prometheus/model/histogram/generic.go
beorn7 9aadd54786 histogram: Fix bounds of buckets returned by floatBucketIterator
The bounds weren't really used so far, so no actual bug in the code so
far. But it's obviously confusing if the bounds returned by a
floatBucketIterator with a target schema different from the original
schema are wrong.

Signed-off-by: beorn7 <beorn@grafana.com>
2023-07-19 18:19:18 +02:00

555 lines
23 KiB
Go

// Copyright 2022 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram
import (
"fmt"
"math"
"strings"
)
// BucketCount is a type constraint for the count in a bucket, which can be
// float64 (for type FloatHistogram) or uint64 (for type Histogram).
type BucketCount interface {
float64 | uint64
}
// InternalBucketCount is used internally by Histogram and FloatHistogram. The
// difference to the BucketCount above is that Histogram internally uses deltas
// between buckets rather than absolute counts (while FloatHistogram uses
// absolute counts directly). Go type parameters don't allow type
// specialization. Therefore, where special treatment of deltas between buckets
// vs. absolute counts is important, this information has to be provided as a
// separate boolean parameter "deltaBuckets"
type InternalBucketCount interface {
float64 | int64
}
// Bucket represents a bucket with lower and upper limit and the absolute count
// of samples in the bucket. It also specifies if each limit is inclusive or
// not. (Mathematically, inclusive limits create a closed interval, and
// non-inclusive limits an open interval.)
//
// To represent cumulative buckets, Lower is set to -Inf, and the Count is then
// cumulative (including the counts of all buckets for smaller values).
type Bucket[BC BucketCount] struct {
Lower, Upper float64
LowerInclusive, UpperInclusive bool
Count BC
// Index within schema. To easily compare buckets that share the same
// schema and sign (positive or negative). Irrelevant for the zero bucket.
Index int32
}
// String returns a string representation of a Bucket, using the usual
// mathematical notation of '['/']' for inclusive bounds and '('/')' for
// non-inclusive bounds.
func (b Bucket[BC]) String() string {
var sb strings.Builder
if b.LowerInclusive {
sb.WriteRune('[')
} else {
sb.WriteRune('(')
}
fmt.Fprintf(&sb, "%g,%g", b.Lower, b.Upper)
if b.UpperInclusive {
sb.WriteRune(']')
} else {
sb.WriteRune(')')
}
fmt.Fprintf(&sb, ":%v", b.Count)
return sb.String()
}
// BucketIterator iterates over the buckets of a Histogram, returning decoded
// buckets.
type BucketIterator[BC BucketCount] interface {
// Next advances the iterator by one.
Next() bool
// At returns the current bucket.
At() Bucket[BC]
}
// baseBucketIterator provides a struct that is shared by most BucketIterator
// implementations, together with an implementation of the At method. This
// iterator can be embedded in full implementations of BucketIterator to save on
// code replication.
type baseBucketIterator[BC BucketCount, IBC InternalBucketCount] struct {
schema int32
spans []Span
buckets []IBC
positive bool // Whether this is for positive buckets.
spansIdx int // Current span within spans slice.
idxInSpan uint32 // Index in the current span. 0 <= idxInSpan < span.Length.
bucketsIdx int // Current bucket within buckets slice.
currCount IBC // Count in the current bucket.
currIdx int32 // The actual bucket index.
}
func (b baseBucketIterator[BC, IBC]) At() Bucket[BC] {
return b.at(b.schema)
}
// at is an internal version of the exported At to enable using a different
// schema.
func (b baseBucketIterator[BC, IBC]) at(schema int32) Bucket[BC] {
bucket := Bucket[BC]{
Count: BC(b.currCount),
Index: b.currIdx,
}
if b.positive {
bucket.Upper = getBound(b.currIdx, schema)
bucket.Lower = getBound(b.currIdx-1, schema)
} else {
bucket.Lower = -getBound(b.currIdx, schema)
bucket.Upper = -getBound(b.currIdx-1, schema)
}
bucket.LowerInclusive = bucket.Lower < 0
bucket.UpperInclusive = bucket.Upper > 0
return bucket
}
// compactBuckets is a generic function used by both Histogram.Compact and
// FloatHistogram.Compact. Set deltaBuckets to true if the provided buckets are
// deltas. Set it to false if the buckets contain absolute counts.
func compactBuckets[IBC InternalBucketCount](buckets []IBC, spans []Span, maxEmptyBuckets int, deltaBuckets bool) ([]IBC, []Span) {
// Fast path: If there are no empty buckets AND no offset in any span is
// <= maxEmptyBuckets AND no span has length 0, there is nothing to do and we can return
// immediately. We check that first because it's cheap and presumably
// common.
nothingToDo := true
var currentBucketAbsolute IBC
for _, bucket := range buckets {
if deltaBuckets {
currentBucketAbsolute += bucket
} else {
currentBucketAbsolute = bucket
}
if currentBucketAbsolute == 0 {
nothingToDo = false
break
}
}
if nothingToDo {
for _, span := range spans {
if int(span.Offset) <= maxEmptyBuckets || span.Length == 0 {
nothingToDo = false
break
}
}
if nothingToDo {
return buckets, spans
}
}
var iBucket, iSpan int
var posInSpan uint32
currentBucketAbsolute = 0
// Helper function.
emptyBucketsHere := func() int {
i := 0
abs := currentBucketAbsolute
for uint32(i)+posInSpan < spans[iSpan].Length && abs == 0 {
i++
if i+iBucket >= len(buckets) {
break
}
abs = buckets[i+iBucket]
}
return i
}
// Merge spans with zero-offset to avoid special cases later.
if len(spans) > 1 {
for i, span := range spans[1:] {
if span.Offset == 0 {
spans[iSpan].Length += span.Length
continue
}
iSpan++
if i+1 != iSpan {
spans[iSpan] = span
}
}
spans = spans[:iSpan+1]
iSpan = 0
}
// Merge spans with zero-length to avoid special cases later.
for i, span := range spans {
if span.Length == 0 {
if i+1 < len(spans) {
spans[i+1].Offset += span.Offset
}
continue
}
if i != iSpan {
spans[iSpan] = span
}
iSpan++
}
spans = spans[:iSpan]
iSpan = 0
// Cut out empty buckets from start and end of spans, no matter
// what. Also cut out empty buckets from the middle of a span but only
// if there are more than maxEmptyBuckets consecutive empty buckets.
for iBucket < len(buckets) {
if deltaBuckets {
currentBucketAbsolute += buckets[iBucket]
} else {
currentBucketAbsolute = buckets[iBucket]
}
if nEmpty := emptyBucketsHere(); nEmpty > 0 {
if posInSpan > 0 &&
nEmpty < int(spans[iSpan].Length-posInSpan) &&
nEmpty <= maxEmptyBuckets {
// The empty buckets are in the middle of a
// span, and there are few enough to not bother.
// Just fast-forward.
iBucket += nEmpty
if deltaBuckets {
currentBucketAbsolute = 0
}
posInSpan += uint32(nEmpty)
continue
}
// In all other cases, we cut out the empty buckets.
if deltaBuckets && iBucket+nEmpty < len(buckets) {
currentBucketAbsolute = -buckets[iBucket]
buckets[iBucket+nEmpty] += buckets[iBucket]
}
buckets = append(buckets[:iBucket], buckets[iBucket+nEmpty:]...)
if posInSpan == 0 {
// Start of span.
if nEmpty == int(spans[iSpan].Length) {
// The whole span is empty.
offset := spans[iSpan].Offset
spans = append(spans[:iSpan], spans[iSpan+1:]...)
if len(spans) > iSpan {
spans[iSpan].Offset += offset + int32(nEmpty)
}
continue
}
spans[iSpan].Length -= uint32(nEmpty)
spans[iSpan].Offset += int32(nEmpty)
continue
}
// It's in the middle or in the end of the span.
// Split the current span.
newSpan := Span{
Offset: int32(nEmpty),
Length: spans[iSpan].Length - posInSpan - uint32(nEmpty),
}
spans[iSpan].Length = posInSpan
// In any case, we have to split to the next span.
iSpan++
posInSpan = 0
if newSpan.Length == 0 {
// The span is empty, so we were already at the end of a span.
// We don't have to insert the new span, just adjust the next
// span's offset, if there is one.
if iSpan < len(spans) {
spans[iSpan].Offset += int32(nEmpty)
}
continue
}
// Insert the new span.
spans = append(spans, Span{})
if iSpan+1 < len(spans) {
copy(spans[iSpan+1:], spans[iSpan:])
}
spans[iSpan] = newSpan
continue
}
iBucket++
posInSpan++
if posInSpan >= spans[iSpan].Length {
posInSpan = 0
iSpan++
}
}
if maxEmptyBuckets == 0 || len(buckets) == 0 {
return buckets, spans
}
// Finally, check if any offsets between spans are small enough to merge
// the spans.
iBucket = int(spans[0].Length)
if deltaBuckets {
currentBucketAbsolute = 0
for _, bucket := range buckets[:iBucket] {
currentBucketAbsolute += bucket
}
}
iSpan = 1
for iSpan < len(spans) {
if int(spans[iSpan].Offset) > maxEmptyBuckets {
l := int(spans[iSpan].Length)
if deltaBuckets {
for _, bucket := range buckets[iBucket : iBucket+l] {
currentBucketAbsolute += bucket
}
}
iBucket += l
iSpan++
continue
}
// Merge span with previous one and insert empty buckets.
offset := int(spans[iSpan].Offset)
spans[iSpan-1].Length += uint32(offset) + spans[iSpan].Length
spans = append(spans[:iSpan], spans[iSpan+1:]...)
newBuckets := make([]IBC, len(buckets)+offset)
copy(newBuckets, buckets[:iBucket])
copy(newBuckets[iBucket+offset:], buckets[iBucket:])
if deltaBuckets {
newBuckets[iBucket] = -currentBucketAbsolute
newBuckets[iBucket+offset] += currentBucketAbsolute
}
iBucket += offset
buckets = newBuckets
currentBucketAbsolute = buckets[iBucket]
// Note that with many merges, it would be more efficient to
// first record all the chunks of empty buckets to insert and
// then do it in one go through all the buckets.
}
return buckets, spans
}
func bucketsMatch[IBC InternalBucketCount](b1, b2 []IBC) bool {
if len(b1) != len(b2) {
return false
}
for i, b := range b1 {
if b != b2[i] {
return false
}
}
return true
}
func getBound(idx, schema int32) float64 {
// Here a bit of context about the behavior for the last bucket counting
// regular numbers (called simply "last bucket" below) and the bucket
// counting observations of ±Inf (called "inf bucket" below, with an idx
// one higher than that of the "last bucket"):
//
// If we apply the usual formula to the last bucket, its upper bound
// would be calculated as +Inf. The reason is that the max possible
// regular float64 number (math.MaxFloat64) doesn't coincide with one of
// the calculated bucket boundaries. So the calculated boundary has to
// be larger than math.MaxFloat64, and the only float64 larger than
// math.MaxFloat64 is +Inf. However, we want to count actual
// observations of ±Inf in the inf bucket. Therefore, we have to treat
// the upper bound of the last bucket specially and set it to
// math.MaxFloat64. (The upper bound of the inf bucket, with its idx
// being one higher than that of the last bucket, naturally comes out as
// +Inf by the usual formula. So that's fine.)
//
// math.MaxFloat64 has a frac of 0.9999999999999999 and an exp of
// 1024. If there were a float64 number following math.MaxFloat64, it
// would have a frac of 1.0 and an exp of 1024, or equivalently a frac
// of 0.5 and an exp of 1025. However, since frac must be smaller than
// 1, and exp must be smaller than 1025, either representation overflows
// a float64. (Which, in turn, is the reason that math.MaxFloat64 is the
// largest possible float64. Q.E.D.) However, the formula for
// calculating the upper bound from the idx and schema of the last
// bucket results in precisely that. It is either frac=1.0 & exp=1024
// (for schema < 0) or frac=0.5 & exp=1025 (for schema >=0). (This is,
// by the way, a power of two where the exponent itself is a power of
// two, 2¹⁰ in fact, which coinicides with a bucket boundary in all
// schemas.) So these are the special cases we have to catch below.
if schema < 0 {
exp := int(idx) << -schema
if exp == 1024 {
// This is the last bucket before the overflow bucket
// (for ±Inf observations). Return math.MaxFloat64 as
// explained above.
return math.MaxFloat64
}
return math.Ldexp(1, exp)
}
fracIdx := idx & ((1 << schema) - 1)
frac := exponentialBounds[schema][fracIdx]
exp := (int(idx) >> schema) + 1
if frac == 0.5 && exp == 1025 {
// This is the last bucket before the overflow bucket (for ±Inf
// observations). Return math.MaxFloat64 as explained above.
return math.MaxFloat64
}
return math.Ldexp(frac, exp)
}
// exponentialBounds is a precalculated table of bucket bounds in the interval
// [0.5,1) in schema 0 to 8.
var exponentialBounds = [][]float64{
// Schema "0":
{0.5},
// Schema 1:
{0.5, 0.7071067811865475},
// Schema 2:
{0.5, 0.5946035575013605, 0.7071067811865475, 0.8408964152537144},
// Schema 3:
{
0.5, 0.5452538663326288, 0.5946035575013605, 0.6484197773255048,
0.7071067811865475, 0.7711054127039704, 0.8408964152537144, 0.9170040432046711,
},
// Schema 4:
{
0.5, 0.5221368912137069, 0.5452538663326288, 0.5693943173783458,
0.5946035575013605, 0.620928906036742, 0.6484197773255048, 0.6771277734684463,
0.7071067811865475, 0.7384130729697496, 0.7711054127039704, 0.805245165974627,
0.8408964152537144, 0.8781260801866495, 0.9170040432046711, 0.9576032806985735,
},
// Schema 5:
{
0.5, 0.5109485743270583, 0.5221368912137069, 0.5335702003384117,
0.5452538663326288, 0.5571933712979462, 0.5693943173783458, 0.5818624293887887,
0.5946035575013605, 0.6076236799902344, 0.620928906036742, 0.6345254785958666,
0.6484197773255048, 0.6626183215798706, 0.6771277734684463, 0.6919549409819159,
0.7071067811865475, 0.7225904034885232, 0.7384130729697496, 0.7545822137967112,
0.7711054127039704, 0.7879904225539431, 0.805245165974627, 0.8228777390769823,
0.8408964152537144, 0.8593096490612387, 0.8781260801866495, 0.8973545375015533,
0.9170040432046711, 0.9370838170551498, 0.9576032806985735, 0.9785720620876999,
},
// Schema 6:
{
0.5, 0.5054446430258502, 0.5109485743270583, 0.5165124395106142,
0.5221368912137069, 0.5278225891802786, 0.5335702003384117, 0.5393803988785598,
0.5452538663326288, 0.5511912916539204, 0.5571933712979462, 0.5632608093041209,
0.5693943173783458, 0.5755946149764913, 0.5818624293887887, 0.5881984958251406,
0.5946035575013605, 0.6010783657263515, 0.6076236799902344, 0.6142402680534349,
0.620928906036742, 0.6276903785123455, 0.6345254785958666, 0.6414350080393891,
0.6484197773255048, 0.6554806057623822, 0.6626183215798706, 0.6698337620266515,
0.6771277734684463, 0.6845012114872953, 0.6919549409819159, 0.6994898362691555,
0.7071067811865475, 0.7148066691959849, 0.7225904034885232, 0.7304588970903234,
0.7384130729697496, 0.7464538641456323, 0.7545822137967112, 0.762799075372269,
0.7711054127039704, 0.7795022001189185, 0.7879904225539431, 0.7965710756711334,
0.805245165974627, 0.8140137109286738, 0.8228777390769823, 0.8318382901633681,
0.8408964152537144, 0.8500531768592616, 0.8593096490612387, 0.8686669176368529,
0.8781260801866495, 0.8876882462632604, 0.8973545375015533, 0.9071260877501991,
0.9170040432046711, 0.9269895625416926, 0.9370838170551498, 0.9472879907934827,
0.9576032806985735, 0.9680308967461471, 0.9785720620876999, 0.9892280131939752,
},
// Schema 7:
{
0.5, 0.5027149505564014, 0.5054446430258502, 0.5081891574554764,
0.5109485743270583, 0.5137229745593818, 0.5165124395106142, 0.5193170509806894,
0.5221368912137069, 0.5249720429003435, 0.5278225891802786, 0.5306886136446309,
0.5335702003384117, 0.5364674337629877, 0.5393803988785598, 0.5423091811066545,
0.5452538663326288, 0.5482145409081883, 0.5511912916539204, 0.5541842058618393,
0.5571933712979462, 0.5602188762048033, 0.5632608093041209, 0.5663192597993595,
0.5693943173783458, 0.572486072215902, 0.5755946149764913, 0.5787200368168754,
0.5818624293887887, 0.585021884841625, 0.5881984958251406, 0.5913923554921704,
0.5946035575013605, 0.5978321960199137, 0.6010783657263515, 0.6043421618132907,
0.6076236799902344, 0.6109230164863786, 0.6142402680534349, 0.6175755319684665,
0.620928906036742, 0.6243004885946023, 0.6276903785123455, 0.6310986751971253,
0.6345254785958666, 0.637970889198196, 0.6414350080393891, 0.6449179367033329,
0.6484197773255048, 0.6519406325959679, 0.6554806057623822, 0.659039800633032,
0.6626183215798706, 0.6662162735415805, 0.6698337620266515, 0.6734708931164728,
0.6771277734684463, 0.6808045103191123, 0.6845012114872953, 0.688217985377265,
0.6919549409819159, 0.6957121878859629, 0.6994898362691555, 0.7032879969095076,
0.7071067811865475, 0.7109463010845827, 0.7148066691959849, 0.718687998724491,
0.7225904034885232, 0.7265139979245261, 0.7304588970903234, 0.7344252166684908,
0.7384130729697496, 0.7424225829363761, 0.7464538641456323, 0.7505070348132126,
0.7545822137967112, 0.7586795205991071, 0.762799075372269, 0.7669409989204777,
0.7711054127039704, 0.7752924388424999, 0.7795022001189185, 0.7837348199827764,
0.7879904225539431, 0.7922691326262467, 0.7965710756711334, 0.8008963778413465,
0.805245165974627, 0.8096175675974316, 0.8140137109286738, 0.8184337248834821,
0.8228777390769823, 0.8273458838280969, 0.8318382901633681, 0.8363550898207981,
0.8408964152537144, 0.8454623996346523, 0.8500531768592616, 0.8546688815502312,
0.8593096490612387, 0.8639756154809185, 0.8686669176368529, 0.8733836930995842,
0.8781260801866495, 0.8828942179666361, 0.8876882462632604, 0.8925083056594671,
0.8973545375015533, 0.9022270839033115, 0.9071260877501991, 0.9120516927035263,
0.9170040432046711, 0.9219832844793128, 0.9269895625416926, 0.9320230241988943,
0.9370838170551498, 0.9421720895161669, 0.9472879907934827, 0.9524316709088368,
0.9576032806985735, 0.9628029718180622, 0.9680308967461471, 0.9732872087896164,
0.9785720620876999, 0.9838856116165875, 0.9892280131939752, 0.9945994234836328,
},
// Schema 8:
{
0.5, 0.5013556375251013, 0.5027149505564014, 0.5040779490592088,
0.5054446430258502, 0.5068150424757447, 0.5081891574554764, 0.509566998038869,
0.5109485743270583, 0.5123338964485679, 0.5137229745593818, 0.5151158188430205,
0.5165124395106142, 0.5179128468009786, 0.5193170509806894, 0.520725062344158,
0.5221368912137069, 0.5235525479396449, 0.5249720429003435, 0.526395386502313,
0.5278225891802786, 0.5292536613972564, 0.5306886136446309, 0.5321274564422321,
0.5335702003384117, 0.5350168559101208, 0.5364674337629877, 0.5379219445313954,
0.5393803988785598, 0.5408428074966075, 0.5423091811066545, 0.5437795304588847,
0.5452538663326288, 0.5467321995364429, 0.5482145409081883, 0.549700901315111,
0.5511912916539204, 0.5526857228508706, 0.5541842058618393, 0.5556867516724088,
0.5571933712979462, 0.5587040757836845, 0.5602188762048033, 0.5617377836665098,
0.5632608093041209, 0.564787964283144, 0.5663192597993595, 0.5678547070789026,
0.5693943173783458, 0.5709381019847808, 0.572486072215902, 0.5740382394200894,
0.5755946149764913, 0.5771552102951081, 0.5787200368168754, 0.5802891060137493,
0.5818624293887887, 0.5834400184762408, 0.585021884841625, 0.5866080400818185,
0.5881984958251406, 0.5897932637314379, 0.5913923554921704, 0.5929957828304968,
0.5946035575013605, 0.5962156912915756, 0.5978321960199137, 0.5994530835371903,
0.6010783657263515, 0.6027080545025619, 0.6043421618132907, 0.6059806996384005,
0.6076236799902344, 0.6092711149137041, 0.6109230164863786, 0.6125793968185725,
0.6142402680534349, 0.6159056423670379, 0.6175755319684665, 0.6192499490999082,
0.620928906036742, 0.622612415087629, 0.6243004885946023, 0.6259931389331581,
0.6276903785123455, 0.6293922197748583, 0.6310986751971253, 0.6328097572894031,
0.6345254785958666, 0.6362458516947014, 0.637970889198196, 0.6397006037528346,
0.6414350080393891, 0.6431741147730128, 0.6449179367033329, 0.6466664866145447,
0.6484197773255048, 0.6501778216898253, 0.6519406325959679, 0.6537082229673385,
0.6554806057623822, 0.6572577939746774, 0.659039800633032, 0.6608266388015788,
0.6626183215798706, 0.6644148621029772, 0.6662162735415805, 0.6680225691020727,
0.6698337620266515, 0.6716498655934177, 0.6734708931164728, 0.6752968579460171,
0.6771277734684463, 0.6789636531064505, 0.6808045103191123, 0.6826503586020058,
0.6845012114872953, 0.6863570825438342, 0.688217985377265, 0.690083933630119,
0.6919549409819159, 0.6938310211492645, 0.6957121878859629, 0.6975984549830999,
0.6994898362691555, 0.7013863456101023, 0.7032879969095076, 0.7051948041086352,
0.7071067811865475, 0.7090239421602076, 0.7109463010845827, 0.7128738720527471,
0.7148066691959849, 0.7167447066838943, 0.718687998724491, 0.7206365595643126,
0.7225904034885232, 0.7245495448210174, 0.7265139979245261, 0.7284837772007218,
0.7304588970903234, 0.7324393720732029, 0.7344252166684908, 0.7364164454346837,
0.7384130729697496, 0.7404151139112358, 0.7424225829363761, 0.7444354947621984,
0.7464538641456323, 0.7484777058836176, 0.7505070348132126, 0.7525418658117031,
0.7545822137967112, 0.7566280937263048, 0.7586795205991071, 0.7607365094544071,
0.762799075372269, 0.7648672334736434, 0.7669409989204777, 0.7690203869158282,
0.7711054127039704, 0.7731960915705107, 0.7752924388424999, 0.7773944698885442,
0.7795022001189185, 0.7816156449856788, 0.7837348199827764, 0.7858597406461707,
0.7879904225539431, 0.7901268813264122, 0.7922691326262467, 0.7944171921585818,
0.7965710756711334, 0.7987307989543135, 0.8008963778413465, 0.8030678282083853,
0.805245165974627, 0.8074284071024302, 0.8096175675974316, 0.8118126635086642,
0.8140137109286738, 0.8162207259936375, 0.8184337248834821, 0.820652723822003,
0.8228777390769823, 0.8251087869603088, 0.8273458838280969, 0.8295890460808079,
0.8318382901633681, 0.8340936325652911, 0.8363550898207981, 0.8386226785089391,
0.8408964152537144, 0.8431763167241966, 0.8454623996346523, 0.8477546807446661,
0.8500531768592616, 0.8523579048290255, 0.8546688815502312, 0.8569861239649629,
0.8593096490612387, 0.8616394738731368, 0.8639756154809185, 0.8663180910111553,
0.8686669176368529, 0.871022112577578, 0.8733836930995842, 0.8757516765159389,
0.8781260801866495, 0.8805069215187917, 0.8828942179666361, 0.8852879870317771,
0.8876882462632604, 0.890095013257712, 0.8925083056594671, 0.8949281411607002,
0.8973545375015533, 0.8997875124702672, 0.9022270839033115, 0.9046732696855155,
0.9071260877501991, 0.909585556079304, 0.9120516927035263, 0.9145245157024483,
0.9170040432046711, 0.9194902933879467, 0.9219832844793128, 0.9244830347552253,
0.9269895625416926, 0.92950288621441, 0.9320230241988943, 0.9345499949706191,
0.9370838170551498, 0.93962450902828, 0.9421720895161669, 0.9447265771954693,
0.9472879907934827, 0.9498563490882775, 0.9524316709088368, 0.9550139751351947,
0.9576032806985735, 0.9601996065815236, 0.9628029718180622, 0.9654133954938133,
0.9680308967461471, 0.9706554947643201, 0.9732872087896164, 0.9759260581154889,
0.9785720620876999, 0.9812252401044634, 0.9838856116165875, 0.9865531961276168,
0.9892280131939752, 0.9919100824251095, 0.9945994234836328, 0.9972960560854698,
},
}