// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tsdb import ( "context" "errors" "fmt" "io" "math" "path/filepath" "runtime" "strconv" "sync" "time" "github.com/go-kit/log" "github.com/go-kit/log/level" "github.com/oklog/ulid" "go.uber.org/atomic" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/prometheus/config" "github.com/prometheus/prometheus/model/exemplar" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/metadata" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/index" "github.com/prometheus/prometheus/tsdb/record" "github.com/prometheus/prometheus/tsdb/tombstones" "github.com/prometheus/prometheus/tsdb/wlog" "github.com/prometheus/prometheus/util/zeropool" ) var ( // ErrInvalidSample is returned if an appended sample is not valid and can't // be ingested. ErrInvalidSample = errors.New("invalid sample") // ErrInvalidExemplar is returned if an appended exemplar is not valid and can't // be ingested. ErrInvalidExemplar = errors.New("invalid exemplar") // ErrAppenderClosed is returned if an appender has already be successfully // rolled back or committed. ErrAppenderClosed = errors.New("appender closed") // defaultIsolationDisabled is true if isolation is disabled by default. defaultIsolationDisabled = false defaultWALReplayConcurrency = runtime.GOMAXPROCS(0) ) // Head handles reads and writes of time series data within a time window. type Head struct { chunkRange atomic.Int64 numSeries atomic.Uint64 minOOOTime, maxOOOTime atomic.Int64 // TODO(jesusvazquez) These should be updated after garbage collection. minTime, maxTime atomic.Int64 // Current min and max of the samples included in the head. TODO(jesusvazquez) Ensure these are properly tracked. minValidTime atomic.Int64 // Mint allowed to be added to the head. It shouldn't be lower than the maxt of the last persisted block. lastWALTruncationTime atomic.Int64 lastMemoryTruncationTime atomic.Int64 lastSeriesID atomic.Uint64 // All the ooo m-map chunks should be after this. This is used to truncate old ooo m-map chunks. // This should be typecasted to chunks.ChunkDiskMapperRef after loading. minOOOMmapRef atomic.Uint64 metrics *headMetrics opts *HeadOptions wal, wbl *wlog.WL exemplarMetrics *ExemplarMetrics exemplars ExemplarStorage logger log.Logger appendPool zeropool.Pool[[]record.RefSample] exemplarsPool zeropool.Pool[[]exemplarWithSeriesRef] histogramsPool zeropool.Pool[[]record.RefHistogramSample] floatHistogramsPool zeropool.Pool[[]record.RefFloatHistogramSample] metadataPool zeropool.Pool[[]record.RefMetadata] seriesPool zeropool.Pool[[]*memSeries] bytesPool zeropool.Pool[[]byte] memChunkPool sync.Pool // All series addressable by their ID or hash. series *stripeSeries deletedMtx sync.Mutex deleted map[chunks.HeadSeriesRef]int // Deleted series, and what WAL segment they must be kept until. // TODO(codesome): Extend MemPostings to return only OOOPostings, Set OOOStatus, ... Like an additional map of ooo postings. postings *index.MemPostings // Postings lists for terms. tombstones *tombstones.MemTombstones iso *isolation oooIso *oooIsolation cardinalityMutex sync.Mutex cardinalityCache *index.PostingsStats // Posting stats cache which will expire after 30sec. cardinalityCacheKey string lastPostingsStatsCall time.Duration // Last posting stats call (PostingsCardinalityStats()) time for caching. // chunkDiskMapper is used to write and read Head chunks to/from disk. chunkDiskMapper *chunks.ChunkDiskMapper chunkSnapshotMtx sync.Mutex closedMtx sync.Mutex closed bool stats *HeadStats reg prometheus.Registerer writeNotified wlog.WriteNotified memTruncationInProcess atomic.Bool } type ExemplarStorage interface { storage.ExemplarQueryable AddExemplar(labels.Labels, exemplar.Exemplar) error ValidateExemplar(labels.Labels, exemplar.Exemplar) error IterateExemplars(f func(seriesLabels labels.Labels, e exemplar.Exemplar) error) error } // HeadOptions are parameters for the Head block. type HeadOptions struct { // Runtime reloadable option. At the top of the struct for 32 bit OS: // https://pkg.go.dev/sync/atomic#pkg-note-BUG MaxExemplars atomic.Int64 OutOfOrderTimeWindow atomic.Int64 OutOfOrderCapMax atomic.Int64 // EnableNativeHistograms enables the ingestion of native histograms. EnableNativeHistograms atomic.Bool // EnableCreatedTimestampZeroIngestion enables the ingestion of the created timestamp as a synthetic zero sample. // See: https://github.com/prometheus/proposals/blob/main/proposals/2023-06-13_created-timestamp.md EnableCreatedTimestampZeroIngestion bool ChunkRange int64 // ChunkDirRoot is the parent directory of the chunks directory. ChunkDirRoot string ChunkPool chunkenc.Pool ChunkWriteBufferSize int ChunkWriteQueueSize int SamplesPerChunk int // StripeSize sets the number of entries in the hash map, it must be a power of 2. // A larger StripeSize will allocate more memory up-front, but will increase performance when handling a large number of series. // A smaller StripeSize reduces the memory allocated, but can decrease performance with large number of series. StripeSize int SeriesCallback SeriesLifecycleCallback EnableExemplarStorage bool EnableMemorySnapshotOnShutdown bool IsolationDisabled bool // Maximum number of CPUs that can simultaneously processes WAL replay. // The default value is GOMAXPROCS. // If it is set to a negative value or zero, the default value is used. WALReplayConcurrency int // EnableSharding enables ShardedPostings() support in the Head. // EnableSharding is temporarily disabled during Init(). EnableSharding bool } const ( // DefaultOutOfOrderCapMax is the default maximum size of an in-memory out-of-order chunk. DefaultOutOfOrderCapMax int64 = 32 // DefaultSamplesPerChunk provides a default target number of samples per chunk. DefaultSamplesPerChunk = 120 ) func DefaultHeadOptions() *HeadOptions { ho := &HeadOptions{ ChunkRange: DefaultBlockDuration, ChunkDirRoot: "", ChunkPool: chunkenc.NewPool(), ChunkWriteBufferSize: chunks.DefaultWriteBufferSize, ChunkWriteQueueSize: chunks.DefaultWriteQueueSize, SamplesPerChunk: DefaultSamplesPerChunk, StripeSize: DefaultStripeSize, SeriesCallback: &noopSeriesLifecycleCallback{}, IsolationDisabled: defaultIsolationDisabled, WALReplayConcurrency: defaultWALReplayConcurrency, } ho.OutOfOrderCapMax.Store(DefaultOutOfOrderCapMax) return ho } // SeriesLifecycleCallback specifies a list of callbacks that will be called during a lifecycle of a series. // It is always a no-op in Prometheus and mainly meant for external users who import TSDB. // All the callbacks should be safe to be called concurrently. // It is up to the user to implement soft or hard consistency by making the callbacks // atomic or non-atomic. Atomic callbacks can cause degradation performance. type SeriesLifecycleCallback interface { // PreCreation is called before creating a series to indicate if the series can be created. // A non nil error means the series should not be created. PreCreation(labels.Labels) error // PostCreation is called after creating a series to indicate a creation of series. PostCreation(labels.Labels) // PostDeletion is called after deletion of series. PostDeletion(map[chunks.HeadSeriesRef]labels.Labels) } // NewHead opens the head block in dir. func NewHead(r prometheus.Registerer, l log.Logger, wal, wbl *wlog.WL, opts *HeadOptions, stats *HeadStats) (*Head, error) { var err error if l == nil { l = log.NewNopLogger() } if opts.OutOfOrderTimeWindow.Load() < 0 { opts.OutOfOrderTimeWindow.Store(0) } // Time window can be set on runtime. So the capMin and capMax should be valid // even if ooo is not enabled yet. capMax := opts.OutOfOrderCapMax.Load() if capMax <= 0 || capMax > 255 { return nil, fmt.Errorf("OOOCapMax of %d is invalid. must be > 0 and <= 255", capMax) } if opts.ChunkRange < 1 { return nil, fmt.Errorf("invalid chunk range %d", opts.ChunkRange) } if opts.SeriesCallback == nil { opts.SeriesCallback = &noopSeriesLifecycleCallback{} } if stats == nil { stats = NewHeadStats() } if !opts.EnableExemplarStorage { opts.MaxExemplars.Store(0) } h := &Head{ wal: wal, wbl: wbl, logger: l, opts: opts, memChunkPool: sync.Pool{ New: func() interface{} { return &memChunk{} }, }, stats: stats, reg: r, } if err := h.resetInMemoryState(); err != nil { return nil, err } if opts.ChunkPool == nil { opts.ChunkPool = chunkenc.NewPool() } if opts.WALReplayConcurrency <= 0 { opts.WALReplayConcurrency = defaultWALReplayConcurrency } h.chunkDiskMapper, err = chunks.NewChunkDiskMapper( r, mmappedChunksDir(opts.ChunkDirRoot), opts.ChunkPool, opts.ChunkWriteBufferSize, opts.ChunkWriteQueueSize, ) if err != nil { return nil, err } h.metrics = newHeadMetrics(h, r) return h, nil } func (h *Head) resetInMemoryState() error { var err error var em *ExemplarMetrics if h.exemplars != nil { ce, ok := h.exemplars.(*CircularExemplarStorage) if ok { em = ce.metrics } } if em == nil { em = NewExemplarMetrics(h.reg) } es, err := NewCircularExemplarStorage(h.opts.MaxExemplars.Load(), em) if err != nil { return err } if h.series != nil { // reset the existing series to make sure we call the appropriated hooks // and increment the series removed metrics fs := h.series.iterForDeletion(func(_ int, _ uint64, s *memSeries, flushedForCallback map[chunks.HeadSeriesRef]labels.Labels) { // All series should be flushed flushedForCallback[s.ref] = s.lset }) h.metrics.seriesRemoved.Add(float64(fs)) } h.series = newStripeSeries(h.opts.StripeSize, h.opts.SeriesCallback) h.iso = newIsolation(h.opts.IsolationDisabled) h.oooIso = newOOOIsolation() h.numSeries.Store(0) h.exemplarMetrics = em h.exemplars = es h.postings = index.NewUnorderedMemPostings() h.tombstones = tombstones.NewMemTombstones() h.deleted = map[chunks.HeadSeriesRef]int{} h.chunkRange.Store(h.opts.ChunkRange) h.minTime.Store(math.MaxInt64) h.maxTime.Store(math.MinInt64) h.minOOOTime.Store(math.MaxInt64) h.maxOOOTime.Store(math.MinInt64) h.lastWALTruncationTime.Store(math.MinInt64) h.lastMemoryTruncationTime.Store(math.MinInt64) return nil } type headMetrics struct { activeAppenders prometheus.Gauge series prometheus.GaugeFunc seriesCreated prometheus.Counter seriesRemoved prometheus.Counter seriesNotFound prometheus.Counter chunks prometheus.Gauge chunksCreated prometheus.Counter chunksRemoved prometheus.Counter gcDuration prometheus.Summary samplesAppended *prometheus.CounterVec outOfOrderSamplesAppended *prometheus.CounterVec outOfBoundSamples *prometheus.CounterVec outOfOrderSamples *prometheus.CounterVec tooOldSamples *prometheus.CounterVec walTruncateDuration prometheus.Summary walCorruptionsTotal prometheus.Counter dataTotalReplayDuration prometheus.Gauge headTruncateFail prometheus.Counter headTruncateTotal prometheus.Counter checkpointDeleteFail prometheus.Counter checkpointDeleteTotal prometheus.Counter checkpointCreationFail prometheus.Counter checkpointCreationTotal prometheus.Counter mmapChunkCorruptionTotal prometheus.Counter snapshotReplayErrorTotal prometheus.Counter // Will be either 0 or 1. oooHistogram prometheus.Histogram mmapChunksTotal prometheus.Counter } const ( sampleMetricTypeFloat = "float" sampleMetricTypeHistogram = "histogram" ) func newHeadMetrics(h *Head, r prometheus.Registerer) *headMetrics { m := &headMetrics{ activeAppenders: prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_active_appenders", Help: "Number of currently active appender transactions", }), series: prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_series", Help: "Total number of series in the head block.", }, func() float64 { return float64(h.NumSeries()) }), seriesCreated: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_created_total", Help: "Total number of series created in the head", }), seriesRemoved: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_removed_total", Help: "Total number of series removed in the head", }), seriesNotFound: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_series_not_found_total", Help: "Total number of requests for series that were not found.", }), chunks: prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_chunks", Help: "Total number of chunks in the head block.", }), chunksCreated: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_chunks_created_total", Help: "Total number of chunks created in the head", }), chunksRemoved: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_chunks_removed_total", Help: "Total number of chunks removed in the head", }), gcDuration: prometheus.NewSummary(prometheus.SummaryOpts{ Name: "prometheus_tsdb_head_gc_duration_seconds", Help: "Runtime of garbage collection in the head block.", }), walTruncateDuration: prometheus.NewSummary(prometheus.SummaryOpts{ Name: "prometheus_tsdb_wal_truncate_duration_seconds", Help: "Duration of WAL truncation.", }), walCorruptionsTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_wal_corruptions_total", Help: "Total number of WAL corruptions.", }), dataTotalReplayDuration: prometheus.NewGauge(prometheus.GaugeOpts{ Name: "prometheus_tsdb_data_replay_duration_seconds", Help: "Time taken to replay the data on disk.", }), samplesAppended: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_samples_appended_total", Help: "Total number of appended samples.", }, []string{"type"}), outOfOrderSamplesAppended: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_out_of_order_samples_appended_total", Help: "Total number of appended out of order samples.", }, []string{"type"}), outOfBoundSamples: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "prometheus_tsdb_out_of_bound_samples_total", Help: "Total number of out of bound samples ingestion failed attempts with out of order support disabled.", }, []string{"type"}), outOfOrderSamples: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "prometheus_tsdb_out_of_order_samples_total", Help: "Total number of out of order samples ingestion failed attempts due to out of order being disabled.", }, []string{"type"}), tooOldSamples: prometheus.NewCounterVec(prometheus.CounterOpts{ Name: "prometheus_tsdb_too_old_samples_total", Help: "Total number of out of order samples ingestion failed attempts with out of support enabled, but sample outside of time window.", }, []string{"type"}), headTruncateFail: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_truncations_failed_total", Help: "Total number of head truncations that failed.", }), headTruncateTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_head_truncations_total", Help: "Total number of head truncations attempted.", }), checkpointDeleteFail: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_checkpoint_deletions_failed_total", Help: "Total number of checkpoint deletions that failed.", }), checkpointDeleteTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_checkpoint_deletions_total", Help: "Total number of checkpoint deletions attempted.", }), checkpointCreationFail: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_checkpoint_creations_failed_total", Help: "Total number of checkpoint creations that failed.", }), checkpointCreationTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_checkpoint_creations_total", Help: "Total number of checkpoint creations attempted.", }), mmapChunkCorruptionTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_mmap_chunk_corruptions_total", Help: "Total number of memory-mapped chunk corruptions.", }), snapshotReplayErrorTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_snapshot_replay_error_total", Help: "Total number snapshot replays that failed.", }), oooHistogram: prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "prometheus_tsdb_sample_ooo_delta", Help: "Delta in seconds by which a sample is considered out of order (reported regardless of OOO time window and whether sample is accepted or not).", Buckets: []float64{ 60 * 10, // 10 min 60 * 30, // 30 min 60 * 60, // 60 min 60 * 60 * 2, // 2h 60 * 60 * 3, // 3h 60 * 60 * 6, // 6h 60 * 60 * 12, // 12h }, NativeHistogramBucketFactor: 1.1, NativeHistogramMaxBucketNumber: 100, NativeHistogramMinResetDuration: 1 * time.Hour, }), mmapChunksTotal: prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_mmap_chunks_total", Help: "Total number of chunks that were memory-mapped.", }), } if r != nil { r.MustRegister( m.activeAppenders, m.series, m.chunks, m.chunksCreated, m.chunksRemoved, m.seriesCreated, m.seriesRemoved, m.seriesNotFound, m.gcDuration, m.walTruncateDuration, m.walCorruptionsTotal, m.dataTotalReplayDuration, m.samplesAppended, m.outOfOrderSamplesAppended, m.outOfBoundSamples, m.outOfOrderSamples, m.tooOldSamples, m.headTruncateFail, m.headTruncateTotal, m.checkpointDeleteFail, m.checkpointDeleteTotal, m.checkpointCreationFail, m.checkpointCreationTotal, m.mmapChunksTotal, m.mmapChunkCorruptionTotal, m.snapshotReplayErrorTotal, // Metrics bound to functions and not needed in tests // can be created and registered on the spot. prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_max_time", Help: "Maximum timestamp of the head block. The unit is decided by the library consumer.", }, func() float64 { return float64(h.MaxTime()) }), prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_min_time", Help: "Minimum time bound of the head block. The unit is decided by the library consumer.", }, func() float64 { return float64(h.MinTime()) }), prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_isolation_low_watermark", Help: "The lowest TSDB append ID that is still referenced.", }, func() float64 { return float64(h.iso.lowWatermark()) }), prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_isolation_high_watermark", Help: "The highest TSDB append ID that has been given out.", }, func() float64 { return float64(h.iso.lastAppendID()) }), prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_head_chunks_storage_size_bytes", Help: "Size of the chunks_head directory.", }, func() float64 { val, err := h.chunkDiskMapper.Size() if err != nil { level.Error(h.logger).Log("msg", "Failed to calculate size of \"chunks_head\" dir", "err", err.Error()) } return float64(val) }), ) } return m } func mmappedChunksDir(dir string) string { return filepath.Join(dir, "chunks_head") } // HeadStats are the statistics for the head component of the DB. type HeadStats struct { WALReplayStatus *WALReplayStatus } // NewHeadStats returns a new HeadStats object. func NewHeadStats() *HeadStats { return &HeadStats{ WALReplayStatus: &WALReplayStatus{}, } } // WALReplayStatus contains status information about the WAL replay. type WALReplayStatus struct { sync.RWMutex Min int Max int Current int } // GetWALReplayStatus returns the WAL replay status information. func (s *WALReplayStatus) GetWALReplayStatus() WALReplayStatus { s.RLock() defer s.RUnlock() return WALReplayStatus{ Min: s.Min, Max: s.Max, Current: s.Current, } } const cardinalityCacheExpirationTime = time.Duration(30) * time.Second // Init loads data from the write ahead log and prepares the head for writes. // It should be called before using an appender so that it // limits the ingested samples to the head min valid time. func (h *Head) Init(minValidTime int64) (err error) { h.minValidTime.Store(minValidTime) defer func() { h.postings.EnsureOrder(h.opts.WALReplayConcurrency) }() defer h.gc() // After loading the wal remove the obsolete data from the head. defer func() { // Loading of m-mapped chunks and snapshot can make the mint of the Head // to go below minValidTime. if h.MinTime() < h.minValidTime.Load() { h.minTime.Store(h.minValidTime.Load()) } }() // If sharding is enabled, disable it while initializing, and calculate the shards later. // We're going to use that field for other purposes during WAL replay, // so we don't want to waste time on calculating the shard that we're going to lose anyway. if h.opts.EnableSharding { h.opts.EnableSharding = false defer func() { if err == nil { h.opts.EnableSharding = true // No locking is needed here as nobody should be writing while we're in Init. for _, stripe := range h.series.series { for _, s := range stripe { s.shardHashOrMemoryMappedMaxTime = labels.StableHash(s.lset) } } } }() } level.Info(h.logger).Log("msg", "Replaying on-disk memory mappable chunks if any") start := time.Now() snapIdx, snapOffset := -1, 0 refSeries := make(map[chunks.HeadSeriesRef]*memSeries) snapshotLoaded := false var chunkSnapshotLoadDuration time.Duration if h.opts.EnableMemorySnapshotOnShutdown { level.Info(h.logger).Log("msg", "Chunk snapshot is enabled, replaying from the snapshot") // If there are any WAL files, there should be at least one WAL file with an index that is current or newer // than the snapshot index. If the WAL index is behind the snapshot index somehow, the snapshot is assumed // to be outdated. loadSnapshot := true if h.wal != nil { _, endAt, err := wlog.Segments(h.wal.Dir()) if err != nil { return fmt.Errorf("finding WAL segments: %w", err) } _, idx, _, err := LastChunkSnapshot(h.opts.ChunkDirRoot) if err != nil && !errors.Is(err, record.ErrNotFound) { level.Error(h.logger).Log("msg", "Could not find last snapshot", "err", err) } if err == nil && endAt < idx { loadSnapshot = false level.Warn(h.logger).Log("msg", "Last WAL file is behind snapshot, removing snapshots") if err := DeleteChunkSnapshots(h.opts.ChunkDirRoot, math.MaxInt, math.MaxInt); err != nil { level.Error(h.logger).Log("msg", "Error while deleting snapshot directories", "err", err) } } } if loadSnapshot { var err error snapIdx, snapOffset, refSeries, err = h.loadChunkSnapshot() if err == nil { snapshotLoaded = true chunkSnapshotLoadDuration = time.Since(start) level.Info(h.logger).Log("msg", "Chunk snapshot loading time", "duration", chunkSnapshotLoadDuration.String()) } if err != nil { snapIdx, snapOffset = -1, 0 refSeries = make(map[chunks.HeadSeriesRef]*memSeries) h.metrics.snapshotReplayErrorTotal.Inc() level.Error(h.logger).Log("msg", "Failed to load chunk snapshot", "err", err) // We clear the partially loaded data to replay fresh from the WAL. if err := h.resetInMemoryState(); err != nil { return err } } } } mmapChunkReplayStart := time.Now() var ( mmappedChunks map[chunks.HeadSeriesRef][]*mmappedChunk oooMmappedChunks map[chunks.HeadSeriesRef][]*mmappedChunk lastMmapRef chunks.ChunkDiskMapperRef mmapChunkReplayDuration time.Duration ) if snapshotLoaded || h.wal != nil { // If snapshot was not loaded and if there is no WAL, then m-map chunks will be discarded // anyway. So we only load m-map chunks when it won't be discarded. mmappedChunks, oooMmappedChunks, lastMmapRef, err = h.loadMmappedChunks(refSeries) if err != nil { // TODO(codesome): clear out all m-map chunks here for refSeries. level.Error(h.logger).Log("msg", "Loading on-disk chunks failed", "err", err) var cerr *chunks.CorruptionErr if errors.As(err, &cerr) { h.metrics.mmapChunkCorruptionTotal.Inc() } // Discard snapshot data since we need to replay the WAL for the missed m-map chunks data. snapIdx, snapOffset = -1, 0 // If this fails, data will be recovered from WAL. // Hence we wont lose any data (given WAL is not corrupt). mmappedChunks, oooMmappedChunks, lastMmapRef, err = h.removeCorruptedMmappedChunks(err) if err != nil { return err } } mmapChunkReplayDuration = time.Since(mmapChunkReplayStart) level.Info(h.logger).Log("msg", "On-disk memory mappable chunks replay completed", "duration", mmapChunkReplayDuration.String()) } if h.wal == nil { level.Info(h.logger).Log("msg", "WAL not found") return nil } level.Info(h.logger).Log("msg", "Replaying WAL, this may take a while") checkpointReplayStart := time.Now() // Backfill the checkpoint first if it exists. dir, startFrom, err := wlog.LastCheckpoint(h.wal.Dir()) if err != nil && !errors.Is(err, record.ErrNotFound) { return fmt.Errorf("find last checkpoint: %w", err) } // Find the last segment. _, endAt, e := wlog.Segments(h.wal.Dir()) if e != nil { return fmt.Errorf("finding WAL segments: %w", e) } h.startWALReplayStatus(startFrom, endAt) syms := labels.NewSymbolTable() // One table for the whole WAL. multiRef := map[chunks.HeadSeriesRef]chunks.HeadSeriesRef{} if err == nil && startFrom >= snapIdx { sr, err := wlog.NewSegmentsReader(dir) if err != nil { return fmt.Errorf("open checkpoint: %w", err) } defer func() { if err := sr.Close(); err != nil { level.Warn(h.logger).Log("msg", "Error while closing the wal segments reader", "err", err) } }() // A corrupted checkpoint is a hard error for now and requires user // intervention. There's likely little data that can be recovered anyway. if err := h.loadWAL(wlog.NewReader(sr), syms, multiRef, mmappedChunks, oooMmappedChunks); err != nil { return fmt.Errorf("backfill checkpoint: %w", err) } h.updateWALReplayStatusRead(startFrom) startFrom++ level.Info(h.logger).Log("msg", "WAL checkpoint loaded") } checkpointReplayDuration := time.Since(checkpointReplayStart) walReplayStart := time.Now() if snapIdx > startFrom { startFrom = snapIdx } // Backfill segments from the most recent checkpoint onwards. for i := startFrom; i <= endAt; i++ { s, err := wlog.OpenReadSegment(wlog.SegmentName(h.wal.Dir(), i)) if err != nil { return fmt.Errorf("open WAL segment: %d: %w", i, err) } offset := 0 if i == snapIdx { offset = snapOffset } sr, err := wlog.NewSegmentBufReaderWithOffset(offset, s) if errors.Is(err, io.EOF) { // File does not exist. continue } if err != nil { return fmt.Errorf("segment reader (offset=%d): %w", offset, err) } err = h.loadWAL(wlog.NewReader(sr), syms, multiRef, mmappedChunks, oooMmappedChunks) if err := sr.Close(); err != nil { level.Warn(h.logger).Log("msg", "Error while closing the wal segments reader", "err", err) } if err != nil { return err } level.Info(h.logger).Log("msg", "WAL segment loaded", "segment", i, "maxSegment", endAt) h.updateWALReplayStatusRead(i) } walReplayDuration := time.Since(walReplayStart) wblReplayStart := time.Now() if h.wbl != nil { // Replay WBL. startFrom, endAt, e = wlog.Segments(h.wbl.Dir()) if e != nil { return &errLoadWbl{fmt.Errorf("finding WBL segments: %w", e)} } h.startWALReplayStatus(startFrom, endAt) for i := startFrom; i <= endAt; i++ { s, err := wlog.OpenReadSegment(wlog.SegmentName(h.wbl.Dir(), i)) if err != nil { return &errLoadWbl{fmt.Errorf("open WBL segment: %d: %w", i, err)} } sr := wlog.NewSegmentBufReader(s) err = h.loadWBL(wlog.NewReader(sr), syms, multiRef, lastMmapRef) if err := sr.Close(); err != nil { level.Warn(h.logger).Log("msg", "Error while closing the wbl segments reader", "err", err) } if err != nil { return &errLoadWbl{err} } level.Info(h.logger).Log("msg", "WBL segment loaded", "segment", i, "maxSegment", endAt) h.updateWALReplayStatusRead(i) } } wblReplayDuration := time.Since(wblReplayStart) totalReplayDuration := time.Since(start) h.metrics.dataTotalReplayDuration.Set(totalReplayDuration.Seconds()) level.Info(h.logger).Log( "msg", "WAL replay completed", "checkpoint_replay_duration", checkpointReplayDuration.String(), "wal_replay_duration", walReplayDuration.String(), "wbl_replay_duration", wblReplayDuration.String(), "chunk_snapshot_load_duration", chunkSnapshotLoadDuration.String(), "mmap_chunk_replay_duration", mmapChunkReplayDuration.String(), "total_replay_duration", totalReplayDuration.String(), ) return nil } func (h *Head) loadMmappedChunks(refSeries map[chunks.HeadSeriesRef]*memSeries) (map[chunks.HeadSeriesRef][]*mmappedChunk, map[chunks.HeadSeriesRef][]*mmappedChunk, chunks.ChunkDiskMapperRef, error) { mmappedChunks := map[chunks.HeadSeriesRef][]*mmappedChunk{} oooMmappedChunks := map[chunks.HeadSeriesRef][]*mmappedChunk{} var lastRef, secondLastRef chunks.ChunkDiskMapperRef if err := h.chunkDiskMapper.IterateAllChunks(func(seriesRef chunks.HeadSeriesRef, chunkRef chunks.ChunkDiskMapperRef, mint, maxt int64, numSamples uint16, encoding chunkenc.Encoding, isOOO bool) error { secondLastRef = lastRef lastRef = chunkRef if !isOOO && maxt < h.minValidTime.Load() { return nil } // We ignore any chunk that doesn't have a valid encoding if !chunkenc.IsValidEncoding(encoding) { return nil } ms, ok := refSeries[seriesRef] if isOOO { if !ok { oooMmappedChunks[seriesRef] = append(oooMmappedChunks[seriesRef], &mmappedChunk{ ref: chunkRef, minTime: mint, maxTime: maxt, numSamples: numSamples, }) return nil } h.metrics.chunks.Inc() h.metrics.chunksCreated.Inc() if ms.ooo == nil { ms.ooo = &memSeriesOOOFields{} } ms.ooo.oooMmappedChunks = append(ms.ooo.oooMmappedChunks, &mmappedChunk{ ref: chunkRef, minTime: mint, maxTime: maxt, numSamples: numSamples, }) h.updateMinOOOMaxOOOTime(mint, maxt) return nil } if !ok { slice := mmappedChunks[seriesRef] if len(slice) > 0 && slice[len(slice)-1].maxTime >= mint { h.metrics.mmapChunkCorruptionTotal.Inc() return fmt.Errorf("out of sequence m-mapped chunk for series ref %d, last chunk: [%d, %d], new: [%d, %d]", seriesRef, slice[len(slice)-1].minTime, slice[len(slice)-1].maxTime, mint, maxt) } slice = append(slice, &mmappedChunk{ ref: chunkRef, minTime: mint, maxTime: maxt, numSamples: numSamples, }) mmappedChunks[seriesRef] = slice return nil } if len(ms.mmappedChunks) > 0 && ms.mmappedChunks[len(ms.mmappedChunks)-1].maxTime >= mint { h.metrics.mmapChunkCorruptionTotal.Inc() return fmt.Errorf("out of sequence m-mapped chunk for series ref %d, last chunk: [%d, %d], new: [%d, %d]", seriesRef, ms.mmappedChunks[len(ms.mmappedChunks)-1].minTime, ms.mmappedChunks[len(ms.mmappedChunks)-1].maxTime, mint, maxt) } h.metrics.chunks.Inc() h.metrics.chunksCreated.Inc() ms.mmappedChunks = append(ms.mmappedChunks, &mmappedChunk{ ref: chunkRef, minTime: mint, maxTime: maxt, numSamples: numSamples, }) h.updateMinMaxTime(mint, maxt) if ms.headChunks != nil && maxt >= ms.headChunks.minTime { // The head chunk was completed and was m-mapped after taking the snapshot. // Hence remove this chunk. ms.nextAt = 0 ms.headChunks = nil ms.app = nil } return nil }); err != nil { // secondLastRef because the lastRef caused an error. return nil, nil, secondLastRef, fmt.Errorf("iterate on on-disk chunks: %w", err) } return mmappedChunks, oooMmappedChunks, lastRef, nil } // removeCorruptedMmappedChunks attempts to delete the corrupted mmapped chunks and if it fails, it clears all the previously // loaded mmapped chunks. func (h *Head) removeCorruptedMmappedChunks(err error) (map[chunks.HeadSeriesRef][]*mmappedChunk, map[chunks.HeadSeriesRef][]*mmappedChunk, chunks.ChunkDiskMapperRef, error) { level.Info(h.logger).Log("msg", "Deleting mmapped chunk files") // We never want to preserve the in-memory series from snapshots if we are repairing m-map chunks. if err := h.resetInMemoryState(); err != nil { return map[chunks.HeadSeriesRef][]*mmappedChunk{}, map[chunks.HeadSeriesRef][]*mmappedChunk{}, 0, err } level.Info(h.logger).Log("msg", "Deleting mmapped chunk files") if err := h.chunkDiskMapper.DeleteCorrupted(err); err != nil { level.Info(h.logger).Log("msg", "Deletion of corrupted mmap chunk files failed, discarding chunk files completely", "err", err) if err := h.chunkDiskMapper.Truncate(math.MaxUint32); err != nil { level.Error(h.logger).Log("msg", "Deletion of all mmap chunk files failed", "err", err) } return map[chunks.HeadSeriesRef][]*mmappedChunk{}, map[chunks.HeadSeriesRef][]*mmappedChunk{}, 0, nil } level.Info(h.logger).Log("msg", "Deletion of mmap chunk files successful, reattempting m-mapping the on-disk chunks") mmappedChunks, oooMmappedChunks, lastRef, err := h.loadMmappedChunks(make(map[chunks.HeadSeriesRef]*memSeries)) if err != nil { level.Error(h.logger).Log("msg", "Loading on-disk chunks failed, discarding chunk files completely", "err", err) if err := h.chunkDiskMapper.Truncate(math.MaxUint32); err != nil { level.Error(h.logger).Log("msg", "Deletion of all mmap chunk files failed after failed loading", "err", err) } mmappedChunks = map[chunks.HeadSeriesRef][]*mmappedChunk{} } return mmappedChunks, oooMmappedChunks, lastRef, nil } func (h *Head) ApplyConfig(cfg *config.Config, wbl *wlog.WL) { oooTimeWindow := int64(0) if cfg.StorageConfig.TSDBConfig != nil { oooTimeWindow = cfg.StorageConfig.TSDBConfig.OutOfOrderTimeWindow } if oooTimeWindow < 0 { oooTimeWindow = 0 } h.SetOutOfOrderTimeWindow(oooTimeWindow, wbl) if !h.opts.EnableExemplarStorage { return } // Head uses opts.MaxExemplars in combination with opts.EnableExemplarStorage // to decide if it should pass exemplars along to its exemplar storage, so we // need to update opts.MaxExemplars here. prevSize := h.opts.MaxExemplars.Load() h.opts.MaxExemplars.Store(cfg.StorageConfig.ExemplarsConfig.MaxExemplars) newSize := h.opts.MaxExemplars.Load() if prevSize == newSize { return } migrated := h.exemplars.(*CircularExemplarStorage).Resize(newSize) level.Info(h.logger).Log("msg", "Exemplar storage resized", "from", prevSize, "to", newSize, "migrated", migrated) } // SetOutOfOrderTimeWindow updates the out of order related parameters. // If the Head already has a WBL set, then the wbl will be ignored. func (h *Head) SetOutOfOrderTimeWindow(oooTimeWindow int64, wbl *wlog.WL) { if oooTimeWindow > 0 && h.wbl == nil { h.wbl = wbl } h.opts.OutOfOrderTimeWindow.Store(oooTimeWindow) } // EnableNativeHistograms enables the native histogram feature. func (h *Head) EnableNativeHistograms() { h.opts.EnableNativeHistograms.Store(true) } // DisableNativeHistograms disables the native histogram feature. func (h *Head) DisableNativeHistograms() { h.opts.EnableNativeHistograms.Store(false) } // PostingsCardinalityStats returns highest cardinality stats by label and value names. func (h *Head) PostingsCardinalityStats(statsByLabelName string, limit int) *index.PostingsStats { cacheKey := statsByLabelName + ";" + strconv.Itoa(limit) h.cardinalityMutex.Lock() defer h.cardinalityMutex.Unlock() if h.cardinalityCacheKey != cacheKey { h.cardinalityCache = nil } else { currentTime := time.Duration(time.Now().Unix()) * time.Second seconds := currentTime - h.lastPostingsStatsCall if seconds > cardinalityCacheExpirationTime { h.cardinalityCache = nil } } if h.cardinalityCache != nil { return h.cardinalityCache } h.cardinalityCacheKey = cacheKey h.cardinalityCache = h.postings.Stats(statsByLabelName, limit) h.lastPostingsStatsCall = time.Duration(time.Now().Unix()) * time.Second return h.cardinalityCache } func (h *Head) updateMinMaxTime(mint, maxt int64) { for { lt := h.MinTime() if mint >= lt { break } if h.minTime.CompareAndSwap(lt, mint) { break } } for { ht := h.MaxTime() if maxt <= ht { break } if h.maxTime.CompareAndSwap(ht, maxt) { break } } } func (h *Head) updateMinOOOMaxOOOTime(mint, maxt int64) { for { lt := h.MinOOOTime() if mint >= lt { break } if h.minOOOTime.CompareAndSwap(lt, mint) { break } } for { ht := h.MaxOOOTime() if maxt <= ht { break } if h.maxOOOTime.CompareAndSwap(ht, maxt) { break } } } // SetMinValidTime sets the minimum timestamp the head can ingest. func (h *Head) SetMinValidTime(minValidTime int64) { h.minValidTime.Store(minValidTime) } // Truncate removes old data before mint from the head and WAL. func (h *Head) Truncate(mint int64) (err error) { initialized := h.initialized() if err := h.truncateMemory(mint); err != nil { return err } if !initialized { return nil } return h.truncateWAL(mint) } // OverlapsClosedInterval returns true if the head overlaps [mint, maxt]. func (h *Head) OverlapsClosedInterval(mint, maxt int64) bool { return h.MinTime() <= maxt && mint <= h.MaxTime() } // truncateMemory removes old data before mint from the head. func (h *Head) truncateMemory(mint int64) (err error) { h.chunkSnapshotMtx.Lock() defer h.chunkSnapshotMtx.Unlock() defer func() { if err != nil { h.metrics.headTruncateFail.Inc() } }() initialized := h.initialized() if h.MinTime() >= mint && initialized { return nil } // The order of these two Store() should not be changed, // i.e. truncation time is set before in-process boolean. h.lastMemoryTruncationTime.Store(mint) h.memTruncationInProcess.Store(true) defer h.memTruncationInProcess.Store(false) // We wait for pending queries to end that overlap with this truncation. if initialized { h.WaitForPendingReadersInTimeRange(h.MinTime(), mint) } h.minTime.Store(mint) h.minValidTime.Store(mint) // Ensure that max time is at least as high as min time. for h.MaxTime() < mint { h.maxTime.CompareAndSwap(h.MaxTime(), mint) } // This was an initial call to Truncate after loading blocks on startup. // We haven't read back the WAL yet, so do not attempt to truncate it. if !initialized { return nil } h.metrics.headTruncateTotal.Inc() return h.truncateSeriesAndChunkDiskMapper("truncateMemory") } // WaitForPendingReadersInTimeRange waits for queries overlapping with given range to finish querying. // The query timeout limits the max wait time of this function implicitly. // The mint is inclusive and maxt is the truncation time hence exclusive. func (h *Head) WaitForPendingReadersInTimeRange(mint, maxt int64) { maxt-- // Making it inclusive before checking overlaps. overlaps := func() bool { o := false h.iso.TraverseOpenReads(func(s *isolationState) bool { if s.mint <= maxt && mint <= s.maxt { // Overlaps with the truncation range. o = true return false } return true }) return o } for overlaps() { time.Sleep(500 * time.Millisecond) } } // WaitForPendingReadersForOOOChunksAtOrBefore is like WaitForPendingReadersInTimeRange, except it waits for // queries touching OOO chunks less than or equal to chunk to finish querying. func (h *Head) WaitForPendingReadersForOOOChunksAtOrBefore(chunk chunks.ChunkDiskMapperRef) { for h.oooIso.HasOpenReadsAtOrBefore(chunk) { time.Sleep(500 * time.Millisecond) } } // WaitForAppendersOverlapping waits for appends overlapping maxt to finish. func (h *Head) WaitForAppendersOverlapping(maxt int64) { for maxt >= h.iso.lowestAppendTime() { time.Sleep(500 * time.Millisecond) } } // IsQuerierCollidingWithTruncation returns if the current querier needs to be closed and if a new querier // has to be created. In the latter case, the method also returns the new mint to be used for creating the // new range head and the new querier. This methods helps preventing races with the truncation of in-memory data. // // NOTE: The querier should already be taken before calling this. func (h *Head) IsQuerierCollidingWithTruncation(querierMint, querierMaxt int64) (shouldClose, getNew bool, newMint int64) { if !h.memTruncationInProcess.Load() { return false, false, 0 } // Head truncation is in process. It also means that the block that was // created for this truncation range is also available. // Check if we took a querier that overlaps with this truncation. memTruncTime := h.lastMemoryTruncationTime.Load() if querierMaxt < memTruncTime { // Head compaction has happened and this time range is being truncated. // This query doesn't overlap with the Head any longer. // We should close this querier to avoid races and the data would be // available with the blocks below. // Cases: // 1. |------truncation------| // |---query---| // 2. |------truncation------| // |---query---| return true, false, 0 } if querierMint < memTruncTime { // The truncation time is not same as head mint that we saw above but the // query still overlaps with the Head. // The truncation started after we got the querier. So it is not safe // to use this querier and/or might block truncation. We should get // a new querier for the new Head range while remaining will be available // in the blocks below. // Case: // |------truncation------| // |----query----| // Turns into // |------truncation------| // |---qu---| return true, true, memTruncTime } // Other case is this, which is a no-op // |------truncation------| // |---query---| return false, false, 0 } // truncateWAL removes old data before mint from the WAL. func (h *Head) truncateWAL(mint int64) error { h.chunkSnapshotMtx.Lock() defer h.chunkSnapshotMtx.Unlock() if h.wal == nil || mint <= h.lastWALTruncationTime.Load() { return nil } start := time.Now() h.lastWALTruncationTime.Store(mint) first, last, err := wlog.Segments(h.wal.Dir()) if err != nil { return fmt.Errorf("get segment range: %w", err) } // Start a new segment, so low ingestion volume TSDB don't have more WAL than // needed. if _, err := h.wal.NextSegment(); err != nil { return fmt.Errorf("next segment: %w", err) } last-- // Never consider last segment for checkpoint. if last < 0 { return nil // no segments yet. } // The lower two thirds of segments should contain mostly obsolete samples. // If we have less than two segments, it's not worth checkpointing yet. // With the default 2h blocks, this will keeping up to around 3h worth // of WAL segments. last = first + (last-first)*2/3 if last <= first { return nil } keep := func(id chunks.HeadSeriesRef) bool { if h.series.getByID(id) != nil { return true } h.deletedMtx.Lock() keepUntil, ok := h.deleted[id] h.deletedMtx.Unlock() return ok && keepUntil > last } h.metrics.checkpointCreationTotal.Inc() if _, err = wlog.Checkpoint(h.logger, h.wal, first, last, keep, mint); err != nil { h.metrics.checkpointCreationFail.Inc() var cerr *chunks.CorruptionErr if errors.As(err, &cerr) { h.metrics.walCorruptionsTotal.Inc() } return fmt.Errorf("create checkpoint: %w", err) } if err := h.wal.Truncate(last + 1); err != nil { // If truncating fails, we'll just try again at the next checkpoint. // Leftover segments will just be ignored in the future if there's a checkpoint // that supersedes them. level.Error(h.logger).Log("msg", "truncating segments failed", "err", err) } // The checkpoint is written and segments before it is truncated, so we no // longer need to track deleted series that are before it. h.deletedMtx.Lock() for ref, segment := range h.deleted { if segment <= last { delete(h.deleted, ref) } } h.deletedMtx.Unlock() h.metrics.checkpointDeleteTotal.Inc() if err := wlog.DeleteCheckpoints(h.wal.Dir(), last); err != nil { // Leftover old checkpoints do not cause problems down the line beyond // occupying disk space. // They will just be ignored since a higher checkpoint exists. level.Error(h.logger).Log("msg", "delete old checkpoints", "err", err) h.metrics.checkpointDeleteFail.Inc() } h.metrics.walTruncateDuration.Observe(time.Since(start).Seconds()) level.Info(h.logger).Log("msg", "WAL checkpoint complete", "first", first, "last", last, "duration", time.Since(start)) return nil } // truncateOOO // - waits for any pending reads that potentially touch chunks less than or equal to newMinOOOMmapRef // - truncates the OOO WBL files whose index is strictly less than lastWBLFile. // - garbage collects all the m-map chunks from the memory that are less than or equal to newMinOOOMmapRef // and then deletes the series that do not have any data anymore. // // The caller is responsible for ensuring that no further queriers will be created that reference chunks less // than or equal to newMinOOOMmapRef before calling truncateOOO. func (h *Head) truncateOOO(lastWBLFile int, newMinOOOMmapRef chunks.ChunkDiskMapperRef) error { curMinOOOMmapRef := chunks.ChunkDiskMapperRef(h.minOOOMmapRef.Load()) if newMinOOOMmapRef.GreaterThan(curMinOOOMmapRef) { h.WaitForPendingReadersForOOOChunksAtOrBefore(newMinOOOMmapRef) h.minOOOMmapRef.Store(uint64(newMinOOOMmapRef)) if err := h.truncateSeriesAndChunkDiskMapper("truncateOOO"); err != nil { return err } } if h.wbl == nil { return nil } return h.wbl.Truncate(lastWBLFile) } // truncateSeriesAndChunkDiskMapper is a helper function for truncateMemory and truncateOOO. // It runs GC on the Head and truncates the ChunkDiskMapper accordingly. func (h *Head) truncateSeriesAndChunkDiskMapper(caller string) error { start := time.Now() headMaxt := h.MaxTime() actualMint, minOOOTime, minMmapFile := h.gc() level.Info(h.logger).Log("msg", "Head GC completed", "caller", caller, "duration", time.Since(start)) h.metrics.gcDuration.Observe(time.Since(start).Seconds()) if actualMint > h.minTime.Load() { // The actual mint of the head is higher than the one asked to truncate. appendableMinValidTime := h.appendableMinValidTime() if actualMint < appendableMinValidTime { h.minTime.Store(actualMint) h.minValidTime.Store(actualMint) } else { // The actual min time is in the appendable window. // So we set the mint to the appendableMinValidTime. h.minTime.Store(appendableMinValidTime) h.minValidTime.Store(appendableMinValidTime) } } if headMaxt-h.opts.OutOfOrderTimeWindow.Load() < minOOOTime { // The allowed OOO window is lower than the min OOO time seen during GC. // So it is possible that some OOO sample was inserted that was less that minOOOTime. // So we play safe and set it to the min that was possible. minOOOTime = headMaxt - h.opts.OutOfOrderTimeWindow.Load() } h.minOOOTime.Store(minOOOTime) // Truncate the chunk m-mapper. if err := h.chunkDiskMapper.Truncate(uint32(minMmapFile)); err != nil { return fmt.Errorf("truncate chunks.HeadReadWriter by file number: %w", err) } return nil } type Stats struct { NumSeries uint64 MinTime, MaxTime int64 IndexPostingStats *index.PostingsStats } // Stats returns important current HEAD statistics. Note that it is expensive to // calculate these. func (h *Head) Stats(statsByLabelName string, limit int) *Stats { return &Stats{ NumSeries: h.NumSeries(), MaxTime: h.MaxTime(), MinTime: h.MinTime(), IndexPostingStats: h.PostingsCardinalityStats(statsByLabelName, limit), } } // RangeHead allows querying Head via an IndexReader, ChunkReader and tombstones.Reader // but only within a restricted range. Used for queries and compactions. type RangeHead struct { head *Head mint, maxt int64 isolationOff bool } // NewRangeHead returns a *RangeHead. // There are no restrictions on mint/maxt. func NewRangeHead(head *Head, mint, maxt int64) *RangeHead { return &RangeHead{ head: head, mint: mint, maxt: maxt, } } // NewRangeHeadWithIsolationDisabled returns a *RangeHead that does not create an isolationState. func NewRangeHeadWithIsolationDisabled(head *Head, mint, maxt int64) *RangeHead { rh := NewRangeHead(head, mint, maxt) rh.isolationOff = true return rh } func (h *RangeHead) Index() (IndexReader, error) { return h.head.indexRange(h.mint, h.maxt), nil } func (h *RangeHead) Chunks() (ChunkReader, error) { var isoState *isolationState if !h.isolationOff { isoState = h.head.iso.State(h.mint, h.maxt) } return h.head.chunksRange(h.mint, h.maxt, isoState) } func (h *RangeHead) Tombstones() (tombstones.Reader, error) { return h.head.tombstones, nil } func (h *RangeHead) MinTime() int64 { return h.mint } // MaxTime returns the max time of actual data fetch-able from the head. // This controls the chunks time range which is closed [b.MinTime, b.MaxTime]. func (h *RangeHead) MaxTime() int64 { return h.maxt } // BlockMaxTime returns the max time of the potential block created from this head. // It's different to MaxTime as we need to add +1 millisecond to block maxt because block // intervals are half-open: [b.MinTime, b.MaxTime). Block intervals are always +1 than the total samples it includes. func (h *RangeHead) BlockMaxTime() int64 { return h.MaxTime() + 1 } func (h *RangeHead) NumSeries() uint64 { return h.head.NumSeries() } var rangeHeadULID = ulid.MustParse("0000000000XXXXXXXRANGEHEAD") func (h *RangeHead) Meta() BlockMeta { return BlockMeta{ MinTime: h.MinTime(), MaxTime: h.MaxTime(), ULID: rangeHeadULID, Stats: BlockStats{ NumSeries: h.NumSeries(), }, } } // String returns an human readable representation of the range head. It's important to // keep this function in order to avoid the struct dump when the head is stringified in // errors or logs. func (h *RangeHead) String() string { return fmt.Sprintf("range head (mint: %d, maxt: %d)", h.MinTime(), h.MaxTime()) } // Delete all samples in the range of [mint, maxt] for series that satisfy the given // label matchers. func (h *Head) Delete(ctx context.Context, mint, maxt int64, ms ...*labels.Matcher) error { // Do not delete anything beyond the currently valid range. mint, maxt = clampInterval(mint, maxt, h.MinTime(), h.MaxTime()) ir := h.indexRange(mint, maxt) p, err := PostingsForMatchers(ctx, ir, ms...) if err != nil { return fmt.Errorf("select series: %w", err) } var stones []tombstones.Stone for p.Next() { if err := ctx.Err(); err != nil { return fmt.Errorf("select series: %w", err) } series := h.series.getByID(chunks.HeadSeriesRef(p.At())) if series == nil { level.Debug(h.logger).Log("msg", "Series not found in Head.Delete") continue } series.Lock() t0, t1 := series.minTime(), series.maxTime() series.Unlock() if t0 == math.MinInt64 || t1 == math.MinInt64 { continue } // Delete only until the current values and not beyond. t0, t1 = clampInterval(mint, maxt, t0, t1) stones = append(stones, tombstones.Stone{Ref: p.At(), Intervals: tombstones.Intervals{{Mint: t0, Maxt: t1}}}) } if p.Err() != nil { return p.Err() } if err := ctx.Err(); err != nil { return fmt.Errorf("select series: %w", err) } if h.wal != nil { var enc record.Encoder if err := h.wal.Log(enc.Tombstones(stones, nil)); err != nil { return err } } for _, s := range stones { h.tombstones.AddInterval(s.Ref, s.Intervals[0]) } return nil } // gc removes data before the minimum timestamp from the head. // It returns // * The actual min times of the chunks present in the Head. // * The min OOO time seen during the GC. // * Min mmap file number seen in the series (in-order and out-of-order) after gc'ing the series. func (h *Head) gc() (actualInOrderMint, minOOOTime int64, minMmapFile int) { // Only data strictly lower than this timestamp must be deleted. mint := h.MinTime() // Only ooo m-map chunks strictly lower than or equal to this ref // must be deleted. minOOOMmapRef := chunks.ChunkDiskMapperRef(h.minOOOMmapRef.Load()) // Drop old chunks and remember series IDs and hashes if they can be // deleted entirely. deleted, affected, chunksRemoved, actualInOrderMint, minOOOTime, minMmapFile := h.series.gc(mint, minOOOMmapRef) seriesRemoved := len(deleted) h.metrics.seriesRemoved.Add(float64(seriesRemoved)) h.metrics.chunksRemoved.Add(float64(chunksRemoved)) h.metrics.chunks.Sub(float64(chunksRemoved)) h.numSeries.Sub(uint64(seriesRemoved)) // Remove deleted series IDs from the postings lists. h.postings.Delete(deleted, affected) // Remove tombstones referring to the deleted series. h.tombstones.DeleteTombstones(deleted) h.tombstones.TruncateBefore(mint) if h.wal != nil { _, last, _ := wlog.Segments(h.wal.Dir()) h.deletedMtx.Lock() // Keep series records until we're past segment 'last' // because the WAL will still have samples records with // this ref ID. If we didn't keep these series records then // on start up when we replay the WAL, or any other code // that reads the WAL, wouldn't be able to use those // samples since we would have no labels for that ref ID. for ref := range deleted { h.deleted[chunks.HeadSeriesRef(ref)] = last } h.deletedMtx.Unlock() } return actualInOrderMint, minOOOTime, minMmapFile } // Tombstones returns a new reader over the head's tombstones. func (h *Head) Tombstones() (tombstones.Reader, error) { return h.tombstones, nil } // NumSeries returns the number of active series in the head. func (h *Head) NumSeries() uint64 { return h.numSeries.Load() } var headULID = ulid.MustParse("0000000000XXXXXXXXXXXXHEAD") // Meta returns meta information about the head. // The head is dynamic so will return dynamic results. func (h *Head) Meta() BlockMeta { return BlockMeta{ MinTime: h.MinTime(), MaxTime: h.MaxTime(), ULID: headULID, Stats: BlockStats{ NumSeries: h.NumSeries(), }, } } // MinTime returns the lowest time bound on visible data in the head. func (h *Head) MinTime() int64 { return h.minTime.Load() } // MaxTime returns the highest timestamp seen in data of the head. func (h *Head) MaxTime() int64 { return h.maxTime.Load() } // MinOOOTime returns the lowest time bound on visible data in the out of order // head. func (h *Head) MinOOOTime() int64 { return h.minOOOTime.Load() } // MaxOOOTime returns the highest timestamp on visible data in the out of order // head. func (h *Head) MaxOOOTime() int64 { return h.maxOOOTime.Load() } // initialized returns true if the head has a MinTime set, false otherwise. func (h *Head) initialized() bool { return h.MinTime() != math.MaxInt64 } // compactable returns whether the head has a compactable range. // The head has a compactable range when the head time range is 1.5 times the chunk range. // The 0.5 acts as a buffer of the appendable window. func (h *Head) compactable() bool { if !h.initialized() { return false } return h.MaxTime()-h.MinTime() > h.chunkRange.Load()/2*3 } // Close flushes the WAL and closes the head. // It also takes a snapshot of in-memory chunks if enabled. func (h *Head) Close() error { h.closedMtx.Lock() defer h.closedMtx.Unlock() h.closed = true // mmap all but last chunk in case we're performing snapshot since that only // takes samples from most recent head chunk. h.mmapHeadChunks() errs := tsdb_errors.NewMulti(h.chunkDiskMapper.Close()) if h.wal != nil { errs.Add(h.wal.Close()) } if h.wbl != nil { errs.Add(h.wbl.Close()) } if errs.Err() == nil && h.opts.EnableMemorySnapshotOnShutdown { errs.Add(h.performChunkSnapshot()) } return errs.Err() } // String returns an human readable representation of the TSDB head. It's important to // keep this function in order to avoid the struct dump when the head is stringified in // errors or logs. func (h *Head) String() string { return "head" } func (h *Head) getOrCreate(hash uint64, lset labels.Labels) (*memSeries, bool, error) { // Just using `getOrCreateWithID` below would be semantically sufficient, but we'd create // a new series on every sample inserted via Add(), which causes allocations // and makes our series IDs rather random and harder to compress in postings. s := h.series.getByHash(hash, lset) if s != nil { return s, false, nil } // Optimistically assume that we are the first one to create the series. id := chunks.HeadSeriesRef(h.lastSeriesID.Inc()) return h.getOrCreateWithID(id, hash, lset) } func (h *Head) getOrCreateWithID(id chunks.HeadSeriesRef, hash uint64, lset labels.Labels) (*memSeries, bool, error) { s, created, err := h.series.getOrSet(hash, lset, func() *memSeries { shardHash := uint64(0) if h.opts.EnableSharding { shardHash = labels.StableHash(lset) } return newMemSeries(lset, id, shardHash, h.opts.IsolationDisabled) }) if err != nil { return nil, false, err } if !created { return s, false, nil } h.metrics.seriesCreated.Inc() h.numSeries.Inc() h.postings.Add(storage.SeriesRef(id), lset) return s, true, nil } // mmapHeadChunks will iterate all memSeries stored on Head and call mmapHeadChunks() on each of them. // // There are two types of chunks that store samples for each memSeries: // A) Head chunk - stored on Go heap, when new samples are appended they go there. // B) M-mapped chunks - memory mapped chunks, kernel manages the memory for us on-demand, these chunks // // are read-only. // // Calling mmapHeadChunks() will iterate all memSeries and m-mmap all chunks that should be m-mapped. // The m-mapping operation is needs to be serialised and so it goes via central lock. // If there are multiple concurrent memSeries that need to m-map some chunk then they can block each-other. // // To minimise the effect of locking on TSDB operations m-mapping is serialised and done away from // sample append path, since waiting on a lock inside an append would lock the entire memSeries for // (potentially) a long time, since that could eventually delay next scrape and/or cause query timeouts. func (h *Head) mmapHeadChunks() { var count int for i := 0; i < h.series.size; i++ { h.series.locks[i].RLock() for _, series := range h.series.series[i] { series.Lock() count += series.mmapChunks(h.chunkDiskMapper) series.Unlock() } h.series.locks[i].RUnlock() } h.metrics.mmapChunksTotal.Add(float64(count)) } // seriesHashmap lets TSDB find a memSeries by its label set, via a 64-bit hash. // There is one map for the common case where the hash value is unique, and a // second map for the case that two series have the same hash value. // Each series is in only one of the maps. // Its methods require the hash to be submitted with it to avoid re-computations throughout // the code. type seriesHashmap struct { unique map[uint64]*memSeries conflicts map[uint64][]*memSeries } func (m *seriesHashmap) get(hash uint64, lset labels.Labels) *memSeries { if s, found := m.unique[hash]; found { if labels.Equal(s.labels(), lset) { return s } } for _, s := range m.conflicts[hash] { if labels.Equal(s.labels(), lset) { return s } } return nil } func (m *seriesHashmap) set(hash uint64, s *memSeries) { if existing, found := m.unique[hash]; !found || labels.Equal(existing.labels(), s.labels()) { m.unique[hash] = s return } if m.conflicts == nil { m.conflicts = make(map[uint64][]*memSeries) } l := m.conflicts[hash] for i, prev := range l { if labels.Equal(prev.labels(), s.labels()) { l[i] = s return } } m.conflicts[hash] = append(l, s) } func (m *seriesHashmap) del(hash uint64, ref chunks.HeadSeriesRef) { var rem []*memSeries unique, found := m.unique[hash] switch { case !found: // Supplied hash is not stored. return case unique.ref == ref: conflicts := m.conflicts[hash] if len(conflicts) == 0 { // Exactly one series with this hash was stored delete(m.unique, hash) return } m.unique[hash] = conflicts[0] // First remaining series goes in 'unique'. rem = conflicts[1:] // Keep the rest. default: // The series to delete is somewhere in 'conflicts'. Keep all the ones that don't match. for _, s := range m.conflicts[hash] { if s.ref != ref { rem = append(rem, s) } } } if len(rem) == 0 { delete(m.conflicts, hash) } else { m.conflicts[hash] = rem } } const ( // DefaultStripeSize is the default number of entries to allocate in the stripeSeries hash map. DefaultStripeSize = 1 << 14 ) // stripeSeries holds series by HeadSeriesRef ("ID") and also by hash of their labels. // ID-based lookups via getByID() are preferred over getByHash() for performance reasons. // It locks modulo ranges of IDs and hashes to reduce lock contention. // The locks are padded to not be on the same cache line. Filling the padded space // with the maps was profiled to be slower – likely due to the additional pointer // dereferences. type stripeSeries struct { size int series []map[chunks.HeadSeriesRef]*memSeries // Sharded by ref. A series ref is the value of `size` when the series was being newly added. hashes []seriesHashmap // Sharded by label hash. locks []stripeLock // Sharded by ref for series access, by label hash for hashes access. seriesLifecycleCallback SeriesLifecycleCallback } type stripeLock struct { sync.RWMutex // Padding to avoid multiple locks being on the same cache line. _ [40]byte } func newStripeSeries(stripeSize int, seriesCallback SeriesLifecycleCallback) *stripeSeries { s := &stripeSeries{ size: stripeSize, series: make([]map[chunks.HeadSeriesRef]*memSeries, stripeSize), hashes: make([]seriesHashmap, stripeSize), locks: make([]stripeLock, stripeSize), seriesLifecycleCallback: seriesCallback, } for i := range s.series { s.series[i] = map[chunks.HeadSeriesRef]*memSeries{} } for i := range s.hashes { s.hashes[i] = seriesHashmap{ unique: map[uint64]*memSeries{}, conflicts: nil, // Initialized on demand in set(). } } return s } // gc garbage collects old chunks that are strictly before mint and removes // series entirely that have no chunks left. // note: returning map[chunks.HeadSeriesRef]struct{} would be more accurate, // but the returned map goes into postings.Delete() which expects a map[storage.SeriesRef]struct // and there's no easy way to cast maps. // minMmapFile is the min mmap file number seen in the series (in-order and out-of-order) after gc'ing the series. func (s *stripeSeries) gc(mint int64, minOOOMmapRef chunks.ChunkDiskMapperRef) (_ map[storage.SeriesRef]struct{}, _ map[labels.Label]struct{}, _ int, _, _ int64, minMmapFile int) { var ( deleted = map[storage.SeriesRef]struct{}{} affected = map[labels.Label]struct{}{} rmChunks = 0 actualMint int64 = math.MaxInt64 minOOOTime int64 = math.MaxInt64 ) minMmapFile = math.MaxInt32 // For one series, truncate old chunks and check if any chunks left. If not, mark as deleted and collect the ID. check := func(hashShard int, hash uint64, series *memSeries, deletedForCallback map[chunks.HeadSeriesRef]labels.Labels) { series.Lock() defer series.Unlock() rmChunks += series.truncateChunksBefore(mint, minOOOMmapRef) if len(series.mmappedChunks) > 0 { seq, _ := series.mmappedChunks[0].ref.Unpack() if seq < minMmapFile { minMmapFile = seq } } if series.ooo != nil && len(series.ooo.oooMmappedChunks) > 0 { seq, _ := series.ooo.oooMmappedChunks[0].ref.Unpack() if seq < minMmapFile { minMmapFile = seq } for _, ch := range series.ooo.oooMmappedChunks { if ch.minTime < minOOOTime { minOOOTime = ch.minTime } } } if series.ooo != nil && series.ooo.oooHeadChunk != nil { if series.ooo.oooHeadChunk.minTime < minOOOTime { minOOOTime = series.ooo.oooHeadChunk.minTime } } if len(series.mmappedChunks) > 0 || series.headChunks != nil || series.pendingCommit || (series.ooo != nil && (len(series.ooo.oooMmappedChunks) > 0 || series.ooo.oooHeadChunk != nil)) { seriesMint := series.minTime() if seriesMint < actualMint { actualMint = seriesMint } return } // The series is gone entirely. We need to keep the series lock // and make sure we have acquired the stripe locks for hash and ID of the // series alike. // If we don't hold them all, there's a very small chance that a series receives // samples again while we are half-way into deleting it. refShard := int(series.ref) & (s.size - 1) if hashShard != refShard { s.locks[refShard].Lock() defer s.locks[refShard].Unlock() } deleted[storage.SeriesRef(series.ref)] = struct{}{} series.lset.Range(func(l labels.Label) { affected[l] = struct{}{} }) s.hashes[hashShard].del(hash, series.ref) delete(s.series[refShard], series.ref) deletedForCallback[series.ref] = series.lset // OK to access lset; series is locked at the top of this function. } s.iterForDeletion(check) if actualMint == math.MaxInt64 { actualMint = mint } return deleted, affected, rmChunks, actualMint, minOOOTime, minMmapFile } // The iterForDeletion function iterates through all series, invoking the checkDeletedFunc for each. // The checkDeletedFunc takes a map as input and should add to it all series that were deleted and should be included // when invoking the PostDeletion hook. func (s *stripeSeries) iterForDeletion(checkDeletedFunc func(int, uint64, *memSeries, map[chunks.HeadSeriesRef]labels.Labels)) int { seriesSetFromPrevStripe := 0 totalDeletedSeries := 0 // Run through all series shard by shard for i := 0; i < s.size; i++ { seriesSet := make(map[chunks.HeadSeriesRef]labels.Labels, seriesSetFromPrevStripe) s.locks[i].Lock() // Iterate conflicts first so f doesn't move them to the `unique` field, // after deleting `unique`. for hash, all := range s.hashes[i].conflicts { for _, series := range all { checkDeletedFunc(i, hash, series, seriesSet) } } for hash, series := range s.hashes[i].unique { checkDeletedFunc(i, hash, series, seriesSet) } s.locks[i].Unlock() s.seriesLifecycleCallback.PostDeletion(seriesSet) totalDeletedSeries += len(seriesSet) seriesSetFromPrevStripe = len(seriesSet) } return totalDeletedSeries } func (s *stripeSeries) getByID(id chunks.HeadSeriesRef) *memSeries { i := uint64(id) & uint64(s.size-1) s.locks[i].RLock() series := s.series[i][id] s.locks[i].RUnlock() return series } func (s *stripeSeries) getByHash(hash uint64, lset labels.Labels) *memSeries { i := hash & uint64(s.size-1) s.locks[i].RLock() series := s.hashes[i].get(hash, lset) s.locks[i].RUnlock() return series } func (s *stripeSeries) getOrSet(hash uint64, lset labels.Labels, createSeries func() *memSeries) (*memSeries, bool, error) { // PreCreation is called here to avoid calling it inside the lock. // It is not necessary to call it just before creating a series, // rather it gives a 'hint' whether to create a series or not. preCreationErr := s.seriesLifecycleCallback.PreCreation(lset) // Create the series, unless the PreCreation() callback as failed. // If failed, we'll not allow to create a new series anyway. var series *memSeries if preCreationErr == nil { series = createSeries() } i := hash & uint64(s.size-1) s.locks[i].Lock() if prev := s.hashes[i].get(hash, lset); prev != nil { s.locks[i].Unlock() return prev, false, nil } if preCreationErr == nil { s.hashes[i].set(hash, series) } s.locks[i].Unlock() if preCreationErr != nil { // The callback prevented creation of series. return nil, false, preCreationErr } // Setting the series in the s.hashes marks the creation of series // as any further calls to this methods would return that series. s.seriesLifecycleCallback.PostCreation(series.labels()) i = uint64(series.ref) & uint64(s.size-1) s.locks[i].Lock() s.series[i][series.ref] = series s.locks[i].Unlock() return series, true, nil } type sample struct { t int64 f float64 h *histogram.Histogram fh *histogram.FloatHistogram } func newSample(t int64, v float64, h *histogram.Histogram, fh *histogram.FloatHistogram) chunks.Sample { return sample{t, v, h, fh} } func (s sample) T() int64 { return s.t } func (s sample) F() float64 { return s.f } func (s sample) H() *histogram.Histogram { return s.h } func (s sample) FH() *histogram.FloatHistogram { return s.fh } func (s sample) Type() chunkenc.ValueType { switch { case s.h != nil: return chunkenc.ValHistogram case s.fh != nil: return chunkenc.ValFloatHistogram default: return chunkenc.ValFloat } } // memSeries is the in-memory representation of a series. None of its methods // are goroutine safe and it is the caller's responsibility to lock it. type memSeries struct { // Members up to the Mutex are not changed after construction, so can be accessed without a lock. ref chunks.HeadSeriesRef meta *metadata.Metadata // Series labels hash to use for sharding purposes. // The value is always 0 when sharding has not been explicitly enabled in TSDB. // While the WAL replay the value stored here is the max time of any mmapped chunk, // and the shard hash is re-calculated after WAL replay is complete. shardHashOrMemoryMappedMaxTime uint64 // Everything after here should only be accessed with the lock held. sync.Mutex lset labels.Labels // Locking required with -tags dedupelabels, not otherwise. // Immutable chunks on disk that have not yet gone into a block, in order of ascending time stamps. // When compaction runs, chunks get moved into a block and all pointers are shifted like so: // // /------- let's say these 2 chunks get stored into a block // | | // before compaction: mmappedChunks=[p5,p6,p7,p8,p9] firstChunkID=5 // after compaction: mmappedChunks=[p7,p8,p9] firstChunkID=7 // // pN is the pointer to the mmappedChunk referered to by HeadChunkID=N mmappedChunks []*mmappedChunk // Most recent chunks in memory that are still being built or waiting to be mmapped. // This is a linked list, headChunks points to the most recent chunk, headChunks.next points // to older chunk and so on. headChunks *memChunk firstChunkID chunks.HeadChunkID // HeadChunkID for mmappedChunks[0] ooo *memSeriesOOOFields nextAt int64 // Timestamp at which to cut the next chunk. histogramChunkHasComputedEndTime bool // True if nextAt has been predicted for the current histograms chunk; false otherwise. pendingCommit bool // Whether there are samples waiting to be committed to this series. // We keep the last value here (in addition to appending it to the chunk) so we can check for duplicates. lastValue float64 // We keep the last histogram value here (in addition to appending it to the chunk) so we can check for duplicates. lastHistogramValue *histogram.Histogram lastFloatHistogramValue *histogram.FloatHistogram // Current appender for the head chunk. Set when a new head chunk is cut. // It is nil only if headChunks is nil. E.g. if there was an appender that created a new series, but rolled back the commit // (the first sample would create a headChunk, hence appender, but rollback skipped it while the Append() call would create a series). app chunkenc.Appender // txs is nil if isolation is disabled. txs *txRing } // memSeriesOOOFields contains the fields required by memSeries // to handle out-of-order data. type memSeriesOOOFields struct { oooMmappedChunks []*mmappedChunk // Immutable chunks on disk containing OOO samples. oooHeadChunk *oooHeadChunk // Most recent chunk for ooo samples in memory that's still being built. firstOOOChunkID chunks.HeadChunkID // HeadOOOChunkID for oooMmappedChunks[0]. } func newMemSeries(lset labels.Labels, id chunks.HeadSeriesRef, shardHash uint64, isolationDisabled bool) *memSeries { s := &memSeries{ lset: lset, ref: id, nextAt: math.MinInt64, shardHashOrMemoryMappedMaxTime: shardHash, } if !isolationDisabled { s.txs = newTxRing(0) } return s } func (s *memSeries) minTime() int64 { if len(s.mmappedChunks) > 0 { return s.mmappedChunks[0].minTime } if s.headChunks != nil { return s.headChunks.oldest().minTime } return math.MinInt64 } func (s *memSeries) maxTime() int64 { // The highest timestamps will always be in the regular (non-OOO) chunks, even if OOO is enabled. if s.headChunks != nil { return s.headChunks.maxTime } if len(s.mmappedChunks) > 0 { return s.mmappedChunks[len(s.mmappedChunks)-1].maxTime } return math.MinInt64 } // truncateChunksBefore removes all chunks from the series that // have no timestamp at or after mint. // Chunk IDs remain unchanged. func (s *memSeries) truncateChunksBefore(mint int64, minOOOMmapRef chunks.ChunkDiskMapperRef) int { var removedInOrder int if s.headChunks != nil { var i int var nextChk *memChunk chk := s.headChunks for chk != nil { if chk.maxTime < mint { // If any head chunk is truncated, we can truncate all mmapped chunks. removedInOrder = chk.len() + len(s.mmappedChunks) s.firstChunkID += chunks.HeadChunkID(removedInOrder) if i == 0 { // This is the first chunk on the list so we need to remove the entire list. s.headChunks = nil } else { // This is NOT the first chunk, unlink it from parent. nextChk.prev = nil } s.mmappedChunks = nil break } nextChk = chk chk = chk.prev i++ } } if len(s.mmappedChunks) > 0 { for i, c := range s.mmappedChunks { if c.maxTime >= mint { break } removedInOrder = i + 1 } s.mmappedChunks = append(s.mmappedChunks[:0], s.mmappedChunks[removedInOrder:]...) s.firstChunkID += chunks.HeadChunkID(removedInOrder) } var removedOOO int if s.ooo != nil && len(s.ooo.oooMmappedChunks) > 0 { for i, c := range s.ooo.oooMmappedChunks { if c.ref.GreaterThan(minOOOMmapRef) { break } removedOOO = i + 1 } s.ooo.oooMmappedChunks = append(s.ooo.oooMmappedChunks[:0], s.ooo.oooMmappedChunks[removedOOO:]...) s.ooo.firstOOOChunkID += chunks.HeadChunkID(removedOOO) if len(s.ooo.oooMmappedChunks) == 0 && s.ooo.oooHeadChunk == nil { s.ooo = nil } } return removedInOrder + removedOOO } // shardHash returns the shard hash of the series, only available after WAL replay. func (s *memSeries) shardHash() uint64 { return s.shardHashOrMemoryMappedMaxTime } // mmMaxTime returns the max time of any mmapped chunk in the series, only available during WAL replay. func (s *memSeries) mmMaxTime() int64 { return int64(s.shardHashOrMemoryMappedMaxTime) } // cleanupAppendIDsBelow cleans up older appendIDs. Has to be called after // acquiring lock. func (s *memSeries) cleanupAppendIDsBelow(bound uint64) { if s.txs != nil { s.txs.cleanupAppendIDsBelow(bound) } } type memChunk struct { chunk chunkenc.Chunk minTime, maxTime int64 prev *memChunk // Link to the previous element on the list. } // len returns the length of memChunk list, including the element it was called on. func (mc *memChunk) len() (count int) { elem := mc for elem != nil { count++ elem = elem.prev } return count } // oldest returns the oldest element on the list. // For single element list this will be the same memChunk oldest() was called on. func (mc *memChunk) oldest() (elem *memChunk) { elem = mc for elem.prev != nil { elem = elem.prev } return elem } // atOffset returns a memChunk that's Nth element on the linked list. func (mc *memChunk) atOffset(offset int) (elem *memChunk) { if offset == 0 { return mc } if offset < 0 { return nil } var i int elem = mc for i < offset { i++ elem = elem.prev if elem == nil { break } } return elem } type oooHeadChunk struct { chunk *OOOChunk minTime, maxTime int64 // can probably be removed and pulled out of the chunk instead } // OverlapsClosedInterval returns true if the chunk overlaps [mint, maxt]. func (mc *oooHeadChunk) OverlapsClosedInterval(mint, maxt int64) bool { return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt) } // OverlapsClosedInterval returns true if the chunk overlaps [mint, maxt]. func (mc *memChunk) OverlapsClosedInterval(mint, maxt int64) bool { return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt) } func overlapsClosedInterval(mint1, maxt1, mint2, maxt2 int64) bool { return mint1 <= maxt2 && mint2 <= maxt1 } // mmappedChunk describes a head chunk on disk that has been mmapped. type mmappedChunk struct { ref chunks.ChunkDiskMapperRef numSamples uint16 minTime, maxTime int64 } // Returns true if the chunk overlaps [mint, maxt]. func (mc *mmappedChunk) OverlapsClosedInterval(mint, maxt int64) bool { return overlapsClosedInterval(mc.minTime, mc.maxTime, mint, maxt) } type noopSeriesLifecycleCallback struct{} func (noopSeriesLifecycleCallback) PreCreation(labels.Labels) error { return nil } func (noopSeriesLifecycleCallback) PostCreation(labels.Labels) {} func (noopSeriesLifecycleCallback) PostDeletion(map[chunks.HeadSeriesRef]labels.Labels) {} func (h *Head) Size() int64 { var walSize, wblSize int64 if h.wal != nil { walSize, _ = h.wal.Size() } if h.wbl != nil { wblSize, _ = h.wbl.Size() } cdmSize, _ := h.chunkDiskMapper.Size() return walSize + wblSize + cdmSize } func (h *RangeHead) Size() int64 { return h.head.Size() } func (h *Head) startWALReplayStatus(startFrom, last int) { h.stats.WALReplayStatus.Lock() defer h.stats.WALReplayStatus.Unlock() h.stats.WALReplayStatus.Min = startFrom h.stats.WALReplayStatus.Max = last h.stats.WALReplayStatus.Current = startFrom } func (h *Head) updateWALReplayStatusRead(current int) { h.stats.WALReplayStatus.Lock() defer h.stats.WALReplayStatus.Unlock() h.stats.WALReplayStatus.Current = current }