package tsdb import ( "fmt" "math" "sort" "strings" "github.com/fabxc/tsdb/chunks" "github.com/fabxc/tsdb/labels" ) // Querier provides querying access over time series data of a fixed // time range. type Querier interface { // Select returns a set of series that matches the given label matchers. Select(...labels.Matcher) SeriesSet // LabelValues returns all potential values for a label name. LabelValues(string) ([]string, error) // LabelValuesFor returns all potential values for a label name. // under the constraint of another label. LabelValuesFor(string, labels.Label) ([]string, error) // Close releases the resources of the Querier. Close() error } // Series represents a single time series. type Series interface { // Labels returns the complete set of labels identifying the series. Labels() labels.Labels // Iterator returns a new iterator of the data of the series. Iterator() SeriesIterator // Ref() uint32 } // querier merges query results from a set of shard querieres. type querier struct { mint, maxt int64 shards []Querier } // Querier returns a new querier over the database for the given // time range. func (db *DB) Querier(mint, maxt int64) Querier { q := &querier{ mint: mint, maxt: maxt, } for _, s := range db.shards { q.shards = append(q.shards, s.Querier(mint, maxt)) } return q } func (q *querier) Select(ms ...labels.Matcher) SeriesSet { // We gather the non-overlapping series from every shard and simply // return their union. r := &mergedSeriesSet{} for _, s := range q.shards { r.sets = append(r.sets, s.Select(ms...)) } if len(r.sets) == 0 { return nopSeriesSet{} } return r } func (q *querier) LabelValues(n string) ([]string, error) { res, err := q.shards[0].LabelValues(n) if err != nil { return nil, err } for _, sq := range q.shards[1:] { pr, err := sq.LabelValues(n) if err != nil { return nil, err } // Merge new values into deduplicated result. res = mergeStrings(res, pr) } return res, nil } func mergeStrings(a, b []string) []string { maxl := len(a) if len(b) > len(a) { maxl = len(b) } res := make([]string, 0, maxl*10/9) for len(a) > 0 && len(b) > 0 { d := strings.Compare(a[0], b[0]) if d == 0 { res = append(res, a[0]) a, b = a[1:], b[1:] } else if d < 0 { res = append(res, a[0]) a = a[1:] } else if d > 0 { res = append(res, b[0]) b = b[1:] } } // Append all remaining elements. res = append(res, a...) res = append(res, b...) return res } func (q *querier) LabelValuesFor(string, labels.Label) ([]string, error) { return nil, fmt.Errorf("not implemented") } func (q *querier) Close() error { return nil } // shardQuerier aggregates querying results from time blocks within // a single shard. type shardQuerier struct { blocks []Querier } // Querier returns a new querier over the data shard for the given // time range. func (s *Shard) Querier(mint, maxt int64) Querier { blocks := s.blocksForInterval(mint, maxt) sq := &shardQuerier{ blocks: make([]Querier, 0, len(blocks)), } for _, b := range blocks { sq.blocks = append(sq.blocks, b.Querier(mint, maxt)) } return sq } func (q *shardQuerier) LabelValues(n string) ([]string, error) { // TODO(fabxc): return returned merged result. res, err := q.blocks[0].LabelValues(n) if err != nil { return nil, err } for _, bq := range q.blocks[1:] { pr, err := bq.LabelValues(n) if err != nil { return nil, err } // Merge new values into deduplicated result. res = mergeStrings(res, pr) } return res, nil } func (q *shardQuerier) LabelValuesFor(string, labels.Label) ([]string, error) { return nil, fmt.Errorf("not implemented") } func (q *shardQuerier) Select(ms ...labels.Matcher) SeriesSet { // Sets from different blocks have no time overlap. The reference numbers // they emit point to series sorted in lexicographic order. // We can fully connect partial series by simply comparing with the previous // label set. if len(q.blocks) == 0 { return nopSeriesSet{} } r := q.blocks[0].Select(ms...) for _, s := range q.blocks[1:] { r = newShardSeriesSet(r, s.Select(ms...)) } return r } func (q *shardQuerier) Close() error { return nil } // blockQuerier provides querying access to a single block database. type blockQuerier struct { index IndexReader series SeriesReader mint, maxt int64 } func newBlockQuerier(ix IndexReader, s SeriesReader, mint, maxt int64) *blockQuerier { return &blockQuerier{ mint: mint, maxt: maxt, index: ix, series: s, } } func (q *blockQuerier) Select(ms ...labels.Matcher) SeriesSet { var its []Postings for _, m := range ms { its = append(its, q.selectSingle(m)) } return &blockSeriesSet{ index: q.index, it: Intersect(its...), mint: q.mint, maxt: q.maxt, } } func (q *blockQuerier) selectSingle(m labels.Matcher) Postings { tpls, err := q.index.LabelValues(m.Name()) if err != nil { return errPostings{err: err} } // TODO(fabxc): use interface upgrading to provide fast solution // for equality and prefix matches. Tuples are lexicographically sorted. var res []string for i := 0; i < tpls.Len(); i++ { vals, err := tpls.At(i) if err != nil { return errPostings{err: err} } if m.Matches(vals[0]) { res = append(res, vals[0]) } } if len(res) == 0 { return errPostings{err: nil} } var rit []Postings for _, v := range res { it, err := q.index.Postings(m.Name(), v) if err != nil { return errPostings{err: err} } rit = append(rit, it) } return Intersect(rit...) } func (q *blockQuerier) LabelValues(name string) ([]string, error) { tpls, err := q.index.LabelValues(name) if err != nil { return nil, err } res := make([]string, 0, tpls.Len()) for i := 0; i < tpls.Len(); i++ { vals, err := tpls.At(i) if err != nil { return nil, err } res = append(res, vals[0]) } return res, nil } func (q *blockQuerier) LabelValuesFor(string, labels.Label) ([]string, error) { return nil, fmt.Errorf("not implemented") } func (q *blockQuerier) Close() error { return nil } // SeriesSet contains a set of series. type SeriesSet interface { Next() bool Series() Series Err() error } type nopSeriesSet struct{} func (nopSeriesSet) Next() bool { return false } func (nopSeriesSet) Series() Series { return nil } func (nopSeriesSet) Err() error { return nil } type mergedSeriesSet struct { sets []SeriesSet cur int err error } func (s *mergedSeriesSet) Series() Series { return s.sets[s.cur].Series() } func (s *mergedSeriesSet) Err() error { return s.sets[s.cur].Err() } func (s *mergedSeriesSet) Next() bool { // TODO(fabxc): We just emit the sets one after one. They are each // lexicographically sorted. Should we emit their union sorted too? if s.sets[s.cur].Next() { return true } if s.cur == len(s.sets)-1 { return false } s.cur++ return s.Next() } type shardSeriesSet struct { a, b SeriesSet cur Series as, bs Series // peek ahead of each set } func newShardSeriesSet(a, b SeriesSet) *shardSeriesSet { s := &shardSeriesSet{a: a, b: b} // Initialize first elements of both sets as Next() needs // one element look-ahead. s.advanceA() s.advanceB() return s } func (s *shardSeriesSet) Series() Series { return s.cur } func (s *shardSeriesSet) Err() error { if s.a.Err() != nil { return s.a.Err() } return s.b.Err() } func (s *shardSeriesSet) compare() int { if s.as == nil { return 1 } if s.bs == nil { return -1 } return labels.Compare(s.as.Labels(), s.bs.Labels()) } func (s *shardSeriesSet) advanceA() { if s.a.Next() { s.as = s.a.Series() } else { s.as = nil } } func (s *shardSeriesSet) advanceB() { if s.b.Next() { s.bs = s.b.Series() } else { s.bs = nil } } func (s *shardSeriesSet) Next() bool { if s.as == nil && s.bs == nil || s.Err() != nil { return false } d := s.compare() // Both sets contain the current series. Chain them into a single one. if d > 0 { s.cur = s.bs s.advanceB() } else if d < 0 { s.cur = s.as s.advanceA() } else { s.cur = &chainedSeries{series: []Series{s.as, s.bs}} s.advanceA() s.advanceB() } return true } // blockSeriesSet is a set of series from an inverted index query. type blockSeriesSet struct { index IndexReader it Postings mint, maxt int64 err error cur Series } func (s *blockSeriesSet) Next() bool { // Step through the postings iterator to find potential series. // Resolving series may return nil if no applicable data for the // time range exists and we can skip to the next series. for s.it.Next() { series, err := s.index.Series(s.it.Value(), s.mint, s.maxt) if err != nil { s.err = err return false } if series != nil { s.cur = series return true } } if s.it.Err() != nil { s.err = s.it.Err() } return false } func (s *blockSeriesSet) Series() Series { return s.cur } func (s *blockSeriesSet) Err() error { return s.err } // chunkSeries is a series that is backed by a sequence of chunks holding // time series data. type chunkSeries struct { labels labels.Labels chunks []ChunkMeta // in-order chunk refs // chunk is a function that retrieves chunks based on a reference // number contained in the chunk meta information. chunk func(ref uint32) (chunks.Chunk, error) } func (s *chunkSeries) Labels() labels.Labels { return s.labels } func (s *chunkSeries) Iterator() SeriesIterator { var cs []chunks.Chunk var mints []int64 for _, co := range s.chunks { c, err := s.chunk(co.Ref) if err != nil { panic(err) // TODO(fabxc): add error series iterator. } cs = append(cs, c) mints = append(mints, co.MinTime) } // TODO(fabxc): consider pushing chunk retrieval further down. In practice, we // probably have to touch all chunks anyway and it doesn't matter. return newChunkSeriesIterator(mints, cs) } // SeriesIterator iterates over the data of a time series. type SeriesIterator interface { // Seek advances the iterator forward to the given timestamp. // If there's no value exactly at ts, it advances to the last value // before tt. Seek(t int64) bool // Values returns the current timestamp/value pair. Values() (t int64, v float64) // Next advances the iterator by one. Next() bool // Err returns the current error. Err() error } // chainedSeries implements a series for a list of time-sorted series. // They all must have the same labels. type chainedSeries struct { series []Series } func (s *chainedSeries) Labels() labels.Labels { return s.series[0].Labels() } func (s *chainedSeries) Iterator() SeriesIterator { return &chainedSeriesIterator{series: s.series} } // chainedSeriesIterator implements a series iterater over a list // of time-sorted, non-overlapping iterators. type chainedSeriesIterator struct { series []Series // series in time order i int cur SeriesIterator } func (it *chainedSeriesIterator) Seek(t int64) bool { // We just scan the chained series sequentially as they are already // pre-selected by relevant time and should be accessed sequentially anyway. for i, s := range it.series[it.i:] { cur := s.Iterator() if !cur.Seek(t) { continue } it.cur = cur it.i += i return true } return false } func (it *chainedSeriesIterator) Next() bool { if it.cur == nil { it.cur = it.series[it.i].Iterator() } if it.cur.Next() { return true } if err := it.cur.Err(); err != nil { return false } if it.i == len(it.series)-1 { return false } it.i++ it.cur = it.series[it.i].Iterator() return it.Next() } func (it *chainedSeriesIterator) Values() (t int64, v float64) { return it.cur.Values() } func (it *chainedSeriesIterator) Err() error { return it.cur.Err() } // chunkSeriesIterator implements a series iterator on top // of a list of time-sorted, non-overlapping chunks. type chunkSeriesIterator struct { mints []int64 // minimum timestamps for each iterator chunks []chunks.Chunk i int cur chunks.Iterator } func newChunkSeriesIterator(mints []int64, cs []chunks.Chunk) *chunkSeriesIterator { if len(mints) != len(cs) { panic("chunk references and chunks length don't match") } return &chunkSeriesIterator{ mints: mints, chunks: cs, i: 0, cur: cs[0].Iterator(), } } func (it *chunkSeriesIterator) Seek(t int64) (ok bool) { // Only do binary search forward to stay in line with other iterators // that can only move forward. x := sort.Search(len(it.mints[it.i:]), func(i int) bool { return it.mints[i] >= t }) x += it.i // If the timestamp was not found, it might be in the last chunk. if x == len(it.mints) { x-- } // Go to previous chunk if the chunk doesn't exactly start with t. // If we are already at the first chunk, we use it as it's the best we have. if x > 0 && it.mints[x] > t { x-- } it.i = x it.cur = it.chunks[x].Iterator() for it.cur.Next() { t0, _ := it.cur.Values() if t0 >= t { return true } } return false } func (it *chunkSeriesIterator) Values() (t int64, v float64) { return it.cur.Values() } func (it *chunkSeriesIterator) Next() bool { if it.cur.Next() { return true } if err := it.cur.Err(); err != nil { return false } if it.i == len(it.chunks)-1 { return false } it.i++ it.cur = it.chunks[it.i].Iterator() return it.Next() } func (it *chunkSeriesIterator) Err() error { return it.cur.Err() } // BufferedSeriesIterator wraps an iterator with a look-back buffer. type BufferedSeriesIterator struct { it SeriesIterator buf *sampleRing lastTime int64 } // NewBuffer returns a new iterator that buffers the values within the time range // of the current element and the duration of delta before. func NewBuffer(it SeriesIterator, delta int64) *BufferedSeriesIterator { return &BufferedSeriesIterator{ it: it, buf: newSampleRing(delta, 16), lastTime: math.MinInt64, } } // PeekBack returns the previous element of the iterator. If there is none buffered, // ok is false. func (b *BufferedSeriesIterator) PeekBack() (t int64, v float64, ok bool) { return b.buf.last() } // Buffer returns an iterator over the buffered data. func (b *BufferedSeriesIterator) Buffer() SeriesIterator { return b.buf.iterator() } // Seek advances the iterator to the element at time t or greater. func (b *BufferedSeriesIterator) Seek(t int64) bool { t0 := t - b.buf.delta // If the delta would cause us to seek backwards, preserve the buffer // and just continue regular advancment while filling the buffer on the way. if t0 > b.lastTime { b.buf.reset() ok := b.it.Seek(t0) if !ok { return false } b.lastTime, _ = b.Values() } if b.lastTime >= t { return true } for b.Next() { if b.lastTime >= t { return true } } return false } // Next advances the iterator to the next element. func (b *BufferedSeriesIterator) Next() bool { // Add current element to buffer before advancing. b.buf.add(b.it.Values()) ok := b.it.Next() if ok { b.lastTime, _ = b.Values() } return ok } // Values returns the current element of the iterator. func (b *BufferedSeriesIterator) Values() (int64, float64) { return b.it.Values() } // Err returns the last encountered error. func (b *BufferedSeriesIterator) Err() error { return b.it.Err() } type sample struct { t int64 v float64 } type sampleRing struct { delta int64 buf []sample // lookback buffer i int // position of most recent element in ring buffer f int // position of first element in ring buffer l int // number of elements in buffer } func newSampleRing(delta int64, sz int) *sampleRing { r := &sampleRing{delta: delta, buf: make([]sample, sz)} r.reset() return r } func (r *sampleRing) reset() { r.l = 0 r.i = -1 r.f = 0 } func (r *sampleRing) iterator() SeriesIterator { return &sampleRingIterator{r: r, i: -1} } type sampleRingIterator struct { r *sampleRing i int } func (it *sampleRingIterator) Next() bool { it.i++ return it.i < it.r.l } func (it *sampleRingIterator) Seek(int64) bool { return false } func (it *sampleRingIterator) Err() error { return nil } func (it *sampleRingIterator) Values() (int64, float64) { return it.r.at(it.i) } func (r *sampleRing) at(i int) (int64, float64) { j := (r.f + i) % len(r.buf) s := r.buf[j] return s.t, s.v } // add adds a sample to the ring buffer and frees all samples that fall // out of the delta range. func (r *sampleRing) add(t int64, v float64) { l := len(r.buf) // Grow the ring buffer if it fits no more elements. if l == r.l { buf := make([]sample, 2*l) copy(buf[l+r.f:], r.buf[r.f:]) copy(buf, r.buf[:r.f]) r.buf = buf r.i = r.f r.f += l } else { r.i++ if r.i >= l { r.i -= l } } r.buf[r.i] = sample{t: t, v: v} r.l++ // Free head of the buffer of samples that just fell out of the range. for r.buf[r.f].t < t-r.delta { r.f++ if r.f >= l { r.f -= l } r.l-- } } // last returns the most recent element added to the ring. func (r *sampleRing) last() (int64, float64, bool) { if r.l == 0 { return 0, 0, false } s := r.buf[r.i] return s.t, s.v, true } func (r *sampleRing) samples() []sample { res := make([]sample, r.l) var k = r.f + r.l var j int if k > len(r.buf) { k = len(r.buf) j = r.l - k + r.f } n := copy(res, r.buf[r.f:k]) copy(res[n:], r.buf[:j]) return res }