// Copyright 2020 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package labels import ( "regexp" "regexp/syntax" "strings" ) const maxSetMatches = 256 type FastRegexMatcher struct { re *regexp.Regexp setMatches []string stringMatcher StringMatcher prefix string suffix string contains string } func NewFastRegexMatcher(v string) (*FastRegexMatcher, error) { parsed, err := syntax.Parse(v, syntax.Perl) if err != nil { return nil, err } // Simplify the syntax tree to run faster. parsed = parsed.Simplify() re, err := regexp.Compile("^(?:" + parsed.String() + ")$") if err != nil { return nil, err } m := &FastRegexMatcher{ re: re, } if parsed.Op == syntax.OpConcat { m.prefix, m.suffix, m.contains = optimizeConcatRegex(parsed) } m.setMatches = findSetMatches(parsed, "") m.stringMatcher = stringMatcherFromRegexp(parsed) return m, nil } // findSetMatches extract equality matches from a regexp. // Returns nil if we can't replace the regexp by only equality matchers. func findSetMatches(re *syntax.Regexp, base string) []string { // Matches are case sensitive, if we find a case insensitive regexp. // We have to abort. if isCaseInsensitive(re) { return nil } clearBeginEndText(re) switch re.Op { case syntax.OpLiteral: return []string{base + string(re.Rune)} case syntax.OpEmptyMatch: if base != "" { return []string{base} } case syntax.OpAlternate: return findSetMatchesFromAlternate(re, base) case syntax.OpCapture: clearCapture(re) return findSetMatches(re, base) case syntax.OpConcat: return findSetMatchesFromConcat(re, base) case syntax.OpCharClass: if len(re.Rune)%2 != 0 { return nil } var matches []string var totalSet int for i := 0; i+1 < len(re.Rune); i = i + 2 { totalSet += int(re.Rune[i+1]-re.Rune[i]) + 1 } // limits the total characters that can be used to create matches. // In some case like negation [^0-9] a lot of possibilities exists and that // can create thousands of possible matches at which points we're better off using regexp. if totalSet > maxSetMatches { return nil } for i := 0; i+1 < len(re.Rune); i = i + 2 { lo, hi := re.Rune[i], re.Rune[i+1] for c := lo; c <= hi; c++ { matches = append(matches, base+string(c)) } } return matches default: return nil } return nil } func findSetMatchesFromConcat(re *syntax.Regexp, base string) []string { if len(re.Sub) == 0 { return nil } clearCapture(re.Sub...) matches := []string{base} for i := 0; i < len(re.Sub); i++ { var newMatches []string for _, b := range matches { m := findSetMatches(re.Sub[i], b) if m == nil { return nil } if tooManyMatches(newMatches, m...) { return nil } newMatches = append(newMatches, m...) } matches = newMatches } return matches } func findSetMatchesFromAlternate(re *syntax.Regexp, base string) []string { var setMatches []string for _, sub := range re.Sub { found := findSetMatches(sub, base) if found == nil { return nil } if tooManyMatches(setMatches, found...) { return nil } setMatches = append(setMatches, found...) } return setMatches } // clearCapture removes capture operation as they are not used for matching. func clearCapture(regs ...*syntax.Regexp) { for _, r := range regs { if r.Op == syntax.OpCapture { *r = *r.Sub[0] } } } // clearBeginEndText removes the begin and end text from the regexp. Prometheus regexp are anchored to the beginning and end of the string. func clearBeginEndText(re *syntax.Regexp) { if len(re.Sub) == 0 { return } if len(re.Sub) == 1 { if re.Sub[0].Op == syntax.OpBeginText || re.Sub[0].Op == syntax.OpEndText { re.Sub = nil return } } if re.Sub[0].Op == syntax.OpBeginText { re.Sub = re.Sub[1:] } if re.Sub[len(re.Sub)-1].Op == syntax.OpEndText { re.Sub = re.Sub[:len(re.Sub)-1] } } // isCaseInsensitive tells if a regexp is case insensitive. // The flag should be check at each level of the syntax tree. func isCaseInsensitive(reg *syntax.Regexp) bool { return (reg.Flags & syntax.FoldCase) != 0 } // tooManyMatches guards against creating too many set matches func tooManyMatches(matches []string, new ...string) bool { return len(matches)+len(new) > maxSetMatches } func (m *FastRegexMatcher) MatchString(s string) bool { if len(m.setMatches) != 0 { for _, match := range m.setMatches { if match == s { return true } } return false } if m.prefix != "" && !strings.HasPrefix(s, m.prefix) { return false } if m.suffix != "" && !strings.HasSuffix(s, m.suffix) { return false } if m.contains != "" && !strings.Contains(s, m.contains) { return false } if m.stringMatcher != nil { return m.stringMatcher.Matches(s) } return m.re.MatchString(s) } func (m *FastRegexMatcher) SetMatches() []string { return m.setMatches } func (m *FastRegexMatcher) GetRegexString() string { return m.re.String() } // optimizeConcatRegex returns literal prefix/suffix text that can be safely // checked against the label value before running the regexp matcher. func optimizeConcatRegex(r *syntax.Regexp) (prefix, suffix, contains string) { sub := r.Sub // We can safely remove begin and end text matchers respectively // at the beginning and end of the regexp. if len(sub) > 0 && sub[0].Op == syntax.OpBeginText { sub = sub[1:] } if len(sub) > 0 && sub[len(sub)-1].Op == syntax.OpEndText { sub = sub[:len(sub)-1] } if len(sub) == 0 { return } // Given Prometheus regex matchers are always anchored to the begin/end // of the text, if the first/last operations are literals, we can safely // treat them as prefix/suffix. if sub[0].Op == syntax.OpLiteral && (sub[0].Flags&syntax.FoldCase) == 0 { prefix = string(sub[0].Rune) } if last := len(sub) - 1; sub[last].Op == syntax.OpLiteral && (sub[last].Flags&syntax.FoldCase) == 0 { suffix = string(sub[last].Rune) } // If contains any literal which is not a prefix/suffix, we keep the // 1st one. We do not keep the whole list of literals to simplify the // fast path. for i := 1; i < len(sub)-1; i++ { if sub[i].Op == syntax.OpLiteral && (sub[i].Flags&syntax.FoldCase) == 0 { contains = string(sub[i].Rune) break } } return } // StringMatcher is a matcher that matches a string in place of a regular expression. type StringMatcher interface { Matches(s string) bool } // stringMatcherFromRegexp attempts to replace a common regexp with a string matcher. // It returns nil if the regexp is not supported. // For examples, it will replace `.*foo` with `foo.*` and `.*foo.*` with `(?i)foo`. func stringMatcherFromRegexp(re *syntax.Regexp) StringMatcher { clearCapture(re) clearBeginEndText(re) switch re.Op { case syntax.OpPlus, syntax.OpStar: if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL { return nil } return &anyStringMatcher{ allowEmpty: re.Op == syntax.OpStar, matchNL: re.Sub[0].Op == syntax.OpAnyChar, } case syntax.OpEmptyMatch: return emptyStringMatcher{} case syntax.OpLiteral: return &equalStringMatcher{ s: string(re.Rune), caseSensitive: !isCaseInsensitive(re), } case syntax.OpAlternate: or := make([]StringMatcher, 0, len(re.Sub)) for _, sub := range re.Sub { m := stringMatcherFromRegexp(sub) if m == nil { return nil } or = append(or, m) } return orStringMatcher(or) case syntax.OpConcat: clearCapture(re.Sub...) if len(re.Sub) == 0 { return emptyStringMatcher{} } if len(re.Sub) == 1 { return stringMatcherFromRegexp(re.Sub[0]) } var left, right StringMatcher // Let's try to find if there's a first and last any matchers. if re.Sub[0].Op == syntax.OpPlus || re.Sub[0].Op == syntax.OpStar { left = stringMatcherFromRegexp(re.Sub[0]) if left == nil { return nil } re.Sub = re.Sub[1:] } if re.Sub[len(re.Sub)-1].Op == syntax.OpPlus || re.Sub[len(re.Sub)-1].Op == syntax.OpStar { right = stringMatcherFromRegexp(re.Sub[len(re.Sub)-1]) if right == nil { return nil } re.Sub = re.Sub[:len(re.Sub)-1] } matches := findSetMatches(re, "") if left == nil && right == nil { // if there's no any matchers on both side it's a concat of literals if len(matches) > 0 { or := make([]StringMatcher, 0, len(matches)) for _, match := range matches { or = append(or, &equalStringMatcher{ s: match, caseSensitive: true, }) } return orStringMatcher(or) } } // others we found literals in the middle. if len(matches) > 0 { return &containsStringMatcher{ substrings: matches, left: left, right: right, } } } return nil } // containsStringMatcher matches a string if it contains any of the substrings. // If left and right are not nil, it's a contains operation where left and right must match. // If left is nil, it's a hasPrefix operation and right must match. // Finally if right is nil it's a hasSuffix operation and left must match. type containsStringMatcher struct { substrings []string left StringMatcher right StringMatcher } func (m *containsStringMatcher) Matches(s string) bool { for _, substr := range m.substrings { if m.right != nil && m.left != nil { pos := strings.Index(s, substr) if pos < 0 { continue } if m.left.Matches(s[:pos]) && m.right.Matches(s[pos+len(substr):]) { return true } continue } // If we have to check for characters on the left then we need to match a suffix. if m.left != nil { if strings.HasSuffix(s, substr) && m.left.Matches(s[:len(s)-len(substr)]) { return true } continue } if m.right != nil { if strings.HasPrefix(s, substr) && m.right.Matches(s[len(substr):]) { return true } continue } } return false } // emptyStringMatcher matches an empty string. type emptyStringMatcher struct{} func (m emptyStringMatcher) Matches(s string) bool { return len(s) == 0 } // orStringMatcher matches any of the sub-matchers. type orStringMatcher []StringMatcher func (m orStringMatcher) Matches(s string) bool { for _, matcher := range m { if matcher.Matches(s) { return true } } return false } // equalStringMatcher matches a string exactly and support case insensitive. type equalStringMatcher struct { s string caseSensitive bool } func (m *equalStringMatcher) Matches(s string) bool { if m.caseSensitive { return m.s == s } return strings.EqualFold(m.s, s) } // anyStringMatcher is a matcher that matches any string. // It is used for the + and * operator. matchNL tells if it should matches newlines or not. type anyStringMatcher struct { allowEmpty bool matchNL bool } func (m *anyStringMatcher) Matches(s string) bool { if !m.allowEmpty && len(s) == 0 { return false } if !m.matchNL && strings.ContainsRune(s, '\n') { return false } return true }