{} h.values[l.Name] = valset } valset.set(l.Value) h.symbols[l.Name] = struct{}{} h.symbols[l.Value] = struct{}{} } return s, true } // seriesHashmap is a simple hashmap for memSeries by their label set. It is built // on top of a regular hashmap and holds a slice of series to resolve hash collisions. // Its methods require the hash to be submitted with it to avoid re-computations throughout // the code. type seriesHashmap map[uint64][]*memSeries func (m seriesHashmap) get(hash uint64, lset labels.Labels) *memSeries { for _, s := range m[hash] { if s.lset.Equals(lset) { return s } } return nil } func (m seriesHashmap) set(hash uint64, s *memSeries) { l := m[hash] for i, prev := range l { if prev.lset.Equals(s.lset) { l[i] = s return } } m[hash] = append(l, s) } func (m seriesHashmap) del(hash uint64, lset labels.Labels) { var rem []*memSeries for _, s := range m[hash] { if !s.lset.Equals(lset) { rem = append(rem, s) } } if len(rem) == 0 { delete(m, hash) } else { m[hash] = rem } } // stripeSeries locks modulo ranges of IDs and hashes to reduce lock contention. // The locks are padded to not be on the same cache line. Filling the padded space // with the maps was profiled to be slower – likely due to the additional pointer // dereferences. type stripeSeries struct { series [stripeSize]map[uint64]*memSeries hashes [stripeSize]seriesHashmap locks [stripeSize]stripeLock } const ( stripeSize = 1 << 14 stripeMask = stripeSize - 1 ) type stripeLock struct { sync.RWMutex // Padding to avoid multiple locks being on the same cache line. _ [40]byte } func newStripeSeries() *stripeSeries { s := &stripeSeries{} for i := range s.series { s.series[i] = map[uint64]*memSeries{} } for i := range s.hashes { s.hashes[i] = seriesHashmap{} } return s } // gc garbage collects old chunks that are strictly before mint and removes // series entirely that have no chunks left. func (s *stripeSeries) gc(mint int64) (map[uint64]struct{}, int) { var ( deleted = map[uint64]struct{}{} rmChunks = 0 ) // Run through all series and truncate old chunks. Mark those with no // chunks left as deleted and store their ID. for i := 0; i < stripeSize; i++ { s.locks[i].Lock() for hash, all := range s.hashes[i] { for _, series := range all { series.Lock() rmChunks += series.truncateChunksBefore(mint) if len(series.chunks) > 0 || series.pendingCommit { series.Unlock() continue } // The series is gone entirely. We need to keep the series lock // and make sure we have acquired the stripe locks for hash and ID of the // series alike. // If we don't hold them all, there's a very small chance that a series receives // samples again while we are half-way into deleting it. j := int(series.ref & stripeMask) if i != j { s.locks[j].Lock() } deleted[series.ref] = struct{}{} s.hashes[i].del(hash, series.lset) delete(s.series[j], series.ref) if i != j { s.locks[j].Unlock() } series.Unlock() } } s.locks[i].Unlock() } return deleted, rmChunks } func (s *stripeSeries) getByID(id uint64) *memSeries { i := id & stripeMask s.locks[i].RLock() series := s.series[i][id] s.locks[i].RUnlock() return series } func (s *stripeSeries) getByHash(hash uint64, lset labels.Labels) *memSeries { i := hash & stripeMask s.locks[i].RLock() series := s.hashes[i].get(hash, lset) s.locks[i].RUnlock() return series } func (s *stripeSeries) getOrSet(hash uint64, series *memSeries) (*memSeries, bool) { i := hash & stripeMask s.locks[i].Lock() if prev := s.hashes[i].get(hash, series.lset); prev != nil { s.locks[i].Unlock() return prev, false } s.hashes[i].set(hash, series) s.locks[i].Unlock() i = series.ref & stripeMask s.locks[i].Lock() s.series[i][series.ref] = series s.locks[i].Unlock() return series, true } type sample struct { t int64 v float64 } // memSeries is the in-memory representation of a series. None of its methods // are goroutine safe and it is the caller's responsibility to lock it. type memSeries struct { sync.Mutex ref uint64 lset labels.Labels chunks []*memChunk chunkRange int64 firstChunkID int nextAt int64 // Timestamp at which to cut the next chunk. lastValue float64 sampleBuf [4]sample pendingCommit bool // Whether there are samples waiting to be committed to this series. app chunkenc.Appender // Current appender for the chunk. } func (s *memSeries) minTime() int64 { if len(s.chunks) == 0 { return math.MinInt64 } return s.chunks[0].minTime } func (s *memSeries) maxTime() int64 { c := s.head() if c == nil { return math.MinInt64 } return c.maxTime } func (s *memSeries) cut(mint int64) *memChunk { c := &memChunk{ chunk: chunkenc.NewXORChunk(), minTime: mint, maxTime: math.MinInt64, } s.chunks = append(s.chunks, c) // Set upper bound on when the next chunk must be started. An earlier timestamp // may be chosen dynamically at a later point. _, s.nextAt = rangeForTimestamp(mint, s.chunkRange) app, err := c.chunk.Appender() if err != nil { panic(err) } s.app = app return c } func newMemSeries(lset labels.Labels, id uint64, chunkRange int64) *memSeries { s := &memSeries{ lset: lset, ref: id, chunkRange: chunkRange, nextAt: math.MinInt64, } return s } // appendable checks whether the given sample is valid for appending to the series. func (s *memSeries) appendable(t int64, v float64) error { c := s.head() if c == nil { return nil } if t > c.maxTime { return nil } if t < c.maxTime { return ErrOutOfOrderSample } // We are allowing exact duplicates as we can encounter them in valid cases // like federation and erroring out at that time would be extremely noisy. if math.Float64bits(s.lastValue) != math.Float64bits(v) { return ErrAmendSample } return nil } func (s *memSeries) chunk(id int) *memChunk { ix := id - s.firstChunkID if ix < 0 || ix >= len(s.chunks) { return nil } return s.chunks[ix] } func (s *memSeries) chunkID(pos int) int { return pos + s.firstChunkID } // truncateChunksBefore removes all chunks from the series that have not timestamp // at or after mint. Chunk IDs remain unchanged. func (s *memSeries) truncateChunksBefore(mint int64) (removed int) { var k int for i, c := range s.chunks { if c.maxTime >= mint { break } k = i + 1 } s.chunks = append(s.chunks[:0], s.chunks[k:]...) s.firstChunkID += k return k } // append adds the sample (t, v) to the series. func (s *memSeries) append(t int64, v float64) (success, chunkCreated bool) { const samplesPerChunk = 120 c := s.head() if c == nil { c = s.cut(t) chunkCreated = true } numSamples := c.chunk.NumSamples() // Out of order sample. if c.maxTime >= t { return false, chunkCreated } // If we reach 25% of a chunk's desired sample count, set a definitive time // at which to start the next chunk. // At latest it must happen at the timestamp set when the chunk was cut. if numSamples == samplesPerChunk/4 { s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, s.nextAt) } if t >= s.nextAt { c = s.cut(t) chunkCreated = true } s.app.Append(t, v) c.maxTime = t s.lastValue = v s.sampleBuf[0] = s.sampleBuf[1] s.sampleBuf[1] = s.sampleBuf[2] s.sampleBuf[2] = s.sampleBuf[3] s.sampleBuf[3] = sample{t: t, v: v} return true, chunkCreated } // computeChunkEndTime estimates the end timestamp based the beginning of a chunk, // its current timestamp and the upper bound up to which we insert data. // It assumes that the time range is 1/4 full. func computeChunkEndTime(start, cur, max int64) int64 { a := (max - start) / ((cur - start + 1) * 4) if a == 0 { return max } return start + (max-start)/a } func (s *memSeries) iterator(id int) chunkenc.Iterator { c := s.chunk(id) // TODO(fabxc): Work around! A querier may have retrieved a pointer to a series' chunk, // which got then garbage collected before it got accessed. // We must ensure to not garbage collect as long as any readers still hold a reference. if c == nil { return chunkenc.NewNopIterator() } if id-s.firstChunkID < len(s.chunks)-1 { return c.chunk.Iterator() } // Serve the last 4 samples for the last chunk from the sample buffer // as their compressed bytes may be mutated by added samples. it := &memSafeIterator{ Iterator: c.chunk.Iterator(), i: -1, total: c.chunk.NumSamples(), buf: s.sampleBuf, } return it } func (s *memSeries) head() *memChunk { if len(s.chunks) == 0 { return nil } return s.chunks[len(s.chunks)-1] } type memChunk struct { chunk chunkenc.Chunk minTime, maxTime int64 } // Returns true if the chunk overlaps [mint, maxt]. func (mc *memChunk) OverlapsClosedInterval(mint, maxt int64) bool { return mc.minTime <= maxt && mint <= mc.maxTime } type memSafeIterator struct { chunkenc.Iterator i int total int buf [4]sample } func (it *memSafeIterator) Next() bool { if it.i+1 >= it.total { return false } it.i++ if it.total-it.i > 4 { return it.Iterator.Next() } return true } func (it *memSafeIterator) At() (int64, float64) { if it.total-it.i > 4 { return it.Iterator.At() } s := it.buf[4-(it.total-it.i)] return s.t, s.v } type stringset map[string]struct{} func (ss stringset) set(s string) { ss[s] = struct{}{} } func (ss stringset) has(s string) bool { _, ok := ss[s] return ok } func (ss stringset) String() string { return strings.Join(ss.slice(), ",") } func (ss stringset) slice() []string { slice := make([]string, 0, len(ss)) for k := range ss { slice = append(slice, k) } sort.Strings(slice) return slice }