mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-11 22:07:27 -08:00
8fdfa8abea
i) Uses the more idiomatic Wrap and Wrapf methods for creating nested errors. ii) Fixes some incorrect usages of fmt.Errorf where the error messages don't have any formatting directives. iii) Does away with the use of fmt package for errors in favour of pkg/errors Signed-off-by: tariqibrahim <tariq181290@gmail.com>
1261 lines
34 KiB
Go
1261 lines
34 KiB
Go
// Copyright 2015 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"math"
|
|
"regexp"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"time"
|
|
|
|
"github.com/pkg/errors"
|
|
"github.com/prometheus/common/model"
|
|
|
|
"github.com/prometheus/prometheus/pkg/labels"
|
|
)
|
|
|
|
// Function represents a function of the expression language and is
|
|
// used by function nodes.
|
|
type Function struct {
|
|
Name string
|
|
ArgTypes []ValueType
|
|
Variadic int
|
|
ReturnType ValueType
|
|
|
|
// vals is a list of the evaluated arguments for the function call.
|
|
// For range vectors it will be a Matrix with one series, instant vectors a
|
|
// Vector, scalars a Vector with one series whose value is the scalar
|
|
// value,and nil for strings.
|
|
// args are the original arguments to the function, where you can access
|
|
// matrixSelectors, vectorSelectors, and StringLiterals.
|
|
// enh.out is a pre-allocated empty vector that you may use to accumulate
|
|
// output before returning it. The vectors in vals should not be returned.a
|
|
// Range vector functions need only return a vector with the right value,
|
|
// the metric and timestamp are not needed.
|
|
// Instant vector functions need only return a vector with the right values and
|
|
// metrics, the timestamp are not needed.
|
|
// Scalar results should be returned as the value of a sample in a Vector.
|
|
Call func(vals []Value, args Expressions, enh *EvalNodeHelper) Vector
|
|
}
|
|
|
|
// === time() float64 ===
|
|
func funcTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return Vector{Sample{Point: Point{
|
|
V: float64(enh.ts) / 1000,
|
|
}}}
|
|
}
|
|
|
|
// extrapolatedRate is a utility function for rate/increase/delta.
|
|
// It calculates the rate (allowing for counter resets if isCounter is true),
|
|
// extrapolates if the first/last sample is close to the boundary, and returns
|
|
// the result as either per-second (if isRate is true) or overall.
|
|
func extrapolatedRate(vals []Value, args Expressions, enh *EvalNodeHelper, isCounter bool, isRate bool) Vector {
|
|
ms := args[0].(*MatrixSelector)
|
|
|
|
var (
|
|
matrix = vals[0].(Matrix)
|
|
rangeStart = enh.ts - durationMilliseconds(ms.Range+ms.Offset)
|
|
rangeEnd = enh.ts - durationMilliseconds(ms.Offset)
|
|
)
|
|
|
|
for _, samples := range matrix {
|
|
// No sense in trying to compute a rate without at least two points. Drop
|
|
// this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
var (
|
|
counterCorrection float64
|
|
lastValue float64
|
|
)
|
|
for _, sample := range samples.Points {
|
|
if isCounter && sample.V < lastValue {
|
|
counterCorrection += lastValue
|
|
}
|
|
lastValue = sample.V
|
|
}
|
|
resultValue := lastValue - samples.Points[0].V + counterCorrection
|
|
|
|
// Duration between first/last samples and boundary of range.
|
|
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
|
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
|
|
|
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
|
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
|
|
|
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
|
// Counters cannot be negative. If we have any slope at
|
|
// all (i.e. resultValue went up), we can extrapolate
|
|
// the zero point of the counter. If the duration to the
|
|
// zero point is shorter than the durationToStart, we
|
|
// take the zero point as the start of the series,
|
|
// thereby avoiding extrapolation to negative counter
|
|
// values.
|
|
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
|
if durationToZero < durationToStart {
|
|
durationToStart = durationToZero
|
|
}
|
|
}
|
|
|
|
// If the first/last samples are close to the boundaries of the range,
|
|
// extrapolate the result. This is as we expect that another sample
|
|
// will exist given the spacing between samples we've seen thus far,
|
|
// with an allowance for noise.
|
|
extrapolationThreshold := averageDurationBetweenSamples * 1.1
|
|
extrapolateToInterval := sampledInterval
|
|
|
|
if durationToStart < extrapolationThreshold {
|
|
extrapolateToInterval += durationToStart
|
|
} else {
|
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
}
|
|
if durationToEnd < extrapolationThreshold {
|
|
extrapolateToInterval += durationToEnd
|
|
} else {
|
|
extrapolateToInterval += averageDurationBetweenSamples / 2
|
|
}
|
|
resultValue = resultValue * (extrapolateToInterval / sampledInterval)
|
|
if isRate {
|
|
resultValue = resultValue / ms.Range.Seconds()
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: resultValue},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === delta(Matrix ValueTypeMatrix) Vector ===
|
|
func funcDelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return extrapolatedRate(vals, args, enh, false, false)
|
|
}
|
|
|
|
// === rate(node ValueTypeMatrix) Vector ===
|
|
func funcRate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return extrapolatedRate(vals, args, enh, true, true)
|
|
}
|
|
|
|
// === increase(node ValueTypeMatrix) Vector ===
|
|
func funcIncrease(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return extrapolatedRate(vals, args, enh, true, false)
|
|
}
|
|
|
|
// === irate(node ValueTypeMatrix) Vector ===
|
|
func funcIrate(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return instantValue(vals, enh.out, true)
|
|
}
|
|
|
|
// === idelta(node model.ValMatric) Vector ===
|
|
func funcIdelta(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return instantValue(vals, enh.out, false)
|
|
}
|
|
|
|
func instantValue(vals []Value, out Vector, isRate bool) Vector {
|
|
for _, samples := range vals[0].(Matrix) {
|
|
// No sense in trying to compute a rate without at least two points. Drop
|
|
// this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
|
|
lastSample := samples.Points[len(samples.Points)-1]
|
|
previousSample := samples.Points[len(samples.Points)-2]
|
|
|
|
var resultValue float64
|
|
if isRate && lastSample.V < previousSample.V {
|
|
// Counter reset.
|
|
resultValue = lastSample.V
|
|
} else {
|
|
resultValue = lastSample.V - previousSample.V
|
|
}
|
|
|
|
sampledInterval := lastSample.T - previousSample.T
|
|
if sampledInterval == 0 {
|
|
// Avoid dividing by 0.
|
|
continue
|
|
}
|
|
|
|
if isRate {
|
|
// Convert to per-second.
|
|
resultValue /= float64(sampledInterval) / 1000
|
|
}
|
|
|
|
out = append(out, Sample{
|
|
Point: Point{V: resultValue},
|
|
})
|
|
}
|
|
return out
|
|
}
|
|
|
|
// Calculate the trend value at the given index i in raw data d.
|
|
// This is somewhat analogous to the slope of the trend at the given index.
|
|
// The argument "s" is the set of computed smoothed values.
|
|
// The argument "b" is the set of computed trend factors.
|
|
// The argument "d" is the set of raw input values.
|
|
func calcTrendValue(i int, sf, tf, s0, s1, b float64) float64 {
|
|
if i == 0 {
|
|
return b
|
|
}
|
|
|
|
x := tf * (s1 - s0)
|
|
y := (1 - tf) * b
|
|
|
|
return x + y
|
|
}
|
|
|
|
// Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data.
|
|
// Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current
|
|
// data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects
|
|
// how trends in historical data will affect the current data. A higher trend factor increases the influence.
|
|
// of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing".
|
|
func funcHoltWinters(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
mat := vals[0].(Matrix)
|
|
|
|
// The smoothing factor argument.
|
|
sf := vals[1].(Vector)[0].V
|
|
|
|
// The trend factor argument.
|
|
tf := vals[2].(Vector)[0].V
|
|
|
|
// Sanity check the input.
|
|
if sf <= 0 || sf >= 1 {
|
|
panic(errors.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf))
|
|
}
|
|
if tf <= 0 || tf >= 1 {
|
|
panic(errors.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
|
|
}
|
|
|
|
var l int
|
|
for _, samples := range mat {
|
|
l = len(samples.Points)
|
|
|
|
// Can't do the smoothing operation with less than two points.
|
|
if l < 2 {
|
|
continue
|
|
}
|
|
|
|
var s0, s1, b float64
|
|
// Set initial values.
|
|
s1 = samples.Points[0].V
|
|
b = samples.Points[1].V - samples.Points[0].V
|
|
|
|
// Run the smoothing operation.
|
|
var x, y float64
|
|
for i := 1; i < l; i++ {
|
|
|
|
// Scale the raw value against the smoothing factor.
|
|
x = sf * samples.Points[i].V
|
|
|
|
// Scale the last smoothed value with the trend at this point.
|
|
b = calcTrendValue(i-1, sf, tf, s0, s1, b)
|
|
y = (1 - sf) * (s1 + b)
|
|
|
|
s0, s1 = s1, x+y
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: s1},
|
|
})
|
|
}
|
|
|
|
return enh.out
|
|
}
|
|
|
|
// === sort(node ValueTypeVector) Vector ===
|
|
func funcSort(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
// NaN should sort to the bottom, so take descending sort with NaN first and
|
|
// reverse it.
|
|
byValueSorter := vectorByReverseValueHeap(vals[0].(Vector))
|
|
sort.Sort(sort.Reverse(byValueSorter))
|
|
return Vector(byValueSorter)
|
|
}
|
|
|
|
// === sortDesc(node ValueTypeVector) Vector ===
|
|
func funcSortDesc(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
// NaN should sort to the bottom, so take ascending sort with NaN first and
|
|
// reverse it.
|
|
byValueSorter := vectorByValueHeap(vals[0].(Vector))
|
|
sort.Sort(sort.Reverse(byValueSorter))
|
|
return Vector(byValueSorter)
|
|
}
|
|
|
|
// === clamp_max(Vector ValueTypeVector, max Scalar) Vector ===
|
|
func funcClampMax(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
vec := vals[0].(Vector)
|
|
max := vals[1].(Vector)[0].Point.V
|
|
for _, el := range vec {
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: math.Min(max, el.V)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === clamp_min(Vector ValueTypeVector, min Scalar) Vector ===
|
|
func funcClampMin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
vec := vals[0].(Vector)
|
|
min := vals[1].(Vector)[0].Point.V
|
|
for _, el := range vec {
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: math.Max(min, el.V)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector ===
|
|
func funcRound(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
vec := vals[0].(Vector)
|
|
// round returns a number rounded to toNearest.
|
|
// Ties are solved by rounding up.
|
|
toNearest := float64(1)
|
|
if len(args) >= 2 {
|
|
toNearest = vals[1].(Vector)[0].Point.V
|
|
}
|
|
// Invert as it seems to cause fewer floating point accuracy issues.
|
|
toNearestInverse := 1.0 / toNearest
|
|
|
|
for _, el := range vec {
|
|
v := math.Floor(el.V*toNearestInverse+0.5) / toNearestInverse
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: v},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === Scalar(node ValueTypeVector) Scalar ===
|
|
func funcScalar(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
v := vals[0].(Vector)
|
|
if len(v) != 1 {
|
|
return append(enh.out, Sample{
|
|
Point: Point{V: math.NaN()},
|
|
})
|
|
}
|
|
return append(enh.out, Sample{
|
|
Point: Point{V: v[0].V},
|
|
})
|
|
}
|
|
|
|
func aggrOverTime(vals []Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
|
|
mat := vals[0].(Matrix)
|
|
|
|
for _, el := range mat {
|
|
if len(el.Points) == 0 {
|
|
continue
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: aggrFn(el.Points)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === avg_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcAvgOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
var mean, count float64
|
|
for _, v := range values {
|
|
count++
|
|
mean += (v.V - mean) / count
|
|
}
|
|
return mean
|
|
})
|
|
}
|
|
|
|
// === count_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcCountOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
return float64(len(values))
|
|
})
|
|
}
|
|
|
|
// === floor(Vector ValueTypeVector) Vector ===
|
|
// === max_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcMaxOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
max := values[0].V
|
|
for _, v := range values {
|
|
if v.V > max || math.IsNaN(max) {
|
|
max = v.V
|
|
}
|
|
}
|
|
return max
|
|
})
|
|
}
|
|
|
|
// === min_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcMinOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
min := values[0].V
|
|
for _, v := range values {
|
|
if v.V < min || math.IsNaN(min) {
|
|
min = v.V
|
|
}
|
|
}
|
|
return min
|
|
})
|
|
}
|
|
|
|
// === sum_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcSumOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
var sum float64
|
|
for _, v := range values {
|
|
sum += v.V
|
|
}
|
|
return sum
|
|
})
|
|
}
|
|
|
|
// === quantile_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcQuantileOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
q := vals[0].(Vector)[0].V
|
|
mat := vals[1].(Matrix)
|
|
|
|
for _, el := range mat {
|
|
if len(el.Points) == 0 {
|
|
continue
|
|
}
|
|
|
|
values := make(vectorByValueHeap, 0, len(el.Points))
|
|
for _, v := range el.Points {
|
|
values = append(values, Sample{Point: Point{V: v.V}})
|
|
}
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: quantile(q, values)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === stddev_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcStddevOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
var aux, count, mean float64
|
|
for _, v := range values {
|
|
count++
|
|
delta := v.V - mean
|
|
mean += delta / count
|
|
aux += delta * (v.V - mean)
|
|
}
|
|
return math.Sqrt(aux / count)
|
|
})
|
|
}
|
|
|
|
// === stdvar_over_time(Matrix ValueTypeMatrix) Vector ===
|
|
func funcStdvarOverTime(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
|
var aux, count, mean float64
|
|
for _, v := range values {
|
|
count++
|
|
delta := v.V - mean
|
|
mean += delta / count
|
|
aux += delta * (v.V - mean)
|
|
}
|
|
return aux / count
|
|
})
|
|
}
|
|
|
|
// === absent(Vector ValueTypeVector) Vector ===
|
|
func funcAbsent(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
if len(vals[0].(Vector)) > 0 {
|
|
return enh.out
|
|
}
|
|
m := []labels.Label{}
|
|
|
|
if vs, ok := args[0].(*VectorSelector); ok {
|
|
for _, ma := range vs.LabelMatchers {
|
|
if ma.Type == labels.MatchEqual && ma.Name != labels.MetricName {
|
|
m = append(m, labels.Label{Name: ma.Name, Value: ma.Value})
|
|
}
|
|
}
|
|
}
|
|
return append(enh.out,
|
|
Sample{
|
|
Metric: labels.New(m...),
|
|
Point: Point{V: 1},
|
|
})
|
|
}
|
|
|
|
func simpleFunc(vals []Value, enh *EvalNodeHelper, f func(float64) float64) Vector {
|
|
for _, el := range vals[0].(Vector) {
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: f(el.V)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === abs(Vector ValueTypeVector) Vector ===
|
|
func funcAbs(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Abs)
|
|
}
|
|
|
|
// === ceil(Vector ValueTypeVector) Vector ===
|
|
func funcCeil(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Ceil)
|
|
}
|
|
|
|
// === floor(Vector ValueTypeVector) Vector ===
|
|
func funcFloor(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Floor)
|
|
}
|
|
|
|
// === exp(Vector ValueTypeVector) Vector ===
|
|
func funcExp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Exp)
|
|
}
|
|
|
|
// === sqrt(Vector VectorNode) Vector ===
|
|
func funcSqrt(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Sqrt)
|
|
}
|
|
|
|
// === ln(Vector ValueTypeVector) Vector ===
|
|
func funcLn(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Log)
|
|
}
|
|
|
|
// === log2(Vector ValueTypeVector) Vector ===
|
|
func funcLog2(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Log2)
|
|
}
|
|
|
|
// === log10(Vector ValueTypeVector) Vector ===
|
|
func funcLog10(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return simpleFunc(vals, enh, math.Log10)
|
|
}
|
|
|
|
// === timestamp(Vector ValueTypeVector) Vector ===
|
|
func funcTimestamp(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
vec := vals[0].(Vector)
|
|
for _, el := range vec {
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: float64(el.T) / 1000},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// linearRegression performs a least-square linear regression analysis on the
|
|
// provided SamplePairs. It returns the slope, and the intercept value at the
|
|
// provided time.
|
|
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
|
|
var (
|
|
n float64
|
|
sumX, sumY float64
|
|
sumXY, sumX2 float64
|
|
)
|
|
for _, sample := range samples {
|
|
x := float64(sample.T-interceptTime) / 1e3
|
|
n += 1.0
|
|
sumY += sample.V
|
|
sumX += x
|
|
sumXY += x * sample.V
|
|
sumX2 += x * x
|
|
}
|
|
covXY := sumXY - sumX*sumY/n
|
|
varX := sumX2 - sumX*sumX/n
|
|
|
|
slope = covXY / varX
|
|
intercept = sumY/n - slope*sumX/n
|
|
return slope, intercept
|
|
}
|
|
|
|
// === deriv(node ValueTypeMatrix) Vector ===
|
|
func funcDeriv(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
mat := vals[0].(Matrix)
|
|
|
|
for _, samples := range mat {
|
|
// No sense in trying to compute a derivative without at least two points.
|
|
// Drop this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
|
|
// We pass in an arbitrary timestamp that is near the values in use
|
|
// to avoid floating point accuracy issues, see
|
|
// https://github.com/prometheus/prometheus/issues/2674
|
|
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: slope},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector ===
|
|
func funcPredictLinear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
mat := vals[0].(Matrix)
|
|
duration := vals[1].(Vector)[0].V
|
|
|
|
for _, samples := range mat {
|
|
// No sense in trying to predict anything without at least two points.
|
|
// Drop this Vector element.
|
|
if len(samples.Points) < 2 {
|
|
continue
|
|
}
|
|
slope, intercept := linearRegression(samples.Points, enh.ts)
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: slope*duration + intercept},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector ===
|
|
func funcHistogramQuantile(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
q := vals[0].(Vector)[0].V
|
|
inVec := vals[1].(Vector)
|
|
sigf := enh.signatureFunc(false, excludedLabels...)
|
|
|
|
if enh.signatureToMetricWithBuckets == nil {
|
|
enh.signatureToMetricWithBuckets = map[uint64]*metricWithBuckets{}
|
|
} else {
|
|
for _, v := range enh.signatureToMetricWithBuckets {
|
|
v.buckets = v.buckets[:0]
|
|
}
|
|
}
|
|
for _, el := range inVec {
|
|
upperBound, err := strconv.ParseFloat(
|
|
el.Metric.Get(model.BucketLabel), 64,
|
|
)
|
|
if err != nil {
|
|
// Oops, no bucket label or malformed label value. Skip.
|
|
// TODO(beorn7): Issue a warning somehow.
|
|
continue
|
|
}
|
|
hash := sigf(el.Metric)
|
|
|
|
mb, ok := enh.signatureToMetricWithBuckets[hash]
|
|
if !ok {
|
|
el.Metric = labels.NewBuilder(el.Metric).
|
|
Del(labels.BucketLabel, labels.MetricName).
|
|
Labels()
|
|
|
|
mb = &metricWithBuckets{el.Metric, nil}
|
|
enh.signatureToMetricWithBuckets[hash] = mb
|
|
}
|
|
mb.buckets = append(mb.buckets, bucket{upperBound, el.V})
|
|
}
|
|
|
|
for _, mb := range enh.signatureToMetricWithBuckets {
|
|
if len(mb.buckets) > 0 {
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: mb.metric,
|
|
Point: Point{V: bucketQuantile(q, mb.buckets)},
|
|
})
|
|
}
|
|
}
|
|
|
|
return enh.out
|
|
}
|
|
|
|
// === resets(Matrix ValueTypeMatrix) Vector ===
|
|
func funcResets(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
in := vals[0].(Matrix)
|
|
|
|
for _, samples := range in {
|
|
resets := 0
|
|
prev := samples.Points[0].V
|
|
for _, sample := range samples.Points[1:] {
|
|
current := sample.V
|
|
if current < prev {
|
|
resets++
|
|
}
|
|
prev = current
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: float64(resets)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === changes(Matrix ValueTypeMatrix) Vector ===
|
|
func funcChanges(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
in := vals[0].(Matrix)
|
|
|
|
for _, samples := range in {
|
|
changes := 0
|
|
prev := samples.Points[0].V
|
|
for _, sample := range samples.Points[1:] {
|
|
current := sample.V
|
|
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
|
changes++
|
|
}
|
|
prev = current
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Point: Point{V: float64(changes)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector ===
|
|
func funcLabelReplace(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
var (
|
|
vector = vals[0].(Vector)
|
|
dst = args[1].(*StringLiteral).Val
|
|
repl = args[2].(*StringLiteral).Val
|
|
src = args[3].(*StringLiteral).Val
|
|
regexStr = args[4].(*StringLiteral).Val
|
|
)
|
|
|
|
if enh.regex == nil {
|
|
var err error
|
|
enh.regex, err = regexp.Compile("^(?:" + regexStr + ")$")
|
|
if err != nil {
|
|
panic(errors.Errorf("invalid regular expression in label_replace(): %s", regexStr))
|
|
}
|
|
if !model.LabelNameRE.MatchString(dst) {
|
|
panic(errors.Errorf("invalid destination label name in label_replace(): %s", dst))
|
|
}
|
|
enh.dmn = make(map[uint64]labels.Labels, len(enh.out))
|
|
}
|
|
|
|
for _, el := range vector {
|
|
h := el.Metric.Hash()
|
|
var outMetric labels.Labels
|
|
if l, ok := enh.dmn[h]; ok {
|
|
outMetric = l
|
|
} else {
|
|
srcVal := el.Metric.Get(src)
|
|
indexes := enh.regex.FindStringSubmatchIndex(srcVal)
|
|
if indexes == nil {
|
|
// If there is no match, no replacement should take place.
|
|
outMetric = el.Metric
|
|
enh.dmn[h] = outMetric
|
|
} else {
|
|
res := enh.regex.ExpandString([]byte{}, repl, srcVal, indexes)
|
|
|
|
lb := labels.NewBuilder(el.Metric).Del(dst)
|
|
if len(res) > 0 {
|
|
lb.Set(dst, string(res))
|
|
}
|
|
outMetric = lb.Labels()
|
|
enh.dmn[h] = outMetric
|
|
}
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: outMetric,
|
|
Point: Point{V: el.Point.V},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === Vector(s Scalar) Vector ===
|
|
func funcVector(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return append(enh.out,
|
|
Sample{
|
|
Metric: labels.Labels{},
|
|
Point: Point{V: vals[0].(Vector)[0].V},
|
|
})
|
|
}
|
|
|
|
// === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) Vector ===
|
|
func funcLabelJoin(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
var (
|
|
vector = vals[0].(Vector)
|
|
dst = args[1].(*StringLiteral).Val
|
|
sep = args[2].(*StringLiteral).Val
|
|
srcLabels = make([]string, len(args)-3)
|
|
)
|
|
|
|
if enh.dmn == nil {
|
|
enh.dmn = make(map[uint64]labels.Labels, len(enh.out))
|
|
}
|
|
|
|
for i := 3; i < len(args); i++ {
|
|
src := args[i].(*StringLiteral).Val
|
|
if !model.LabelName(src).IsValid() {
|
|
panic(errors.Errorf("invalid source label name in label_join(): %s", src))
|
|
}
|
|
srcLabels[i-3] = src
|
|
}
|
|
|
|
if !model.LabelName(dst).IsValid() {
|
|
panic(errors.Errorf("invalid destination label name in label_join(): %s", dst))
|
|
}
|
|
|
|
srcVals := make([]string, len(srcLabels))
|
|
for _, el := range vector {
|
|
h := el.Metric.Hash()
|
|
var outMetric labels.Labels
|
|
if l, ok := enh.dmn[h]; ok {
|
|
outMetric = l
|
|
} else {
|
|
|
|
for i, src := range srcLabels {
|
|
srcVals[i] = el.Metric.Get(src)
|
|
}
|
|
|
|
lb := labels.NewBuilder(el.Metric)
|
|
|
|
strval := strings.Join(srcVals, sep)
|
|
if strval == "" {
|
|
lb.Del(dst)
|
|
} else {
|
|
lb.Set(dst, strval)
|
|
}
|
|
|
|
outMetric = lb.Labels()
|
|
enh.dmn[h] = outMetric
|
|
}
|
|
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: outMetric,
|
|
Point: Point{V: el.Point.V},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// Common code for date related functions.
|
|
func dateWrapper(vals []Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector {
|
|
if len(vals) == 0 {
|
|
return append(enh.out,
|
|
Sample{
|
|
Metric: labels.Labels{},
|
|
Point: Point{V: f(time.Unix(enh.ts/1000, 0).UTC())},
|
|
})
|
|
}
|
|
|
|
for _, el := range vals[0].(Vector) {
|
|
t := time.Unix(int64(el.V), 0).UTC()
|
|
enh.out = append(enh.out, Sample{
|
|
Metric: enh.dropMetricName(el.Metric),
|
|
Point: Point{V: f(t)},
|
|
})
|
|
}
|
|
return enh.out
|
|
}
|
|
|
|
// === days_in_month(v Vector) Scalar ===
|
|
func funcDaysInMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day())
|
|
})
|
|
}
|
|
|
|
// === day_of_month(v Vector) Scalar ===
|
|
func funcDayOfMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Day())
|
|
})
|
|
}
|
|
|
|
// === day_of_week(v Vector) Scalar ===
|
|
func funcDayOfWeek(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Weekday())
|
|
})
|
|
}
|
|
|
|
// === hour(v Vector) Scalar ===
|
|
func funcHour(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Hour())
|
|
})
|
|
}
|
|
|
|
// === minute(v Vector) Scalar ===
|
|
func funcMinute(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Minute())
|
|
})
|
|
}
|
|
|
|
// === month(v Vector) Scalar ===
|
|
func funcMonth(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Month())
|
|
})
|
|
}
|
|
|
|
// === year(v Vector) Scalar ===
|
|
func funcYear(vals []Value, args Expressions, enh *EvalNodeHelper) Vector {
|
|
return dateWrapper(vals, enh, func(t time.Time) float64 {
|
|
return float64(t.Year())
|
|
})
|
|
}
|
|
|
|
var functions = map[string]*Function{
|
|
"abs": {
|
|
Name: "abs",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAbs,
|
|
},
|
|
"absent": {
|
|
Name: "absent",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAbsent,
|
|
},
|
|
"avg_over_time": {
|
|
Name: "avg_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcAvgOverTime,
|
|
},
|
|
"ceil": {
|
|
Name: "ceil",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcCeil,
|
|
},
|
|
"changes": {
|
|
Name: "changes",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcChanges,
|
|
},
|
|
"clamp_max": {
|
|
Name: "clamp_max",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcClampMax,
|
|
},
|
|
"clamp_min": {
|
|
Name: "clamp_min",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcClampMin,
|
|
},
|
|
"count_over_time": {
|
|
Name: "count_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcCountOverTime,
|
|
},
|
|
"days_in_month": {
|
|
Name: "days_in_month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDaysInMonth,
|
|
},
|
|
"day_of_month": {
|
|
Name: "day_of_month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDayOfMonth,
|
|
},
|
|
"day_of_week": {
|
|
Name: "day_of_week",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDayOfWeek,
|
|
},
|
|
"delta": {
|
|
Name: "delta",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDelta,
|
|
},
|
|
"deriv": {
|
|
Name: "deriv",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcDeriv,
|
|
},
|
|
"exp": {
|
|
Name: "exp",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcExp,
|
|
},
|
|
"floor": {
|
|
Name: "floor",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcFloor,
|
|
},
|
|
"histogram_quantile": {
|
|
Name: "histogram_quantile",
|
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHistogramQuantile,
|
|
},
|
|
"holt_winters": {
|
|
Name: "holt_winters",
|
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHoltWinters,
|
|
},
|
|
"hour": {
|
|
Name: "hour",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcHour,
|
|
},
|
|
"idelta": {
|
|
Name: "idelta",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIdelta,
|
|
},
|
|
"increase": {
|
|
Name: "increase",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIncrease,
|
|
},
|
|
"irate": {
|
|
Name: "irate",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcIrate,
|
|
},
|
|
"label_replace": {
|
|
Name: "label_replace",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLabelReplace,
|
|
},
|
|
"label_join": {
|
|
Name: "label_join",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString},
|
|
Variadic: -1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLabelJoin,
|
|
},
|
|
"ln": {
|
|
Name: "ln",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLn,
|
|
},
|
|
"log10": {
|
|
Name: "log10",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLog10,
|
|
},
|
|
"log2": {
|
|
Name: "log2",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcLog2,
|
|
},
|
|
"max_over_time": {
|
|
Name: "max_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMaxOverTime,
|
|
},
|
|
"min_over_time": {
|
|
Name: "min_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMinOverTime,
|
|
},
|
|
"minute": {
|
|
Name: "minute",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMinute,
|
|
},
|
|
"month": {
|
|
Name: "month",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcMonth,
|
|
},
|
|
"predict_linear": {
|
|
Name: "predict_linear",
|
|
ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcPredictLinear,
|
|
},
|
|
"quantile_over_time": {
|
|
Name: "quantile_over_time",
|
|
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcQuantileOverTime,
|
|
},
|
|
"rate": {
|
|
Name: "rate",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcRate,
|
|
},
|
|
"resets": {
|
|
Name: "resets",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcResets,
|
|
},
|
|
"round": {
|
|
Name: "round",
|
|
ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcRound,
|
|
},
|
|
"scalar": {
|
|
Name: "scalar",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeScalar,
|
|
Call: funcScalar,
|
|
},
|
|
"sort": {
|
|
Name: "sort",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSort,
|
|
},
|
|
"sort_desc": {
|
|
Name: "sort_desc",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSortDesc,
|
|
},
|
|
"sqrt": {
|
|
Name: "sqrt",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSqrt,
|
|
},
|
|
"stddev_over_time": {
|
|
Name: "stddev_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcStddevOverTime,
|
|
},
|
|
"stdvar_over_time": {
|
|
Name: "stdvar_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcStdvarOverTime,
|
|
},
|
|
"sum_over_time": {
|
|
Name: "sum_over_time",
|
|
ArgTypes: []ValueType{ValueTypeMatrix},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcSumOverTime,
|
|
},
|
|
"time": {
|
|
Name: "time",
|
|
ArgTypes: []ValueType{},
|
|
ReturnType: ValueTypeScalar,
|
|
Call: funcTime,
|
|
},
|
|
"timestamp": {
|
|
Name: "timestamp",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcTimestamp,
|
|
},
|
|
"vector": {
|
|
Name: "vector",
|
|
ArgTypes: []ValueType{ValueTypeScalar},
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcVector,
|
|
},
|
|
"year": {
|
|
Name: "year",
|
|
ArgTypes: []ValueType{ValueTypeVector},
|
|
Variadic: 1,
|
|
ReturnType: ValueTypeVector,
|
|
Call: funcYear,
|
|
},
|
|
}
|
|
|
|
// getFunction returns a predefined Function object for the given name.
|
|
func getFunction(name string) (*Function, bool) {
|
|
function, ok := functions[name]
|
|
return function, ok
|
|
}
|
|
|
|
type vectorByValueHeap Vector
|
|
|
|
func (s vectorByValueHeap) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
func (s vectorByValueHeap) Less(i, j int) bool {
|
|
if math.IsNaN(s[i].V) {
|
|
return true
|
|
}
|
|
return s[i].V < s[j].V
|
|
}
|
|
|
|
func (s vectorByValueHeap) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
func (s *vectorByValueHeap) Push(x interface{}) {
|
|
*s = append(*s, *(x.(*Sample)))
|
|
}
|
|
|
|
func (s *vectorByValueHeap) Pop() interface{} {
|
|
old := *s
|
|
n := len(old)
|
|
el := old[n-1]
|
|
*s = old[0 : n-1]
|
|
return el
|
|
}
|
|
|
|
type vectorByReverseValueHeap Vector
|
|
|
|
func (s vectorByReverseValueHeap) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
func (s vectorByReverseValueHeap) Less(i, j int) bool {
|
|
if math.IsNaN(s[i].V) {
|
|
return true
|
|
}
|
|
return s[i].V > s[j].V
|
|
}
|
|
|
|
func (s vectorByReverseValueHeap) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
func (s *vectorByReverseValueHeap) Push(x interface{}) {
|
|
*s = append(*s, *(x.(*Sample)))
|
|
}
|
|
|
|
func (s *vectorByReverseValueHeap) Pop() interface{} {
|
|
old := *s
|
|
n := len(old)
|
|
el := old[n-1]
|
|
*s = old[0 : n-1]
|
|
return el
|
|
}
|