prometheus/promql/ast.go
Julius Volz 3bfec97d46 Make the storage interface higher-level.
See discussion in
https://groups.google.com/forum/#!topic/prometheus-developers/bkuGbVlvQ9g

The main idea is that the user of a storage shouldn't have to deal with
fingerprints anymore, and should not need to do an individual preload
call for each metric. The storage interface needs to be made more
high-level to not expose these details.

This also makes it easier to reuse the same storage interface for remote
storages later, as fewer roundtrips are required and the fingerprint
concept doesn't work well across the network.

NOTE: this deliberately gets rid of a small optimization in the old
query Analyzer, where we dedupe instants and ranges for the same series.
This should have a minor impact, as most queries do not have multiple
selectors loading the same series (and at the same offset).
2016-07-25 13:59:22 +02:00

318 lines
8.8 KiB
Go

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"time"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/storage/local"
"github.com/prometheus/prometheus/storage/metric"
)
// Node is a generic interface for all nodes in an AST.
//
// Whenever numerous nodes are listed such as in a switch-case statement
// or a chain of function definitions (e.g. String(), expr(), etc.) convention is
// to list them as follows:
//
// - Statements
// - statement types (alphabetical)
// - ...
// - Expressions
// - expression types (alphabetical)
// - ...
//
type Node interface {
// String representation of the node that returns the given node when parsed
// as part of a valid query.
String() string
}
// Statement is a generic interface for all statements.
type Statement interface {
Node
// stmt ensures that no other type accidentally implements the interface
stmt()
}
// Statements is a list of statement nodes that implements Node.
type Statements []Statement
// AlertStmt represents an added alert rule.
type AlertStmt struct {
Name string
Expr Expr
Duration time.Duration
Labels model.LabelSet
Annotations model.LabelSet
}
// EvalStmt holds an expression and information on the range it should
// be evaluated on.
type EvalStmt struct {
Expr Expr // Expression to be evaluated.
// The time boundaries for the evaluation. If Start equals End an instant
// is evaluated.
Start, End model.Time
// Time between two evaluated instants for the range [Start:End].
Interval time.Duration
}
// RecordStmt represents an added recording rule.
type RecordStmt struct {
Name string
Expr Expr
Labels model.LabelSet
}
func (*AlertStmt) stmt() {}
func (*EvalStmt) stmt() {}
func (*RecordStmt) stmt() {}
// Expr is a generic interface for all expression types.
type Expr interface {
Node
// Type returns the type the expression evaluates to. It does not perform
// in-depth checks as this is done at parsing-time.
Type() model.ValueType
// expr ensures that no other types accidentally implement the interface.
expr()
}
// Expressions is a list of expression nodes that implements Node.
type Expressions []Expr
// AggregateExpr represents an aggregation operation on a vector.
type AggregateExpr struct {
Op itemType // The used aggregation operation.
Expr Expr // The vector expression over which is aggregated.
Param Expr // Parameter used by some aggregators.
Grouping model.LabelNames // The labels by which to group the vector.
Without bool // Whether to drop the given labels rather than keep them.
KeepCommonLabels bool // Whether to keep common labels among result elements.
}
// BinaryExpr represents a binary expression between two child expressions.
type BinaryExpr struct {
Op itemType // The operation of the expression.
LHS, RHS Expr // The operands on the respective sides of the operator.
// The matching behavior for the operation if both operands are vectors.
// If they are not this field is nil.
VectorMatching *VectorMatching
// If a comparison operator, return 0/1 rather than filtering.
ReturnBool bool
}
// Call represents a function call.
type Call struct {
Func *Function // The function that was called.
Args Expressions // Arguments used in the call.
}
// MatrixSelector represents a matrix selection.
type MatrixSelector struct {
Name string
Range time.Duration
Offset time.Duration
LabelMatchers metric.LabelMatchers
// The series iterators are populated at query preparation time.
iterators []local.SeriesIterator
}
// NumberLiteral represents a number.
type NumberLiteral struct {
Val model.SampleValue
}
// ParenExpr wraps an expression so it cannot be disassembled as a consequence
// of operator precedence.
type ParenExpr struct {
Expr Expr
}
// StringLiteral represents a string.
type StringLiteral struct {
Val string
}
// UnaryExpr represents a unary operation on another expression.
// Currently unary operations are only supported for scalars.
type UnaryExpr struct {
Op itemType
Expr Expr
}
// VectorSelector represents a vector selection.
type VectorSelector struct {
Name string
Offset time.Duration
LabelMatchers metric.LabelMatchers
// The series iterators are populated at query preparation time.
iterators []local.SeriesIterator
}
func (e *AggregateExpr) Type() model.ValueType { return model.ValVector }
func (e *Call) Type() model.ValueType { return e.Func.ReturnType }
func (e *MatrixSelector) Type() model.ValueType { return model.ValMatrix }
func (e *NumberLiteral) Type() model.ValueType { return model.ValScalar }
func (e *ParenExpr) Type() model.ValueType { return e.Expr.Type() }
func (e *StringLiteral) Type() model.ValueType { return model.ValString }
func (e *UnaryExpr) Type() model.ValueType { return e.Expr.Type() }
func (e *VectorSelector) Type() model.ValueType { return model.ValVector }
func (e *BinaryExpr) Type() model.ValueType {
if e.LHS.Type() == model.ValScalar && e.RHS.Type() == model.ValScalar {
return model.ValScalar
}
return model.ValVector
}
func (*AggregateExpr) expr() {}
func (*BinaryExpr) expr() {}
func (*Call) expr() {}
func (*MatrixSelector) expr() {}
func (*NumberLiteral) expr() {}
func (*ParenExpr) expr() {}
func (*StringLiteral) expr() {}
func (*UnaryExpr) expr() {}
func (*VectorSelector) expr() {}
// VectorMatchCardinality describes the cardinality relationship
// of two vectors in a binary operation.
type VectorMatchCardinality int
const (
CardOneToOne VectorMatchCardinality = iota
CardManyToOne
CardOneToMany
CardManyToMany
)
func (vmc VectorMatchCardinality) String() string {
switch vmc {
case CardOneToOne:
return "one-to-one"
case CardManyToOne:
return "many-to-one"
case CardOneToMany:
return "one-to-many"
case CardManyToMany:
return "many-to-many"
}
panic("promql.VectorMatchCardinality.String: unknown match cardinality")
}
// VectorMatching describes how elements from two vectors in a binary
// operation are supposed to be matched.
type VectorMatching struct {
// The cardinality of the two vectors.
Card VectorMatchCardinality
// MatchingLabels contains the labels which define equality of a pair of
// elements from the vectors.
MatchingLabels model.LabelNames
// On includes the given label names from matching,
// rather than excluding them.
On bool
// Include contains additional labels that should be included in
// the result from the side with the lower cardinality.
Include model.LabelNames
}
// Visitor allows visiting a Node and its child nodes. The Visit method is
// invoked for each node encountered by Walk. If the result visitor w is not
// nil, Walk visits each of the children of node with the visitor w, followed
// by a call of w.Visit(nil).
type Visitor interface {
Visit(node Node) (w Visitor)
}
// Walk traverses an AST in depth-first order: It starts by calling
// v.Visit(node); node must not be nil. If the visitor w returned by
// v.Visit(node) is not nil, Walk is invoked recursively with visitor
// w for each of the non-nil children of node, followed by a call of
// w.Visit(nil).
func Walk(v Visitor, node Node) {
if v = v.Visit(node); v == nil {
return
}
switch n := node.(type) {
case Statements:
for _, s := range n {
Walk(v, s)
}
case *AlertStmt:
Walk(v, n.Expr)
case *EvalStmt:
Walk(v, n.Expr)
case *RecordStmt:
Walk(v, n.Expr)
case Expressions:
for _, e := range n {
Walk(v, e)
}
case *AggregateExpr:
Walk(v, n.Expr)
case *BinaryExpr:
Walk(v, n.LHS)
Walk(v, n.RHS)
case *Call:
Walk(v, n.Args)
case *ParenExpr:
Walk(v, n.Expr)
case *UnaryExpr:
Walk(v, n.Expr)
case *MatrixSelector, *NumberLiteral, *StringLiteral, *VectorSelector:
// nothing to do
default:
panic(fmt.Errorf("promql.Walk: unhandled node type %T", node))
}
v.Visit(nil)
}
type inspector func(Node) bool
func (f inspector) Visit(node Node) Visitor {
if f(node) {
return f
}
return nil
}
// Inspect traverses an AST in depth-first order: It starts by calling
// f(node); node must not be nil. If f returns true, Inspect invokes f
// for all the non-nil children of node, recursively.
func Inspect(node Node, f func(Node) bool) {
Walk(inspector(f), node)
}