// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package metric import ( "flag" "fmt" "log" "sort" "sync" "time" "code.google.com/p/goprotobuf/proto" dto "github.com/prometheus/prometheus/model/generated" index "github.com/prometheus/prometheus/storage/raw/index/leveldb" "github.com/prometheus/prometheus/model" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/storage/raw/leveldb" "github.com/prometheus/prometheus/utility" ) const sortConcurrency = 2 type LevelDBMetricPersistence struct { CurationRemarks *leveldb.LevelDBPersistence fingerprintToMetrics *leveldb.LevelDBPersistence labelNameToFingerprints *leveldb.LevelDBPersistence labelSetToFingerprints *leveldb.LevelDBPersistence MetricHighWatermarks *leveldb.LevelDBPersistence metricMembershipIndex *index.LevelDBMembershipIndex MetricSamples *leveldb.LevelDBPersistence } var ( leveldbChunkSize = flag.Int("leveldbChunkSize", 200, "Maximum number of samples stored under one key.") // These flag values are back of the envelope, though they seem sensible. // Please re-evaluate based on your own needs. curationRemarksCacheSize = flag.Int("curationRemarksCacheSize", 50*1024*1024, "The size for the curation remarks cache (bytes).") fingerprintsToLabelPairCacheSize = flag.Int("fingerprintsToLabelPairCacheSizeBytes", 100*1024*1024, "The size for the fingerprint to label pair index (bytes).") highWatermarkCacheSize = flag.Int("highWatermarksByFingerprintSizeBytes", 50*1024*1024, "The size for the metric high watermarks (bytes).") labelNameToFingerprintsCacheSize = flag.Int("labelNameToFingerprintsCacheSizeBytes", 100*1024*1024, "The size for the label name to metric fingerprint index (bytes).") labelPairToFingerprintsCacheSize = flag.Int("labelPairToFingerprintsCacheSizeBytes", 100*1024*1024, "The size for the label pair to metric fingerprint index (bytes).") metricMembershipIndexCacheSize = flag.Int("metricMembershipCacheSizeBytes", 50*1024*1024, "The size for the metric membership index (bytes).") samplesByFingerprintCacheSize = flag.Int("samplesByFingerprintCacheSizeBytes", 500*1024*1024, "The size for the samples database (bytes).") ) type leveldbOpener func() type leveldbCloser interface { Close() } func (l *LevelDBMetricPersistence) Close() { var persistences = []leveldbCloser{ l.CurationRemarks, l.fingerprintToMetrics, l.labelNameToFingerprints, l.labelSetToFingerprints, l.MetricHighWatermarks, l.metricMembershipIndex, l.MetricSamples, } closerGroup := sync.WaitGroup{} for _, closer := range persistences { closerGroup.Add(1) go func(closer leveldbCloser) { if closer != nil { closer.Close() } closerGroup.Done() }(closer) } closerGroup.Wait() } func NewLevelDBMetricPersistence(baseDirectory string) (*LevelDBMetricPersistence, error) { workers := utility.NewUncertaintyGroup(7) emission := &LevelDBMetricPersistence{} var subsystemOpeners = []struct { name string opener leveldbOpener }{ { "Label Names and Value Pairs by Fingerprint", func() { var err error emission.fingerprintToMetrics, err = leveldb.NewLevelDBPersistence(baseDirectory+"/label_name_and_value_pairs_by_fingerprint", *fingerprintsToLabelPairCacheSize, 10) workers.MayFail(err) }, }, { "Samples by Fingerprint", func() { var err error emission.MetricSamples, err = leveldb.NewLevelDBPersistence(baseDirectory+"/samples_by_fingerprint", *samplesByFingerprintCacheSize, 10) workers.MayFail(err) }, }, { "High Watermarks by Fingerprint", func() { var err error emission.MetricHighWatermarks, err = leveldb.NewLevelDBPersistence(baseDirectory+"/high_watermarks_by_fingerprint", *highWatermarkCacheSize, 10) workers.MayFail(err) }, }, { "Fingerprints by Label Name", func() { var err error emission.labelNameToFingerprints, err = leveldb.NewLevelDBPersistence(baseDirectory+"/fingerprints_by_label_name", *labelNameToFingerprintsCacheSize, 10) workers.MayFail(err) }, }, { "Fingerprints by Label Name and Value Pair", func() { var err error emission.labelSetToFingerprints, err = leveldb.NewLevelDBPersistence(baseDirectory+"/fingerprints_by_label_name_and_value_pair", *labelPairToFingerprintsCacheSize, 10) workers.MayFail(err) }, }, { "Metric Membership Index", func() { var err error emission.metricMembershipIndex, err = index.NewLevelDBMembershipIndex(baseDirectory+"/metric_membership_index", *metricMembershipIndexCacheSize, 10) workers.MayFail(err) }, }, { "Sample Curation Remarks", func() { var err error emission.CurationRemarks, err = leveldb.NewLevelDBPersistence(baseDirectory+"/curation_remarks", *curationRemarksCacheSize, 10) workers.MayFail(err) }, }, } for _, subsystem := range subsystemOpeners { opener := subsystem.opener go opener() } if !workers.Wait() { for _, err := range workers.Errors() { log.Printf("Could not open storage due to %s", err) } return nil, fmt.Errorf("Unable to open metric persistence.") } return emission, nil } func (l *LevelDBMetricPersistence) AppendSample(sample model.Sample) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: appendSample, result: success}, map[string]string{operation: appendSample, result: failure}) }(time.Now()) err = l.AppendSamples(model.Samples{sample}) return } // groupByFingerprint collects all of the provided samples, groups them // together by their respective metric fingerprint, and finally sorts // them chronologically. func groupByFingerprint(samples model.Samples) map[model.Fingerprint]model.Samples { fingerprintToSamples := map[model.Fingerprint]model.Samples{} for _, sample := range samples { fingerprint := *model.NewFingerprintFromMetric(sample.Metric) samples := fingerprintToSamples[fingerprint] samples = append(samples, sample) fingerprintToSamples[fingerprint] = samples } sortingSemaphore := make(chan bool, sortConcurrency) doneSorting := sync.WaitGroup{} for i := 0; i < sortConcurrency; i++ { sortingSemaphore <- true } for _, samples := range fingerprintToSamples { doneSorting.Add(1) <-sortingSemaphore go func(samples model.Samples) { sort.Sort(samples) sortingSemaphore <- true doneSorting.Done() }(samples) } doneSorting.Wait() return fingerprintToSamples } // findUnindexedMetrics scours the metric membership index for each given Metric // in the keyspace and returns a map of Fingerprint-Metric pairs that are // absent. func (l *LevelDBMetricPersistence) findUnindexedMetrics(candidates map[model.Fingerprint]model.Metric) (unindexed map[model.Fingerprint]model.Metric, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: findUnindexedMetrics, result: success}, map[string]string{operation: findUnindexedMetrics, result: failure}) }(time.Now()) unindexed = make(map[model.Fingerprint]model.Metric) // Determine which metrics are unknown in the database. for fingerprint, metric := range candidates { dto := model.MetricToDTO(metric) indexHas, err := l.hasIndexMetric(dto) if err != nil { return unindexed, err } if !indexHas { unindexed[fingerprint] = metric } } return } // indexLabelNames accumulates all label name to fingerprint index entries for // the dirty metrics, appends the new dirtied metrics, sorts, and bulk updates // the index to reflect the new state. // // This operation is idempotent. func (l *LevelDBMetricPersistence) indexLabelNames(metrics map[model.Fingerprint]model.Metric) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: indexLabelNames, result: success}, map[string]string{operation: indexLabelNames, result: failure}) }(time.Now()) labelNameFingerprints := map[model.LabelName]utility.Set{} for fingerprint, metric := range metrics { for labelName := range metric { fingerprintSet, ok := labelNameFingerprints[labelName] if !ok { fingerprintSet = utility.Set{} fingerprints, err := l.GetFingerprintsForLabelName(labelName) if err != nil { return err } for _, fingerprint := range fingerprints { fingerprintSet.Add(*fingerprint) } } fingerprintSet.Add(fingerprint) labelNameFingerprints[labelName] = fingerprintSet } } batch := leveldb.NewBatch() defer batch.Close() for labelName, fingerprintSet := range labelNameFingerprints { fingerprints := model.Fingerprints{} for e := range fingerprintSet { fingerprint := e.(model.Fingerprint) fingerprints = append(fingerprints, &fingerprint) } sort.Sort(fingerprints) key := &dto.LabelName{ Name: proto.String(string(labelName)), } value := &dto.FingerprintCollection{} for _, fingerprint := range fingerprints { value.Member = append(value.Member, fingerprint.ToDTO()) } batch.Put(key, value) } err = l.labelNameToFingerprints.Commit(batch) if err != nil { return } return } // indexLabelPairs accumulates all label pair to fingerprint index entries for // the dirty metrics, appends the new dirtied metrics, sorts, and bulk updates // the index to reflect the new state. // // This operation is idempotent. func (l *LevelDBMetricPersistence) indexLabelPairs(metrics map[model.Fingerprint]model.Metric) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: indexLabelPairs, result: success}, map[string]string{operation: indexLabelPairs, result: failure}) }(time.Now()) labelPairFingerprints := map[model.LabelPair]utility.Set{} for fingerprint, metric := range metrics { for labelName, labelValue := range metric { labelPair := model.LabelPair{ Name: labelName, Value: labelValue, } fingerprintSet, ok := labelPairFingerprints[labelPair] if !ok { fingerprintSet = utility.Set{} fingerprints, err := l.GetFingerprintsForLabelSet(model.LabelSet{ labelName: labelValue, }) if err != nil { return err } for _, fingerprint := range fingerprints { fingerprintSet.Add(*fingerprint) } } fingerprintSet.Add(fingerprint) labelPairFingerprints[labelPair] = fingerprintSet } } batch := leveldb.NewBatch() defer batch.Close() for labelPair, fingerprintSet := range labelPairFingerprints { fingerprints := model.Fingerprints{} for e := range fingerprintSet { fingerprint := e.(model.Fingerprint) fingerprints = append(fingerprints, &fingerprint) } sort.Sort(fingerprints) key := &dto.LabelPair{ Name: proto.String(string(labelPair.Name)), Value: proto.String(string(labelPair.Value)), } value := &dto.FingerprintCollection{} for _, fingerprint := range fingerprints { value.Member = append(value.Member, fingerprint.ToDTO()) } batch.Put(key, value) } err = l.labelSetToFingerprints.Commit(batch) if err != nil { return } return } // indexFingerprints updates all of the Fingerprint to Metric reverse lookups // in the index and then bulk updates. // // This operation is idempotent. func (l *LevelDBMetricPersistence) indexFingerprints(metrics map[model.Fingerprint]model.Metric) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: indexFingerprints, result: success}, map[string]string{operation: indexFingerprints, result: failure}) }(time.Now()) batch := leveldb.NewBatch() defer batch.Close() for fingerprint, metric := range metrics { batch.Put(fingerprint.ToDTO(), model.MetricToDTO(metric)) } err = l.fingerprintToMetrics.Commit(batch) if err != nil { return } return } var existenceIdentity = &dto.MembershipIndexValue{} // indexMetrics takes groups of samples, determines which ones contain metrics // that are unknown to the storage stack, and then proceeds to update all // affected indices. func (l *LevelDBMetricPersistence) indexMetrics(fingerprints map[model.Fingerprint]model.Metric) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: indexMetrics, result: success}, map[string]string{operation: indexMetrics, result: failure}) }(time.Now()) var ( absentMetrics map[model.Fingerprint]model.Metric ) absentMetrics, err = l.findUnindexedMetrics(fingerprints) if err != nil { return } if len(absentMetrics) == 0 { return } // TODO: For the missing fingerprints, determine what label names and pairs // are absent and act accordingly and append fingerprints. workers := utility.NewUncertaintyGroup(3) go func() { workers.MayFail(l.indexLabelNames(absentMetrics)) }() go func() { workers.MayFail(l.indexLabelPairs(absentMetrics)) }() go func() { workers.MayFail(l.indexFingerprints(absentMetrics)) }() if !workers.Wait() { return fmt.Errorf("Could not index due to %s", workers.Errors()) } // If any of the preceding operations failed, we will have inconsistent // indices. Thusly, the Metric membership index should NOT be updated, as // its state is used to determine whether to bulk update the other indices. // Given that those operations are idempotent, it is OK to repeat them; // however, it will consume considerable amounts of time. batch := leveldb.NewBatch() defer batch.Close() for _, metric := range absentMetrics { batch.Put(model.MetricToDTO(metric), existenceIdentity) } err = l.metricMembershipIndex.Commit(batch) if err != nil { // Not critical but undesirable. log.Println(err) } return } func (l *LevelDBMetricPersistence) refreshHighWatermarks(groups map[model.Fingerprint]model.Samples) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: refreshHighWatermarks, result: success}, map[string]string{operation: refreshHighWatermarks, result: failure}) }(time.Now()) batch := leveldb.NewBatch() defer batch.Close() mutationCount := 0 for fingerprint, samples := range groups { value := &dto.MetricHighWatermark{} newestSampleTimestamp := samples[len(samples)-1].Timestamp present, err := l.MetricHighWatermarks.Get(fingerprint.ToDTO(), value) if err != nil { return err } if !present { continue } // BUG(matt): Repace this with watermark management. if newestSampleTimestamp.Before(time.Unix(*value.Timestamp, 0)) { continue } value.Timestamp = proto.Int64(newestSampleTimestamp.Unix()) batch.Put(fingerprint.ToDTO(), value) mutationCount++ } err = l.MetricHighWatermarks.Commit(batch) if err != nil { return err } return nil } func (l *LevelDBMetricPersistence) AppendSamples(samples model.Samples) (err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: appendSamples, result: success}, map[string]string{operation: appendSamples, result: failure}) }(time.Now()) fingerprintToSamples := groupByFingerprint(samples) indexErrChan := make(chan error, 1) watermarkErrChan := make(chan error, 1) go func(groups map[model.Fingerprint]model.Samples) { metrics := map[model.Fingerprint]model.Metric{} for fingerprint, samples := range groups { metrics[fingerprint] = samples[0].Metric } indexErrChan <- l.indexMetrics(metrics) }(fingerprintToSamples) go func(groups map[model.Fingerprint]model.Samples) { watermarkErrChan <- l.refreshHighWatermarks(groups) }(fingerprintToSamples) samplesBatch := leveldb.NewBatch() defer samplesBatch.Close() for fingerprint, group := range fingerprintToSamples { for { lengthOfGroup := len(group) if lengthOfGroup == 0 { break } take := *leveldbChunkSize if lengthOfGroup < take { take = lengthOfGroup } chunk := group[0:take] group = group[take:lengthOfGroup] key := model.SampleKey{ Fingerprint: &fingerprint, FirstTimestamp: chunk[0].Timestamp, LastTimestamp: chunk[take-1].Timestamp, SampleCount: uint32(take), }.ToDTO() value := &dto.SampleValueSeries{} for _, sample := range chunk { value.Value = append(value.Value, &dto.SampleValueSeries_Value{ Timestamp: proto.Int64(sample.Timestamp.Unix()), Value: sample.Value.ToDTO(), }) } samplesBatch.Put(key, value) } } err = l.MetricSamples.Commit(samplesBatch) if err != nil { return } err = <-indexErrChan if err != nil { return } err = <-watermarkErrChan if err != nil { return } return } func extractSampleKey(i leveldb.Iterator) (key model.SampleKey, err error) { k := &dto.SampleKey{} err = proto.Unmarshal(i.Key(), k) if err != nil { return } key = model.NewSampleKeyFromDTO(k) return } func extractSampleValues(i leveldb.Iterator) (values model.Values, err error) { v := &dto.SampleValueSeries{} err = proto.Unmarshal(i.Value(), v) if err != nil { return } values = model.NewValuesFromDTO(v) return } func fingerprintsEqual(l *dto.Fingerprint, r *dto.Fingerprint) bool { if l == r { return true } if l == nil && r == nil { return true } if r.Signature == l.Signature { return true } if *r.Signature == *l.Signature { return true } return false } func (l *LevelDBMetricPersistence) hasIndexMetric(dto *dto.Metric) (value bool, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: hasIndexMetric, result: success}, map[string]string{operation: hasIndexMetric, result: failure}) }(time.Now()) value, err = l.metricMembershipIndex.Has(dto) return } func (l *LevelDBMetricPersistence) HasLabelPair(dto *dto.LabelPair) (value bool, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: hasLabelPair, result: success}, map[string]string{operation: hasLabelPair, result: failure}) }(time.Now()) value, err = l.labelSetToFingerprints.Has(dto) return } func (l *LevelDBMetricPersistence) HasLabelName(dto *dto.LabelName) (value bool, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: hasLabelName, result: success}, map[string]string{operation: hasLabelName, result: failure}) }(time.Now()) value, err = l.labelNameToFingerprints.Has(dto) return } func (l *LevelDBMetricPersistence) GetFingerprintsForLabelSet(labelSet model.LabelSet) (fps model.Fingerprints, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: getFingerprintsForLabelSet, result: success}, map[string]string{operation: getFingerprintsForLabelSet, result: failure}) }(time.Now()) sets := []utility.Set{} for _, labelSetDTO := range model.LabelSetToDTOs(&labelSet) { unmarshaled := &dto.FingerprintCollection{} present, err := l.labelSetToFingerprints.Get(labelSetDTO, unmarshaled) if err != nil { return fps, err } if !present { return nil, nil } set := utility.Set{} for _, m := range unmarshaled.Member { fp := model.NewFingerprintFromRowKey(*m.Signature) set.Add(*fp) } sets = append(sets, set) } numberOfSets := len(sets) if numberOfSets == 0 { return } base := sets[0] for i := 1; i < numberOfSets; i++ { base = base.Intersection(sets[i]) } for _, e := range base.Elements() { fingerprint := e.(model.Fingerprint) fps = append(fps, &fingerprint) } return } func (l *LevelDBMetricPersistence) GetFingerprintsForLabelName(labelName model.LabelName) (fps model.Fingerprints, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: getFingerprintsForLabelName, result: success}, map[string]string{operation: getFingerprintsForLabelName, result: failure}) }(time.Now()) unmarshaled := &dto.FingerprintCollection{} present, err := l.labelNameToFingerprints.Get(model.LabelNameToDTO(&labelName), unmarshaled) if err != nil { return nil, err } if !present { return nil, nil } for _, m := range unmarshaled.Member { fp := model.NewFingerprintFromRowKey(*m.Signature) fps = append(fps, fp) } return fps, nil } func (l *LevelDBMetricPersistence) GetMetricForFingerprint(f *model.Fingerprint) (m model.Metric, err error) { defer func(begin time.Time) { duration := time.Since(begin) recordOutcome(duration, err, map[string]string{operation: getMetricForFingerprint, result: success}, map[string]string{operation: getMetricForFingerprint, result: failure}) }(time.Now()) unmarshaled := &dto.Metric{} present, err := l.fingerprintToMetrics.Get(model.FingerprintToDTO(f), unmarshaled) if err != nil { return nil, err } if !present { return nil, nil } m = model.Metric{} for _, v := range unmarshaled.LabelPair { m[model.LabelName(*v.Name)] = model.LabelValue(*v.Value) } return m, nil } func (l LevelDBMetricPersistence) GetValueAtTime(f *model.Fingerprint, t time.Time) model.Values { panic("Not implemented") } func (l LevelDBMetricPersistence) GetBoundaryValues(f *model.Fingerprint, i model.Interval) model.Values { panic("Not implemented") } func (l *LevelDBMetricPersistence) GetRangeValues(f *model.Fingerprint, i model.Interval) model.Values { panic("Not implemented") } type MetricKeyDecoder struct{} func (d *MetricKeyDecoder) DecodeKey(in interface{}) (out interface{}, err error) { unmarshaled := dto.LabelPair{} err = proto.Unmarshal(in.([]byte), &unmarshaled) if err != nil { return } out = model.LabelPair{ Name: model.LabelName(*unmarshaled.Name), Value: model.LabelValue(*unmarshaled.Value), } return } func (d *MetricKeyDecoder) DecodeValue(in interface{}) (out interface{}, err error) { return } type LabelNameFilter struct { labelName model.LabelName } func (f LabelNameFilter) Filter(key, value interface{}) (filterResult storage.FilterResult) { labelPair, ok := key.(model.LabelPair) if ok && labelPair.Name == f.labelName { return storage.ACCEPT } return storage.SKIP } type CollectLabelValuesOp struct { labelValues []model.LabelValue } func (op *CollectLabelValuesOp) Operate(key, value interface{}) (err *storage.OperatorError) { labelPair := key.(model.LabelPair) op.labelValues = append(op.labelValues, model.LabelValue(labelPair.Value)) return } func (l *LevelDBMetricPersistence) GetAllValuesForLabel(labelName model.LabelName) (values model.LabelValues, err error) { filter := &LabelNameFilter{ labelName: labelName, } labelValuesOp := &CollectLabelValuesOp{} _, err = l.labelSetToFingerprints.ForEach(&MetricKeyDecoder{}, filter, labelValuesOp) if err != nil { return } values = labelValuesOp.labelValues return } // CompactKeyspace compacts each database's keyspace serially. // // Beware that it would probably be imprudent to run this on a live user-facing // server due to latency implications. func (l *LevelDBMetricPersistence) CompactKeyspaces() { l.CurationRemarks.CompactKeyspace() l.fingerprintToMetrics.CompactKeyspace() l.labelNameToFingerprints.CompactKeyspace() l.labelSetToFingerprints.CompactKeyspace() l.MetricHighWatermarks.CompactKeyspace() l.metricMembershipIndex.CompactKeyspace() l.MetricSamples.CompactKeyspace() } func (l *LevelDBMetricPersistence) ApproximateSizes() (total uint64, err error) { size := uint64(0) if size, err = l.CurationRemarks.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.fingerprintToMetrics.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.labelNameToFingerprints.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.labelSetToFingerprints.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.MetricHighWatermarks.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.metricMembershipIndex.ApproximateSize(); err != nil { return 0, err } total += size if size, err = l.MetricSamples.ApproximateSize(); err != nil { return 0, err } total += size return total, nil } func (l *LevelDBMetricPersistence) States() []leveldb.DatabaseState { states := []leveldb.DatabaseState{} state := l.CurationRemarks.State() state.Name = "Curation Remarks" state.Type = "Watermark" states = append(states, state) state = l.fingerprintToMetrics.State() state.Name = "Fingerprints to Metrics" state.Type = "Index" states = append(states, state) state = l.labelNameToFingerprints.State() state.Name = "Label Name to Fingerprints" state.Type = "Inverted Index" states = append(states, state) state = l.labelSetToFingerprints.State() state.Name = "Label Pair to Fingerprints" state.Type = "Inverted Index" states = append(states, state) state = l.MetricHighWatermarks.State() state.Name = "Metric Last Write" state.Type = "Watermark" states = append(states, state) state = l.metricMembershipIndex.State() state.Name = "Metric Membership" state.Type = "Index" states = append(states, state) state = l.MetricSamples.State() state.Name = "Samples" state.Type = "Time Series" states = append(states, state) return states }