prometheus/db.go
Brian Brazil 5db162568b Remove _total from prometheus_tsdb_storage_blocks_bytes (#506)
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
2019-01-23 16:46:58 +03:00

1106 lines
28 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tsdb implements a time series storage for float64 sample data.
package tsdb
import (
"bytes"
"fmt"
"io"
"io/ioutil"
"math"
"os"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/oklog/ulid"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/tsdb/chunkenc"
"github.com/prometheus/tsdb/fileutil"
"github.com/prometheus/tsdb/labels"
"github.com/prometheus/tsdb/wal"
"golang.org/x/sync/errgroup"
)
// DefaultOptions used for the DB. They are sane for setups using
// millisecond precision timestamps.
var DefaultOptions = &Options{
WALSegmentSize: wal.DefaultSegmentSize,
RetentionDuration: 15 * 24 * 60 * 60 * 1000, // 15 days in milliseconds
BlockRanges: ExponentialBlockRanges(int64(2*time.Hour)/1e6, 3, 5),
NoLockfile: false,
}
// Options of the DB storage.
type Options struct {
// Segments (wal files) max size
WALSegmentSize int
// Duration of persisted data to keep.
RetentionDuration uint64
// Maximum number of bytes in blocks to be retained.
// 0 or less means disabled.
// NOTE: For proper storage calculations need to consider
// the size of the WAL folder which is not added when calculating
// the current size of the database.
MaxBytes int64
// The sizes of the Blocks.
BlockRanges []int64
// NoLockfile disables creation and consideration of a lock file.
NoLockfile bool
}
// Appender allows appending a batch of data. It must be completed with a
// call to Commit or Rollback and must not be reused afterwards.
//
// Operations on the Appender interface are not goroutine-safe.
type Appender interface {
// Add adds a sample pair for the given series. A reference number is
// returned which can be used to add further samples in the same or later
// transactions.
// Returned reference numbers are ephemeral and may be rejected in calls
// to AddFast() at any point. Adding the sample via Add() returns a new
// reference number.
// If the reference is 0 it must not be used for caching.
Add(l labels.Labels, t int64, v float64) (uint64, error)
// Add adds a sample pair for the referenced series. It is generally faster
// than adding a sample by providing its full label set.
AddFast(ref uint64, t int64, v float64) error
// Commit submits the collected samples and purges the batch.
Commit() error
// Rollback rolls back all modifications made in the appender so far.
Rollback() error
}
// DB handles reads and writes of time series falling into
// a hashed partition of a seriedb.
type DB struct {
dir string
lockf fileutil.Releaser
logger log.Logger
metrics *dbMetrics
opts *Options
chunkPool chunkenc.Pool
compactor Compactor
// Mutex for that must be held when modifying the general block layout.
mtx sync.RWMutex
blocks []*Block
head *Head
compactc chan struct{}
donec chan struct{}
stopc chan struct{}
// cmtx ensures that compactions and deletions don't run simultaneously.
cmtx sync.Mutex
// autoCompactMtx ensures that no compaction gets triggered while
// changing the autoCompact var.
autoCompactMtx sync.Mutex
autoCompact bool
}
type dbMetrics struct {
loadedBlocks prometheus.GaugeFunc
symbolTableSize prometheus.GaugeFunc
reloads prometheus.Counter
reloadsFailed prometheus.Counter
compactionsTriggered prometheus.Counter
timeRetentionCount prometheus.Counter
compactionsSkipped prometheus.Counter
startTime prometheus.GaugeFunc
tombCleanTimer prometheus.Histogram
blocksBytes prometheus.Gauge
sizeRetentionCount prometheus.Counter
}
func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics {
m := &dbMetrics{}
m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_blocks_loaded",
Help: "Number of currently loaded data blocks",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
return float64(len(db.blocks))
})
m.symbolTableSize = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_symbol_table_size_bytes",
Help: "Size of symbol table on disk (in bytes)",
}, func() float64 {
db.mtx.RLock()
blocks := db.blocks[:]
db.mtx.RUnlock()
symTblSize := uint64(0)
for _, b := range blocks {
symTblSize += b.GetSymbolTableSize()
}
return float64(symTblSize)
})
m.reloads = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_total",
Help: "Number of times the database reloaded block data from disk.",
})
m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_failures_total",
Help: "Number of times the database failed to reload block data from disk.",
})
m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_triggered_total",
Help: "Total number of triggered compactions for the partition.",
})
m.timeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_time_retentions_total",
Help: "The number of times that blocks were deleted because the maximum time limit was exceeded.",
})
m.compactionsSkipped = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_skipped_total",
Help: "Total number of skipped compactions due to disabled auto compaction.",
})
m.startTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_lowest_timestamp",
Help: "Lowest timestamp value stored in the database. The unit is decided by the library consumer.",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
if len(db.blocks) == 0 {
return float64(db.head.minTime)
}
return float64(db.blocks[0].meta.MinTime)
})
m.tombCleanTimer = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "prometheus_tsdb_tombstone_cleanup_seconds",
Help: "The time taken to recompact blocks to remove tombstones.",
})
m.blocksBytes = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_storage_blocks_bytes",
Help: "The number of bytes that are currently used for local storage by all blocks.",
})
m.sizeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_size_retentions_total",
Help: "The number of times that blocks were deleted because the maximum number of bytes was exceeded.",
})
if r != nil {
r.MustRegister(
m.loadedBlocks,
m.symbolTableSize,
m.reloads,
m.reloadsFailed,
m.timeRetentionCount,
m.compactionsTriggered,
m.startTime,
m.tombCleanTimer,
m.blocksBytes,
m.sizeRetentionCount,
)
}
return m
}
// Open returns a new DB in the given directory.
func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options) (db *DB, err error) {
if err := os.MkdirAll(dir, 0777); err != nil {
return nil, err
}
if l == nil {
l = log.NewNopLogger()
}
if opts == nil {
opts = DefaultOptions
}
// Fixup bad format written by Prometheus 2.1.
if err := repairBadIndexVersion(l, dir); err != nil {
return nil, err
}
// Migrate old WAL if one exists.
if err := MigrateWAL(l, filepath.Join(dir, "wal")); err != nil {
return nil, errors.Wrap(err, "migrate WAL")
}
db = &DB{
dir: dir,
logger: l,
opts: opts,
compactc: make(chan struct{}, 1),
donec: make(chan struct{}),
stopc: make(chan struct{}),
autoCompact: true,
chunkPool: chunkenc.NewPool(),
}
db.metrics = newDBMetrics(db, r)
if !opts.NoLockfile {
absdir, err := filepath.Abs(dir)
if err != nil {
return nil, err
}
lockf, _, err := fileutil.Flock(filepath.Join(absdir, "lock"))
if err != nil {
return nil, errors.Wrap(err, "lock DB directory")
}
db.lockf = lockf
}
db.compactor, err = NewLeveledCompactor(r, l, opts.BlockRanges, db.chunkPool)
if err != nil {
return nil, errors.Wrap(err, "create leveled compactor")
}
segmentSize := wal.DefaultSegmentSize
if opts.WALSegmentSize > 0 {
segmentSize = opts.WALSegmentSize
}
wlog, err := wal.NewSize(l, r, filepath.Join(dir, "wal"), segmentSize)
if err != nil {
return nil, err
}
db.head, err = NewHead(r, l, wlog, opts.BlockRanges[0])
if err != nil {
return nil, err
}
if err := db.reload(); err != nil {
return nil, err
}
// Set the min valid time for the ingested samples
// to be no lower than the maxt of the last block.
blocks := db.Blocks()
minValidTime := int64(math.MinInt64)
if len(blocks) > 0 {
minValidTime = blocks[len(blocks)-1].Meta().MaxTime
}
if err := db.head.Init(minValidTime); err != nil {
return nil, errors.Wrap(err, "read WAL")
}
go db.run()
return db, nil
}
// Dir returns the directory of the database.
func (db *DB) Dir() string {
return db.dir
}
func (db *DB) run() {
defer close(db.donec)
backoff := time.Duration(0)
for {
select {
case <-db.stopc:
return
case <-time.After(backoff):
}
select {
case <-time.After(1 * time.Minute):
select {
case db.compactc <- struct{}{}:
default:
}
case <-db.compactc:
db.metrics.compactionsTriggered.Inc()
db.autoCompactMtx.Lock()
if db.autoCompact {
if err := db.compact(); err != nil {
level.Error(db.logger).Log("msg", "compaction failed", "err", err)
backoff = exponential(backoff, 1*time.Second, 1*time.Minute)
} else {
backoff = 0
}
} else {
db.metrics.compactionsSkipped.Inc()
}
db.autoCompactMtx.Unlock()
case <-db.stopc:
return
}
}
}
// Appender opens a new appender against the database.
func (db *DB) Appender() Appender {
return dbAppender{db: db, Appender: db.head.Appender()}
}
// dbAppender wraps the DB's head appender and triggers compactions on commit
// if necessary.
type dbAppender struct {
Appender
db *DB
}
func (a dbAppender) Commit() error {
err := a.Appender.Commit()
// We could just run this check every few minutes practically. But for benchmarks
// and high frequency use cases this is the safer way.
if a.db.head.MaxTime()-a.db.head.MinTime() > a.db.head.chunkRange/2*3 {
select {
case a.db.compactc <- struct{}{}:
default:
}
}
return err
}
// Compact data if possible. After successful compaction blocks are reloaded
// which will also trigger blocks to be deleted that fall out of the retention
// window.
// If no blocks are compacted, the retention window state doesn't change. Thus,
// this is sufficient to reliably delete old data.
// Old blocks are only deleted on reload based on the new block's parent information.
// See DB.reload documentation for further information.
func (db *DB) compact() (err error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
// Check whether we have pending head blocks that are ready to be persisted.
// They have the highest priority.
for {
select {
case <-db.stopc:
return nil
default:
}
// The head has a compactable range if 1.5 level 0 ranges are between the oldest
// and newest timestamp. The 0.5 acts as a buffer of the appendable window.
if db.head.MaxTime()-db.head.MinTime() <= db.opts.BlockRanges[0]/2*3 {
break
}
mint := db.head.MinTime()
maxt := rangeForTimestamp(mint, db.opts.BlockRanges[0])
// Wrap head into a range that bounds all reads to it.
head := &rangeHead{
head: db.head,
mint: mint,
// We remove 1 millisecond from maxt because block
// intervals are half-open: [b.MinTime, b.MaxTime). But
// chunk intervals are closed: [c.MinTime, c.MaxTime];
// so in order to make sure that overlaps are evaluated
// consistently, we explicitly remove the last value
// from the block interval here.
maxt: maxt - 1,
}
uid, err := db.compactor.Write(db.dir, head, mint, maxt, nil)
if err != nil {
return errors.Wrap(err, "persist head block")
}
runtime.GC()
if err := db.reload(); err != nil {
return errors.Wrap(err, "reload blocks")
}
if (uid == ulid.ULID{}) {
// Compaction resulted in an empty block.
// Head truncating during db.reload() depends on the persisted blocks and
// in this case no new block will be persisted so manually truncate the head.
if err = db.head.Truncate(maxt); err != nil {
return errors.Wrap(err, "head truncate failed (in compact)")
}
}
runtime.GC()
}
// Check for compactions of multiple blocks.
for {
plan, err := db.compactor.Plan(db.dir)
if err != nil {
return errors.Wrap(err, "plan compaction")
}
if len(plan) == 0 {
break
}
select {
case <-db.stopc:
return nil
default:
}
if _, err := db.compactor.Compact(db.dir, plan, db.blocks); err != nil {
return errors.Wrapf(err, "compact %s", plan)
}
runtime.GC()
if err := db.reload(); err != nil {
return errors.Wrap(err, "reload blocks")
}
runtime.GC()
}
return nil
}
func (db *DB) getBlock(id ulid.ULID) (*Block, bool) {
for _, b := range db.blocks {
if b.Meta().ULID == id {
return b, true
}
}
return nil, false
}
// reload blocks and trigger head truncation if new blocks appeared.
// Blocks that are obsolete due to replacement or retention will be deleted.
func (db *DB) reload() (err error) {
defer func() {
if err != nil {
db.metrics.reloadsFailed.Inc()
}
db.metrics.reloads.Inc()
}()
loadable, corrupted, err := db.openBlocks()
if err != nil {
return err
}
deletable := db.deletableBlocks(loadable)
// Corrupted blocks that have been replaced by parents can be safely ignored and deleted.
// This makes it resilient against the process crashing towards the end of a compaction.
// Creation of a new block and deletion of its parents cannot happen atomically.
// By creating blocks with their parents, we can pick up the deletion where it left off during a crash.
for _, block := range loadable {
for _, b := range block.Meta().Compaction.Parents {
delete(corrupted, b.ULID)
deletable[b.ULID] = nil
}
}
if len(corrupted) > 0 {
return errors.Wrap(err, "unexpected corrupted block")
}
// All deletable blocks should not be loaded.
var (
bb []*Block
blocksSize int64
)
for _, block := range loadable {
if _, ok := deletable[block.Meta().ULID]; ok {
deletable[block.Meta().ULID] = block
continue
}
bb = append(bb, block)
blocksSize += block.Size()
}
loadable = bb
db.metrics.blocksBytes.Set(float64(blocksSize))
sort.Slice(loadable, func(i, j int) bool {
return loadable[i].Meta().MaxTime < loadable[j].Meta().MaxTime
})
if err := validateBlockSequence(loadable); err != nil {
return errors.Wrap(err, "invalid block sequence")
}
// Swap new blocks first for subsequently created readers to be seen.
db.mtx.Lock()
oldBlocks := db.blocks
db.blocks = loadable
db.mtx.Unlock()
for _, b := range oldBlocks {
if _, ok := deletable[b.Meta().ULID]; ok {
deletable[b.Meta().ULID] = b
}
}
if err := db.deleteBlocks(deletable); err != nil {
return err
}
// Garbage collect data in the head if the most recent persisted block
// covers data of its current time range.
if len(loadable) == 0 {
return nil
}
maxt := loadable[len(loadable)-1].Meta().MaxTime
return errors.Wrap(db.head.Truncate(maxt), "head truncate failed")
}
func (db *DB) openBlocks() (blocks []*Block, corrupted map[ulid.ULID]error, err error) {
dirs, err := blockDirs(db.dir)
if err != nil {
return nil, nil, errors.Wrap(err, "find blocks")
}
corrupted = make(map[ulid.ULID]error)
for _, dir := range dirs {
meta, err := readMetaFile(dir)
if err != nil {
level.Error(db.logger).Log("msg", "not a block dir", "dir", dir)
continue
}
// See if we already have the block in memory or open it otherwise.
block, ok := db.getBlock(meta.ULID)
if !ok {
block, err = OpenBlock(db.logger, dir, db.chunkPool)
if err != nil {
corrupted[meta.ULID] = err
continue
}
}
blocks = append(blocks, block)
}
return blocks, corrupted, nil
}
// deletableBlocks returns all blocks past retention policy.
func (db *DB) deletableBlocks(blocks []*Block) map[ulid.ULID]*Block {
deletable := make(map[ulid.ULID]*Block)
// Sort the blocks by time - newest to oldest (largest to smallest timestamp).
// This ensures that the retentions will remove the oldest blocks.
sort.Slice(blocks, func(i, j int) bool {
return blocks[i].Meta().MaxTime > blocks[j].Meta().MaxTime
})
for _, block := range blocks {
if block.Meta().Compaction.Deletable {
deletable[block.Meta().ULID] = block
}
}
for ulid, block := range db.beyondTimeRetention(blocks) {
deletable[ulid] = block
}
for ulid, block := range db.beyondSizeRetention(blocks) {
deletable[ulid] = block
}
return deletable
}
func (db *DB) beyondTimeRetention(blocks []*Block) (deleteable map[ulid.ULID]*Block) {
// Time retention is disabled or no blocks to work with.
if len(db.blocks) == 0 || db.opts.RetentionDuration == 0 {
return
}
deleteable = make(map[ulid.ULID]*Block)
for i, block := range blocks {
// The difference between the first block and this block is larger than
// the retention period so any blocks after that are added as deleteable.
if i > 0 && blocks[0].Meta().MaxTime-block.Meta().MaxTime > int64(db.opts.RetentionDuration) {
for _, b := range blocks[i:] {
deleteable[b.meta.ULID] = b
}
db.metrics.timeRetentionCount.Inc()
break
}
}
return deleteable
}
func (db *DB) beyondSizeRetention(blocks []*Block) (deleteable map[ulid.ULID]*Block) {
// Size retention is disabled or no blocks to work with.
if len(db.blocks) == 0 || db.opts.MaxBytes <= 0 {
return
}
deleteable = make(map[ulid.ULID]*Block)
blocksSize := int64(0)
for i, block := range blocks {
blocksSize += block.Size()
if blocksSize > db.opts.MaxBytes {
// Add this and all following blocks for deletion.
for _, b := range blocks[i:] {
deleteable[b.meta.ULID] = b
}
db.metrics.sizeRetentionCount.Inc()
break
}
}
return deleteable
}
// deleteBlocks closes and deletes blocks from the disk.
// When the map contains a non nil block object it means it is loaded in memory
// so needs to be closed first as it might need to wait for pending readers to complete.
func (db *DB) deleteBlocks(blocks map[ulid.ULID]*Block) error {
for ulid, block := range blocks {
if block != nil {
if err := block.Close(); err != nil {
level.Warn(db.logger).Log("msg", "closing block failed", "err", err)
}
}
if err := os.RemoveAll(filepath.Join(db.dir, ulid.String())); err != nil {
return errors.Wrapf(err, "delete obsolete block %s", ulid)
}
}
return nil
}
// validateBlockSequence returns error if given block meta files indicate that some blocks overlaps within sequence.
func validateBlockSequence(bs []*Block) error {
if len(bs) <= 1 {
return nil
}
var metas []BlockMeta
for _, b := range bs {
metas = append(metas, b.meta)
}
overlaps := OverlappingBlocks(metas)
if len(overlaps) > 0 {
return errors.Errorf("block time ranges overlap: %s", overlaps)
}
return nil
}
// TimeRange specifies minTime and maxTime range.
type TimeRange struct {
Min, Max int64
}
// Overlaps contains overlapping blocks aggregated by overlapping range.
type Overlaps map[TimeRange][]BlockMeta
// String returns human readable string form of overlapped blocks.
func (o Overlaps) String() string {
var res []string
for r, overlaps := range o {
var groups []string
for _, m := range overlaps {
groups = append(groups, fmt.Sprintf(
"<ulid: %s, mint: %d, maxt: %d, range: %s>",
m.ULID.String(),
m.MinTime,
m.MaxTime,
(time.Duration((m.MaxTime-m.MinTime)/1000)*time.Second).String(),
))
}
res = append(res, fmt.Sprintf(
"[mint: %d, maxt: %d, range: %s, blocks: %d]: %s",
r.Min, r.Max,
(time.Duration((r.Max-r.Min)/1000)*time.Second).String(),
len(overlaps),
strings.Join(groups, ", ")),
)
}
return strings.Join(res, "\n")
}
// OverlappingBlocks returns all overlapping blocks from given meta files.
func OverlappingBlocks(bm []BlockMeta) Overlaps {
if len(bm) <= 1 {
return nil
}
var (
overlaps [][]BlockMeta
// pending contains not ended blocks in regards to "current" timestamp.
pending = []BlockMeta{bm[0]}
// continuousPending helps to aggregate same overlaps to single group.
continuousPending = true
)
// We have here blocks sorted by minTime. We iterate over each block and treat its minTime as our "current" timestamp.
// We check if any of the pending block finished (blocks that we have seen before, but their maxTime was still ahead current
// timestamp). If not, it means they overlap with our current block. In the same time current block is assumed pending.
for _, b := range bm[1:] {
var newPending []BlockMeta
for _, p := range pending {
// "b.MinTime" is our current time.
if b.MinTime >= p.MaxTime {
continuousPending = false
continue
}
// "p" overlaps with "b" and "p" is still pending.
newPending = append(newPending, p)
}
// Our block "b" is now pending.
pending = append(newPending, b)
if len(newPending) == 0 {
// No overlaps.
continue
}
if continuousPending && len(overlaps) > 0 {
overlaps[len(overlaps)-1] = append(overlaps[len(overlaps)-1], b)
continue
}
overlaps = append(overlaps, append(newPending, b))
// Start new pendings.
continuousPending = true
}
// Fetch the critical overlapped time range foreach overlap groups.
overlapGroups := Overlaps{}
for _, overlap := range overlaps {
minRange := TimeRange{Min: 0, Max: math.MaxInt64}
for _, b := range overlap {
if minRange.Max > b.MaxTime {
minRange.Max = b.MaxTime
}
if minRange.Min < b.MinTime {
minRange.Min = b.MinTime
}
}
overlapGroups[minRange] = overlap
}
return overlapGroups
}
func (db *DB) String() string {
return "HEAD"
}
// Blocks returns the databases persisted blocks.
func (db *DB) Blocks() []*Block {
db.mtx.RLock()
defer db.mtx.RUnlock()
return db.blocks
}
// Head returns the databases's head.
func (db *DB) Head() *Head {
return db.head
}
// Close the partition.
func (db *DB) Close() error {
close(db.stopc)
<-db.donec
db.mtx.Lock()
defer db.mtx.Unlock()
var g errgroup.Group
// blocks also contains all head blocks.
for _, pb := range db.blocks {
g.Go(pb.Close)
}
var merr MultiError
merr.Add(g.Wait())
if db.lockf != nil {
merr.Add(db.lockf.Release())
}
merr.Add(db.head.Close())
return merr.Err()
}
// DisableCompactions disables auto compactions.
func (db *DB) DisableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = false
level.Info(db.logger).Log("msg", "compactions disabled")
}
// EnableCompactions enables auto compactions.
func (db *DB) EnableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = true
level.Info(db.logger).Log("msg", "compactions enabled")
}
// Snapshot writes the current data to the directory. If withHead is set to true it
// will create a new block containing all data that's currently in the memory buffer/WAL.
func (db *DB) Snapshot(dir string, withHead bool) error {
if dir == db.dir {
return errors.Errorf("cannot snapshot into base directory")
}
if _, err := ulid.Parse(dir); err == nil {
return errors.Errorf("dir must not be a valid ULID")
}
db.cmtx.Lock()
defer db.cmtx.Unlock()
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
level.Info(db.logger).Log("msg", "snapshotting block", "block", b)
if err := b.Snapshot(dir); err != nil {
return errors.Wrapf(err, "error snapshotting block: %s", b.Dir())
}
}
if !withHead {
return nil
}
_, err := db.compactor.Write(dir, db.head, db.head.MinTime(), db.head.MaxTime(), nil)
return errors.Wrap(err, "snapshot head block")
}
// Querier returns a new querier over the data partition for the given time range.
// A goroutine must not handle more than one open Querier.
func (db *DB) Querier(mint, maxt int64) (Querier, error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
blocks = append(blocks, b)
}
}
if maxt >= db.head.MinTime() {
blocks = append(blocks, &rangeHead{
head: db.head,
mint: mint,
maxt: maxt,
})
}
sq := &querier{
blocks: make([]Querier, 0, len(blocks)),
}
for _, b := range blocks {
q, err := NewBlockQuerier(b, mint, maxt)
if err == nil {
sq.blocks = append(sq.blocks, q)
continue
}
// If we fail, all previously opened queriers must be closed.
for _, q := range sq.blocks {
q.Close()
}
return nil, errors.Wrapf(err, "open querier for block %s", b)
}
return sq, nil
}
func rangeForTimestamp(t int64, width int64) (maxt int64) {
return (t/width)*width + width
}
// Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis.
func (db *DB) Delete(mint, maxt int64, ms ...labels.Matcher) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
var g errgroup.Group
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
g.Go(func(b *Block) func() error {
return func() error { return b.Delete(mint, maxt, ms...) }
}(b))
}
}
g.Go(func() error {
return db.head.Delete(mint, maxt, ms...)
})
return g.Wait()
}
// CleanTombstones re-writes any blocks with tombstones.
func (db *DB) CleanTombstones() (err error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
start := time.Now()
defer db.metrics.tombCleanTimer.Observe(time.Since(start).Seconds())
newUIDs := []ulid.ULID{}
defer func() {
// If any error is caused, we need to delete all the new directory created.
if err != nil {
for _, uid := range newUIDs {
dir := filepath.Join(db.Dir(), uid.String())
if err := os.RemoveAll(dir); err != nil {
level.Error(db.logger).Log("msg", "failed to delete block after failed `CleanTombstones`", "dir", dir, "err", err)
}
}
}
}()
db.mtx.RLock()
blocks := db.blocks[:]
db.mtx.RUnlock()
for _, b := range blocks {
if uid, er := b.CleanTombstones(db.Dir(), db.compactor); er != nil {
err = errors.Wrapf(er, "clean tombstones: %s", b.Dir())
return err
} else if uid != nil { // New block was created.
newUIDs = append(newUIDs, *uid)
}
}
return errors.Wrap(db.reload(), "reload blocks")
}
func isBlockDir(fi os.FileInfo) bool {
if !fi.IsDir() {
return false
}
_, err := ulid.Parse(fi.Name())
return err == nil
}
func blockDirs(dir string) ([]string, error) {
files, err := ioutil.ReadDir(dir)
if err != nil {
return nil, err
}
var dirs []string
for _, fi := range files {
if isBlockDir(fi) {
dirs = append(dirs, filepath.Join(dir, fi.Name()))
}
}
return dirs, nil
}
func sequenceFiles(dir string) ([]string, error) {
files, err := ioutil.ReadDir(dir)
if err != nil {
return nil, err
}
var res []string
for _, fi := range files {
if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil {
continue
}
res = append(res, filepath.Join(dir, fi.Name()))
}
return res, nil
}
func nextSequenceFile(dir string) (string, int, error) {
names, err := fileutil.ReadDir(dir)
if err != nil {
return "", 0, err
}
i := uint64(0)
for _, n := range names {
j, err := strconv.ParseUint(n, 10, 64)
if err != nil {
continue
}
i = j
}
return filepath.Join(dir, fmt.Sprintf("%0.6d", i+1)), int(i + 1), nil
}
// The MultiError type implements the error interface, and contains the
// Errors used to construct it.
type MultiError []error
// Returns a concatenated string of the contained errors
func (es MultiError) Error() string {
var buf bytes.Buffer
if len(es) > 1 {
fmt.Fprintf(&buf, "%d errors: ", len(es))
}
for i, err := range es {
if i != 0 {
buf.WriteString("; ")
}
buf.WriteString(err.Error())
}
return buf.String()
}
// Add adds the error to the error list if it is not nil.
func (es *MultiError) Add(err error) {
if err == nil {
return
}
if merr, ok := err.(MultiError); ok {
*es = append(*es, merr...)
} else {
*es = append(*es, err)
}
}
// Err returns the error list as an error or nil if it is empty.
func (es MultiError) Err() error {
if len(es) == 0 {
return nil
}
return es
}
func closeAll(cs ...io.Closer) error {
var merr MultiError
for _, c := range cs {
merr.Add(c.Close())
}
return merr.Err()
}
func exponential(d, min, max time.Duration) time.Duration {
d *= 2
if d < min {
d = min
}
if d > max {
d = max
}
return d
}