// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The code in this file was largely written by Damian Gryski as part of // https://github.com/dgryski/go-tsz and published under the license below. // It was modified to accommodate reading from byte slices without modifying // the underlying bytes, which would panic when reading from mmap'd // read-only byte slices. // Copyright (c) 2015,2016 Damian Gryski // All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package chunkenc import ( "encoding/binary" "math" "math/bits" "github.com/prometheus/prometheus/pkg/histogram" ) const () // HistoChunk holds sparse histogram encoded sample data. // Appends a histogram sample // * schema defines the resolution (number of buckets per power of 2) // Currently, valid numbers are -4 <= n <= 8. // They are all for base-2 bucket schemas, where 1 is a bucket boundary in each case, and // then each power of two is divided into 2^n logarithmic buckets. // Or in other words, each bucket boundary is the previous boundary times 2^(2^-n). // In the future, more bucket schemas may be added using numbers < -4 or > 8. // The bucket with upper boundary of 1 is always bucket 0. // Then negative numbers for smaller boundaries and positive for uppers. // // fields are stored like so: // field ts count zeroCount sum []posbuckets negbuckets // observation 1 raw raw raw raw []raw []raw // observation 2 delta delta delta xor []delta []delta // observation >2 dod dod dod xor []dod []dod // TODO zerothreshold // TODO: encode schema and spans metadata in the chunk // TODO: decode-recode chunk when new spans appear type HistoChunk struct { b bstream // "metadata" describing all the data within this chunk schema int32 posSpans, negSpans []histogram.Span } // NewHistoChunk returns a new chunk with Histo encoding of the given size. func NewHistoChunk() *HistoChunk { b := make([]byte, 2, 128) return &HistoChunk{b: bstream{stream: b, count: 0}} } // Encoding returns the encoding type. func (c *HistoChunk) Encoding() Encoding { return EncSHS } // Bytes returns the underlying byte slice of the chunk. func (c *HistoChunk) Bytes() []byte { return c.b.bytes() } // NumSamples returns the number of samples in the chunk. func (c *HistoChunk) NumSamples() int { return int(binary.BigEndian.Uint16(c.Bytes())) } func (c *HistoChunk) Compact() { if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold { buf := make([]byte, l) copy(buf, c.b.stream) c.b.stream = buf } } // Appender implements the Chunk interface. func (c *HistoChunk) Appender() (Appender, error) { it := c.iterator(nil) // To get an appender we must know the state it would have if we had // appended all existing data from scratch. // We iterate through the end and populate via the iterator's state. for it.Next() { } if err := it.Err(); err != nil { return nil, err } a := &histoAppender{ c: c, b: &c.b, schema: c.schema, posSpans: c.posSpans, negSpans: c.negSpans, t: it.t, cnt: it.cnt, zcnt: it.zcnt, tDelta: it.tDelta, cntDelta: it.cntDelta, zcntDelta: it.zcntDelta, posbuckets: it.posbuckets, negbuckets: it.negbuckets, posbucketsDelta: it.posbucketsDelta, negbucketsDelta: it.negbucketsDelta, sum: it.sum, leading: it.leading, trailing: it.trailing, buf64: make([]byte, binary.MaxVarintLen64), } if binary.BigEndian.Uint16(a.b.bytes()) == 0 { a.leading = 0xff } return a, nil } // TODO fix this func (c *HistoChunk) iterator(it Iterator) *histoIterator { // Should iterators guarantee to act on a copy of the data so it doesn't lock append? // When using striped locks to guard access to chunks, probably yes. // Could only copy data if the chunk is not completed yet. //if histoIter, ok := it.(*histoIterator); ok { // histoIter.Reset(c.b.bytes()) // return histoIter //} var numPosBuckets, numNegBuckets int for _, s := range c.posSpans { numPosBuckets += int(s.Length) } for _, s := range c.negSpans { numNegBuckets += int(s.Length) } return &histoIterator{ // The first 2 bytes contain chunk headers. // We skip that for actual samples. br: newBReader(c.b.bytes()[2:]), numTotal: binary.BigEndian.Uint16(c.b.bytes()), t: math.MinInt64, schema: c.schema, posSpans: c.posSpans, negSpans: c.negSpans, posbuckets: make([]int64, numPosBuckets), negbuckets: make([]int64, numNegBuckets), posbucketsDelta: make([]int64, numPosBuckets), negbucketsDelta: make([]int64, numNegBuckets), } } // Iterator implements the Chunk interface. // TODO return interface type? //func (c *HistoChunk) Iterator(it Iterator) *histoIterator { // return c.iterator(it) //} type histoAppender struct { c *HistoChunk // this is such that during the first append we can set the metadata on the chunk. not sure if that's how it should work b *bstream // Meta schema int32 posSpans, negSpans []histogram.Span // for the fields that are tracked as dod's t int64 cnt, zcnt uint64 tDelta, cntDelta, zcntDelta uint64 posbuckets, negbuckets []int64 posbucketsDelta, negbucketsDelta []int64 // for the fields that are gorilla xor coded sum float64 leading uint8 trailing uint8 buf64 []byte // for working on varint64's } func putVarint(b *bstream, buf []byte, x int64) { for _, byt := range buf[:binary.PutVarint(buf, x)] { b.writeByte(byt) } } func putUvarint(b *bstream, buf []byte, x uint64) { for _, byt := range buf[:binary.PutUvarint(buf, x)] { b.writeByte(byt) } } // we use this for millisec timestamps and all counts // for now this is copied from xor.go - we will probably want to be more conservative (use fewer bits for small values) - can be tweaked later func putDod(b *bstream, dod int64) { switch { case dod == 0: b.writeBit(zero) case bitRange(dod, 14): b.writeBits(0x02, 2) // '10' b.writeBits(uint64(dod), 14) case bitRange(dod, 17): b.writeBits(0x06, 3) // '110' b.writeBits(uint64(dod), 17) case bitRange(dod, 20): b.writeBits(0x0e, 4) // '1110' b.writeBits(uint64(dod), 20) default: b.writeBits(0x0f, 4) // '1111' b.writeBits(uint64(dod), 64) } } func (a *histoAppender) Append(int64, float64) { panic("cannot call histoAppender.Append().") } // AppendHistogram appends a SparseHistogram to the chunk // we assume the histogram is properly structured. E.g. that the number pos/neg buckets used corresponds to the number conveyed by the pos/neg span structures func (a *histoAppender) AppendHistogram(h histogram.SparseHistogram) { var tDelta, cntDelta, zcntDelta uint64 num := binary.BigEndian.Uint16(a.b.bytes()) if num == 0 { // the first append gets the privilege to dictate the metadata, on both the appender and the chunk // TODO we should probably not reach back into the chunk here. should metadata be set when we create the chunk? a.c.schema = h.Schema a.c.posSpans, a.c.negSpans = h.PositiveSpans, h.NegativeSpans a.schema = h.Schema a.posSpans, a.negSpans = h.PositiveSpans, h.NegativeSpans putVarint(a.b, a.buf64, h.Ts) putUvarint(a.b, a.buf64, h.Count) putUvarint(a.b, a.buf64, h.ZeroCount) a.b.writeBits(math.Float64bits(h.Sum), 64) for _, buck := range h.PositiveBuckets { putVarint(a.b, a.buf64, buck) } for _, buck := range h.NegativeBuckets { putVarint(a.b, a.buf64, buck) } } else if num == 1 { tDelta = uint64(h.Ts - a.t) // WARNING: we assume all counts go up. what guarantee do we have this is true? uint may underflow if not. cntDelta = h.Count - a.cnt zcntDelta = h.ZeroCount - a.zcnt putUvarint(a.b, a.buf64, tDelta) putUvarint(a.b, a.buf64, cntDelta) putUvarint(a.b, a.buf64, zcntDelta) a.writeSumDelta(h.Sum) for i, buck := range h.PositiveBuckets { delta := buck - a.posbuckets[i] putVarint(a.b, a.buf64, delta) a.posbucketsDelta[i] = delta } for i, buck := range h.NegativeBuckets { delta := buck - a.negbuckets[i] putVarint(a.b, a.buf64, delta) a.negbucketsDelta[i] = delta } } else { tDelta = uint64(h.Ts - a.t) cntDelta = h.Count - a.cnt zcntDelta = h.ZeroCount - a.zcnt tDod := int64(tDelta - a.tDelta) cntDod := int64(cntDelta - a.cntDelta) zcntDod := int64(zcntDelta - a.zcntDelta) putDod(a.b, tDod) putDod(a.b, cntDod) putDod(a.b, zcntDod) a.writeSumDelta(h.Sum) for i, buck := range h.PositiveBuckets { delta := buck - a.posbuckets[i] dod := delta - a.posbucketsDelta[i] putDod(a.b, dod) a.posbucketsDelta[i] = delta } for i, buck := range h.NegativeBuckets { delta := buck - a.negbuckets[i] dod := delta - a.negbucketsDelta[i] putDod(a.b, dod) a.negbucketsDelta[i] = delta } } binary.BigEndian.PutUint16(a.b.bytes(), num+1) a.t = h.Ts a.cnt = h.Count a.zcnt = h.ZeroCount a.tDelta = tDelta a.cntDelta = cntDelta a.zcntDelta = zcntDelta a.posbuckets, a.negbuckets = h.PositiveBuckets, h.NegativeBuckets // note that the bucket deltas were already updated above a.sum = h.Sum } func (a *histoAppender) writeSumDelta(v float64) { vDelta := math.Float64bits(v) ^ math.Float64bits(a.sum) if vDelta == 0 { a.b.writeBit(zero) return } a.b.writeBit(one) leading := uint8(bits.LeadingZeros64(vDelta)) trailing := uint8(bits.TrailingZeros64(vDelta)) // Clamp number of leading zeros to avoid overflow when encoding. if leading >= 32 { leading = 31 } if a.leading != 0xff && leading >= a.leading && trailing >= a.trailing { a.b.writeBit(zero) a.b.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing)) } else { a.leading, a.trailing = leading, trailing a.b.writeBit(one) a.b.writeBits(uint64(leading), 5) // Note that if leading == trailing == 0, then sigbits == 64. But that value doesn't actually fit into the 6 bits we have. // Luckily, we never need to encode 0 significant bits, since that would put us in the other case (vdelta == 0). // So instead we write out a 0 and adjust it back to 64 on unpacking. sigbits := 64 - leading - trailing a.b.writeBits(uint64(sigbits), 6) a.b.writeBits(vDelta>>trailing, int(sigbits)) } } type histoIterator struct { br bstreamReader numTotal uint16 numRead uint16 // Meta schema int32 posSpans, negSpans []histogram.Span // for the fields that are tracked as dod's t int64 cnt, zcnt uint64 tDelta, cntDelta, zcntDelta uint64 posbuckets, negbuckets []int64 posbucketsDelta, negbucketsDelta []int64 // for the fields that are gorilla xor coded sum float64 leading uint8 trailing uint8 err error } func (it *histoIterator) Seek(t int64) bool { if it.err != nil { return false } for t > it.t || it.numRead == 0 { if !it.Next() { return false } } return true } func (it *histoIterator) At() (h histogram.SparseHistogram) { return histogram.SparseHistogram{ Ts: it.t, Count: it.cnt, ZeroCount: it.zcnt, Sum: it.sum, ZeroThreshold: 0, // TODO Schema: it.schema, PositiveSpans: it.posSpans, NegativeSpans: it.negSpans, PositiveBuckets: it.posbuckets, NegativeBuckets: it.negbuckets, } } func (it *histoIterator) Err() error { return it.err } func (it *histoIterator) Reset(b []byte) { // The first 2 bytes contain chunk headers. // We skip that for actual samples. it.br = newBReader(b[2:]) it.numTotal = binary.BigEndian.Uint16(b) it.numRead = 0 it.t, it.cnt, it.zcnt = 0, 0, 0 it.tDelta, it.cntDelta, it.zcntDelta = 0, 0, 0 for i := range it.posbuckets { it.posbuckets[i] = 0 it.posbucketsDelta[i] = 0 } for i := range it.negbuckets { it.negbuckets[i] = 0 it.negbucketsDelta[i] = 0 } it.sum = 0 it.leading = 0 it.trailing = 0 it.err = nil } func (it *histoIterator) Next() bool { if it.err != nil || it.numRead == it.numTotal { return false } if it.numRead == 0 { t, err := binary.ReadVarint(&it.br) if err != nil { it.err = err return false } it.t = t cnt, err := binary.ReadUvarint(&it.br) if err != nil { it.err = err return false } it.cnt = cnt zcnt, err := binary.ReadUvarint(&it.br) if err != nil { it.err = err return false } it.zcnt = zcnt sum, err := it.br.readBits(64) if err != nil { it.err = err return false } it.sum = math.Float64frombits(sum) for i := range it.posbuckets { v, err := binary.ReadVarint(&it.br) if err != nil { it.err = err return false } it.posbuckets[i] = v } for i := range it.negbuckets { v, err := binary.ReadVarint(&it.br) if err != nil { it.err = err return false } it.negbuckets[i] = v } it.numRead++ return true } if it.numRead == 1 { tDelta, err := binary.ReadUvarint(&it.br) if err != nil { it.err = err return false } it.tDelta = tDelta it.t += int64(it.tDelta) cntDelta, err := binary.ReadUvarint(&it.br) if err != nil { it.err = err return false } it.cntDelta = cntDelta it.cnt += it.cntDelta zcntDelta, err := binary.ReadUvarint(&it.br) if err != nil { it.err = err return false } it.zcntDelta = zcntDelta it.zcnt += it.zcntDelta ok := it.readSum() if !ok { return false } for i := range it.posbuckets { delta, err := binary.ReadVarint(&it.br) if err != nil { it.err = err return false } it.posbucketsDelta[i] = delta it.posbuckets[i] = it.posbuckets[i] + delta } for i := range it.negbuckets { delta, err := binary.ReadVarint(&it.br) if err != nil { it.err = err return false } it.negbucketsDelta[i] = delta it.negbuckets[i] = it.negbuckets[i] + delta } return true } tDod, ok := it.readDod() if !ok { return ok } it.tDelta = uint64(int64(it.tDelta) + tDod) it.t += int64(it.tDelta) cntDod, ok := it.readDod() if !ok { return ok } it.cntDelta = uint64(int64(it.cntDelta) + cntDod) it.cnt += it.cntDelta zcntDod, ok := it.readDod() if !ok { return ok } it.zcntDelta = uint64(int64(it.zcntDelta) + zcntDod) it.zcnt += it.zcntDelta ok = it.readSum() if !ok { return false } for i := range it.posbuckets { dod, ok := it.readDod() if !ok { return ok } it.posbucketsDelta[i] = it.posbucketsDelta[i] + dod it.posbuckets[i] = it.posbuckets[i] + it.posbucketsDelta[i] } for i := range it.negbuckets { dod, ok := it.readDod() if !ok { return ok } it.negbucketsDelta[i] = it.negbucketsDelta[i] + dod it.negbuckets[i] = it.negbuckets[i] + it.negbucketsDelta[i] } return true } func (it *histoIterator) readDod() (int64, bool) { var d byte // read delta-of-delta for i := 0; i < 4; i++ { d <<= 1 bit, err := it.br.readBitFast() if err != nil { bit, err = it.br.readBit() } if err != nil { it.err = err return 0, false } if bit == zero { break } d |= 1 } var sz uint8 var dod int64 switch d { case 0x00: // dod == 0 case 0x02: sz = 14 case 0x06: sz = 17 case 0x0e: sz = 20 case 0x0f: // Do not use fast because it's very unlikely it will succeed. bits, err := it.br.readBits(64) if err != nil { it.err = err return 0, false } dod = int64(bits) } if sz != 0 { bits, err := it.br.readBitsFast(sz) if err != nil { bits, err = it.br.readBits(sz) } if err != nil { it.err = err return 0, false } if bits > (1 << (sz - 1)) { // or something bits = bits - (1 << sz) } dod = int64(bits) } return dod, true } func (it *histoIterator) readSum() bool { bit, err := it.br.readBitFast() if err != nil { bit, err = it.br.readBit() } if err != nil { it.err = err return false } if bit == zero { // it.sum = it.sum } else { bit, err := it.br.readBitFast() if err != nil { bit, err = it.br.readBit() } if err != nil { it.err = err return false } if bit == zero { // reuse leading/trailing zero bits // it.leading, it.trailing = it.leading, it.trailing } else { bits, err := it.br.readBitsFast(5) if err != nil { bits, err = it.br.readBits(5) } if err != nil { it.err = err return false } it.leading = uint8(bits) bits, err = it.br.readBitsFast(6) if err != nil { bits, err = it.br.readBits(6) } if err != nil { it.err = err return false } mbits := uint8(bits) // 0 significant bits here means we overflowed and we actually need 64; see comment in encoder if mbits == 0 { mbits = 64 } it.trailing = 64 - it.leading - mbits } mbits := 64 - it.leading - it.trailing bits, err := it.br.readBitsFast(mbits) if err != nil { bits, err = it.br.readBits(mbits) } if err != nil { it.err = err return false } vbits := math.Float64bits(it.sum) vbits ^= bits << it.trailing it.sum = math.Float64frombits(vbits) } it.numRead++ return true }