// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package tiered import ( "fmt" "math" "math/rand" "sort" "testing" "testing/quick" clientmodel "github.com/prometheus/client_golang/model" "github.com/prometheus/prometheus/coding/indexable" "github.com/prometheus/prometheus/storage/metric" "github.com/prometheus/prometheus/utility/test" dto "github.com/prometheus/prometheus/model/generated" ) const stochasticMaximumVariance = 8 func BasicLifecycleTests(p metric.Persistence, t testing.TB) { if p == nil { t.Errorf("Received nil Metric Persistence.\n") return } } func ReadEmptyTests(p metric.Persistence, t testing.TB) { hasLabelPair := func(x int) (success bool) { fingerprints, err := p.GetFingerprintsForLabelMatchers(metric.LabelMatchers{{ Type: metric.Equal, Name: clientmodel.LabelName(string(x)), Value: clientmodel.LabelValue(string(x)), }}) if err != nil { t.Error(err) return } success = len(fingerprints) == 0 if !success { t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints)) } return } err := quick.Check(hasLabelPair, nil) if err != nil { t.Error(err) return } hasLabelName := func(x int) (success bool) { labelName := clientmodel.LabelName(string(x)) values, err := p.GetLabelValuesForLabelName(labelName) if err != nil { t.Error(err) return } success = len(values) == 0 if !success { t.Errorf("unexpected values length %d, got %d", 0, len(values)) } return } err = quick.Check(hasLabelName, nil) if err != nil { t.Error(err) return } } func AppendSampleAsPureSparseAppendTests(p metric.Persistence, t testing.TB) { appendSample := func(x int) (success bool) { v := clientmodel.SampleValue(x) ts := clientmodel.TimestampFromUnix(int64(x)) labelName := clientmodel.LabelName(x) labelValue := clientmodel.LabelValue(x) l := clientmodel.Metric{labelName: labelValue} sample := &clientmodel.Sample{ Value: v, Timestamp: ts, Metric: l, } err := p.AppendSamples(clientmodel.Samples{sample}) success = err == nil if !success { t.Error(err) } return } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func AppendSampleAsSparseAppendWithReadsTests(p metric.Persistence, t testing.TB) { appendSample := func(x int) (success bool) { v := clientmodel.SampleValue(x) ts := clientmodel.TimestampFromUnix(int64(x)) labelName := clientmodel.LabelName(x) labelValue := clientmodel.LabelValue(x) l := clientmodel.Metric{labelName: labelValue} sample := &clientmodel.Sample{ Value: v, Timestamp: ts, Metric: l, } err := p.AppendSamples(clientmodel.Samples{sample}) if err != nil { t.Error(err) return } values, err := p.GetLabelValuesForLabelName(labelName) if err != nil { t.Error(err) return } if len(values) != 1 { t.Errorf("expected label values count of %d, got %d", 1, len(values)) return } fingerprints, err := p.GetFingerprintsForLabelMatchers(metric.LabelMatchers{{ Type: metric.Equal, Name: labelName, Value: labelValue, }}) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } return true } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func AppendSampleAsPureSingleEntityAppendTests(p metric.Persistence, t testing.TB) { appendSample := func(x int) bool { sample := &clientmodel.Sample{ Value: clientmodel.SampleValue(x), Timestamp: clientmodel.TimestampFromUnix(int64(x)), Metric: clientmodel.Metric{clientmodel.MetricNameLabel: "my_metric"}, } err := p.AppendSamples(clientmodel.Samples{sample}) return err == nil } if err := quick.Check(appendSample, nil); err != nil { t.Error(err) } } func levelDBGetRangeValues(l *LevelDBPersistence, fp *clientmodel.Fingerprint, i metric.Interval) (samples metric.Values, err error) { fpDto := &dto.Fingerprint{} dumpFingerprint(fpDto, fp) k := &dto.SampleKey{ Fingerprint: fpDto, Timestamp: indexable.EncodeTime(i.OldestInclusive), } iterator, err := l.MetricSamples.NewIterator(true) if err != nil { panic(err) } defer iterator.Close() for valid := iterator.Seek(k); valid; valid = iterator.Next() { retrievedKey, err := extractSampleKey(iterator) if err != nil { return samples, err } if retrievedKey.FirstTimestamp.After(i.NewestInclusive) { break } if !retrievedKey.Fingerprint.Equal(fp) { break } retrievedValues := unmarshalValues(iterator.RawValue(), nil) samples = append(samples, retrievedValues...) } return } type timeslice []clientmodel.Timestamp func (t timeslice) Len() int { return len(t) } func (t timeslice) Swap(i, j int) { t[i], t[j] = t[j], t[i] } func (t timeslice) Less(i, j int) bool { return t[i].Before(t[j]) } func StochasticTests(persistenceMaker func() (metric.Persistence, test.Closer), t testing.TB) { stochastic := func(x int) (success bool) { p, closer := persistenceMaker() defer closer.Close() defer p.Close() seed := rand.NewSource(int64(x)) random := rand.New(seed) numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1 numberOfSharedLabels := random.Intn(stochasticMaximumVariance) numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance) numberOfSamples := random.Intn(stochasticMaximumVariance) + 2 numberOfRangeScans := random.Intn(stochasticMaximumVariance) metricTimestamps := map[int]map[int64]bool{} metricEarliestSample := map[int]int64{} metricNewestSample := map[int]int64{} for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ { sample := &clientmodel.Sample{ Metric: clientmodel.Metric{}, } v := clientmodel.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex)) sample.Metric[clientmodel.MetricNameLabel] = v for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ { l := clientmodel.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)) v := clientmodel.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)) sample.Metric[l] = v } for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ { l := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex)) v := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex)) sample.Metric[l] = v } timestamps := map[int64]bool{} metricTimestamps[metricIndex] = timestamps var newestSample int64 = math.MinInt64 var oldestSample int64 = math.MaxInt64 var nextTimestamp func() int64 nextTimestamp = func() int64 { var candidate int64 candidate = random.Int63n(math.MaxInt32 - 1) if _, has := timestamps[candidate]; has { // WART candidate = nextTimestamp() } timestamps[candidate] = true if candidate < oldestSample { oldestSample = candidate } if candidate > newestSample { newestSample = candidate } return candidate } // BUG(matt): Invariant of the in-memory database assumes this. sortedTimestamps := timeslice{} for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ { sortedTimestamps = append(sortedTimestamps, clientmodel.TimestampFromUnix(nextTimestamp())) } sort.Sort(sortedTimestamps) for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ { sample.Timestamp = sortedTimestamps[sampleIndex] sample.Value = clientmodel.SampleValue(sampleIndex) err := p.AppendSamples(clientmodel.Samples{sample}) if err != nil { t.Error(err) return } } metricEarliestSample[metricIndex] = oldestSample metricNewestSample[metricIndex] = newestSample for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ { matchers := metric.LabelMatchers{{ Type: metric.Equal, Name: clientmodel.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)), Value: clientmodel.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)), }} fingerprints, err := p.GetFingerprintsForLabelMatchers(matchers) if err != nil { t.Error(err) return } if len(fingerprints) == 0 { t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints)) return } } } for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ { for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ { labelName := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex)) labelValue := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex)) matchers := metric.LabelMatchers{{ Type: metric.Equal, Name: labelName, Value: labelValue, }} fingerprints, err := p.GetFingerprintsForLabelMatchers(matchers) if err != nil { t.Error(err) return } if len(fingerprints) != 1 { t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints)) return } } m := clientmodel.Metric{} m[clientmodel.MetricNameLabel] = clientmodel.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex)) for i := 0; i < numberOfSharedLabels; i++ { l := clientmodel.LabelName(fmt.Sprintf("shared_label_%d", i)) v := clientmodel.LabelValue(fmt.Sprintf("label_%d", i)) m[l] = v } for i := 0; i < numberOfUnsharedLabels; i++ { l := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i)) v := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", i)) m[l] = v } for i := 0; i < numberOfRangeScans; i++ { timestamps := metricTimestamps[metricIndex] var first int64 var second int64 for { firstCandidate := random.Int63n(int64(len(timestamps))) secondCandidate := random.Int63n(int64(len(timestamps))) smallest := int64(-1) largest := int64(-1) if firstCandidate == secondCandidate { continue } else if firstCandidate > secondCandidate { largest = firstCandidate smallest = secondCandidate } else { largest = secondCandidate smallest = firstCandidate } j := int64(0) for i := range timestamps { if j == smallest { first = i } else if j == largest { second = i break } j++ } break } begin := first end := second if second < first { begin, end = second, first } interval := metric.Interval{ OldestInclusive: clientmodel.TimestampFromUnix(begin), NewestInclusive: clientmodel.TimestampFromUnix(end), } samples := metric.Values{} fp := &clientmodel.Fingerprint{} fp.LoadFromMetric(m) switch persistence := p.(type) { case metric.View: samples = persistence.GetRangeValues(fp, interval) if len(samples) < 2 { t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples)) } case *LevelDBPersistence: var err error samples, err = levelDBGetRangeValues(persistence, fp, interval) if err != nil { t.Fatal(err) } if len(samples) < 2 { t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples)) } default: t.Error("Unexpected type of metric.Persistence.") } } } return true } if err := quick.Check(stochastic, nil); err != nil { t.Error(err) } } // Test Definitions Follow var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests) func TestLevelDBBasicLifecycle(t *testing.T) { testLevelDBBasicLifecycle(t) } func BenchmarkLevelDBBasicLifecycle(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBBasicLifecycle(b) } } var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests) func TestLevelDBReadEmpty(t *testing.T) { testLevelDBReadEmpty(t) } func BenchmarkLevelDBReadEmpty(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBReadEmpty(b) } } var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests) func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) { testLevelDBAppendSampleAsPureSparseAppend(t) } func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBAppendSampleAsPureSparseAppend(b) } } var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests) func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) { testLevelDBAppendSampleAsSparseAppendWithReads(t) } func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBAppendSampleAsSparseAppendWithReads(b) } } var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests) func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) { testLevelDBAppendSampleAsPureSingleEntityAppend(t) } func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBAppendSampleAsPureSingleEntityAppend(b) } } func testLevelDBStochastic(t testing.TB) { persistenceMaker := func() (metric.Persistence, test.Closer) { temporaryDirectory := test.NewTemporaryDirectory("test_leveldb_stochastic", t) p, err := NewLevelDBPersistence(temporaryDirectory.Path()) if err != nil { t.Errorf("Could not start up LevelDB: %q\n", err) } return p, temporaryDirectory } StochasticTests(persistenceMaker, t) } func TestLevelDBStochastic(t *testing.T) { testLevelDBStochastic(t) } func BenchmarkLevelDBStochastic(b *testing.B) { for i := 0; i < b.N; i++ { testLevelDBStochastic(b) } } var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests) func TestMemoryBasicLifecycle(t *testing.T) { testMemoryBasicLifecycle(t) } func BenchmarkMemoryBasicLifecycle(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryBasicLifecycle(b) } } var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests) func TestMemoryReadEmpty(t *testing.T) { testMemoryReadEmpty(t) } func BenchmarkMemoryReadEmpty(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryReadEmpty(b) } } var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests) func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) { testMemoryAppendSampleAsPureSparseAppend(t) } func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryAppendSampleAsPureSparseAppend(b) } } var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests) func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) { testMemoryAppendSampleAsSparseAppendWithReads(t) } func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryAppendSampleAsSparseAppendWithReads(b) } } var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests) func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) { testMemoryAppendSampleAsPureSingleEntityAppend(t) } func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryAppendSampleAsPureSingleEntityAppend(b) } } func testMemoryStochastic(t testing.TB) { persistenceMaker := func() (metric.Persistence, test.Closer) { return NewMemorySeriesStorage(MemorySeriesOptions{}), test.NilCloser } StochasticTests(persistenceMaker, t) } func TestMemoryStochastic(t *testing.T) { testMemoryStochastic(t) } func BenchmarkMemoryStochastic(b *testing.B) { for i := 0; i < b.N; i++ { testMemoryStochastic(b) } }