prometheus/promql/engine.go
2016-12-24 10:44:04 +01:00

1505 lines
38 KiB
Go

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"container/heap"
"fmt"
"math"
"runtime"
"sort"
"strings"
"time"
"github.com/fabxc/tsdb"
"github.com/fabxc/tsdb/labels"
"github.com/prometheus/common/log"
"golang.org/x/net/context"
"github.com/prometheus/prometheus/util/stats"
)
const (
// The largest SampleValue that can be converted to an int64 without overflow.
maxInt64 = 9223372036854774784
// The smallest SampleValue that can be converted to an int64 without underflow.
minInt64 = -9223372036854775808
MetricNameLabel = "__name__"
)
// convertibleToInt64 returns true if v does not over-/underflow an int64.
func convertibleToInt64(v float64) bool {
return v <= maxInt64 && v >= minInt64
}
// Value is a generic interface for values resulting from a query evaluation.
type Value interface {
Type() ValueType
String() string
}
func (Matrix) Type() ValueType { return ValueTypeMatrix }
func (Vector) Type() ValueType { return ValueTypeVector }
func (Scalar) Type() ValueType { return ValueTypeScalar }
func (stringVal) Type() ValueType { return ValueTypeString }
// ValueType describes a type of a value.
type ValueType string
// The valid value types.
const (
ValueTypeNone = "none"
ValueTypeVector = "Vector"
ValueTypeScalar = "Scalar"
ValueTypeMatrix = "Matrix"
ValueTypeString = "string"
)
type stringVal struct {
s string
t int64
}
func (s stringVal) String() string {
return s.s
}
type Scalar struct {
t int64
v float64
}
func (s Scalar) String() string {
return ""
}
// sampleStream is a stream of Values belonging to an attached COWMetric.
type sampleStream struct {
Metric labels.Labels
Values []samplePair
}
func (s sampleStream) String() string {
return ""
}
type samplePair struct {
t int64
v float64
}
func (s samplePair) String() string {
return ""
}
// sample is a single sample belonging to a COWMetric.
type sample struct {
Metric labels.Labels
Value float64
Timestamp int64
}
func (s sample) String() string {
return ""
}
// Vector is basically only an alias for model.Samples, but the
// contract is that in a Vector, all Samples have the same timestamp.
type Vector []sample
func (vec Vector) String() string {
entries := make([]string, len(vec))
for i, s := range vec {
entries[i] = s.String()
}
return strings.Join(entries, "\n")
}
// Matrix is a slice of SampleStreams that implements sort.Interface and
// has a String method.
type Matrix []sampleStream
func (m Matrix) String() string {
// TODO(fabxc): sort, or can we rely on order from the querier?
strs := make([]string, len(m))
for i, ss := range m {
strs[i] = ss.String()
}
return strings.Join(strs, "\n")
}
// Result holds the resulting value of an execution or an error
// if any occurred.
type Result struct {
Err error
Value Value
}
// Vector returns a Vector if the result value is one. An error is returned if
// the result was an error or the result value is not a Vector.
func (r *Result) Vector() (Vector, error) {
if r.Err != nil {
return nil, r.Err
}
v, ok := r.Value.(Vector)
if !ok {
return nil, fmt.Errorf("query result is not a Vector")
}
return v, nil
}
// Matrix returns a Matrix. An error is returned if
// the result was an error or the result value is not a Matrix.
func (r *Result) Matrix() (Matrix, error) {
if r.Err != nil {
return nil, r.Err
}
v, ok := r.Value.(Matrix)
if !ok {
return nil, fmt.Errorf("query result is not a range Vector")
}
return v, nil
}
// Scalar returns a Scalar value. An error is returned if
// the result was an error or the result value is not a Scalar.
func (r *Result) Scalar() (Scalar, error) {
if r.Err != nil {
return Scalar{}, r.Err
}
v, ok := r.Value.(Scalar)
if !ok {
return Scalar{}, fmt.Errorf("query result is not a Scalar")
}
return v, nil
}
func (r *Result) String() string {
if r.Err != nil {
return r.Err.Error()
}
if r.Value == nil {
return ""
}
return r.Value.String()
}
type (
// ErrQueryTimeout is returned if a query timed out during processing.
ErrQueryTimeout string
// ErrQueryCanceled is returned if a query was canceled during processing.
ErrQueryCanceled string
)
func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) }
func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) }
// A Query is derived from an a raw query string and can be run against an engine
// it is associated with.
type Query interface {
// Exec processes the query and
Exec(ctx context.Context) *Result
// Statement returns the parsed statement of the query.
Statement() Statement
// Stats returns statistics about the lifetime of the query.
Stats() *stats.TimerGroup
// Cancel signals that a running query execution should be aborted.
Cancel()
}
// query implements the Query interface.
type query struct {
// The original query string.
q string
// Statement of the parsed query.
stmt Statement
// Timer stats for the query execution.
stats *stats.TimerGroup
// Cancelation function for the query.
cancel func()
// The engine against which the query is executed.
ng *Engine
}
// Statement implements the Query interface.
func (q *query) Statement() Statement {
return q.stmt
}
// Stats implements the Query interface.
func (q *query) Stats() *stats.TimerGroup {
return q.stats
}
// Cancel implements the Query interface.
func (q *query) Cancel() {
if q.cancel != nil {
q.cancel()
}
}
// Exec implements the Query interface.
func (q *query) Exec(ctx context.Context) *Result {
res, err := q.ng.exec(ctx, q)
return &Result{Err: err, Value: res}
}
// contextDone returns an error if the context was canceled or timed out.
func contextDone(ctx context.Context, env string) error {
select {
case <-ctx.Done():
err := ctx.Err()
switch err {
case context.Canceled:
return ErrQueryCanceled(env)
case context.DeadlineExceeded:
return ErrQueryTimeout(env)
default:
return err
}
default:
return nil
}
}
// Engine handles the lifetime of queries from beginning to end.
// It is connected to a querier.
type Engine struct {
// A Querier constructor against an underlying storage.
queryable Queryable
// The gate limiting the maximum number of concurrent and waiting queries.
gate *queryGate
options *EngineOptions
}
// Queryable allows opening a storage querier.
type Queryable interface {
Querier(mint, maxt int64) (tsdb.Querier, error)
}
// NewEngine returns a new engine.
func NewEngine(queryable Queryable, o *EngineOptions) *Engine {
if o == nil {
o = DefaultEngineOptions
}
return &Engine{
queryable: queryable,
gate: newQueryGate(o.MaxConcurrentQueries),
options: o,
}
}
// EngineOptions contains configuration parameters for an Engine.
type EngineOptions struct {
MaxConcurrentQueries int
Timeout time.Duration
}
// DefaultEngineOptions are the default engine options.
var DefaultEngineOptions = &EngineOptions{
MaxConcurrentQueries: 20,
Timeout: 2 * time.Minute,
}
// NewInstantQuery returns an evaluation query for the given expression at the given time.
func (ng *Engine) NewInstantQuery(qs string, ts time.Time) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
qry := ng.newQuery(expr, ts, ts, 0)
qry.q = qs
return qry, nil
}
// NewRangeQuery returns an evaluation query for the given time range and with
// the resolution set by the interval.
func (ng *Engine) NewRangeQuery(qs string, start, end time.Time, interval time.Duration) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
if expr.Type() != ValueTypeVector && expr.Type() != ValueTypeScalar {
return nil, fmt.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", documentedType(expr.Type()))
}
qry := ng.newQuery(expr, start, end, interval)
qry.q = qs
return qry, nil
}
func (ng *Engine) newQuery(expr Expr, start, end time.Time, interval time.Duration) *query {
es := &EvalStmt{
Expr: expr,
Start: start,
End: end,
Interval: interval,
}
qry := &query{
stmt: es,
ng: ng,
stats: stats.NewTimerGroup(),
}
return qry
}
// testStmt is an internal helper statement that allows execution
// of an arbitrary function during handling. It is used to test the Engine.
type testStmt func(context.Context) error
func (testStmt) String() string { return "test statement" }
func (testStmt) stmt() {}
func (ng *Engine) newTestQuery(f func(context.Context) error) Query {
qry := &query{
q: "test statement",
stmt: testStmt(f),
ng: ng,
stats: stats.NewTimerGroup(),
}
return qry
}
// exec executes the query.
//
// At this point per query only one EvalStmt is evaluated. Alert and record
// statements are not handled by the Engine.
func (ng *Engine) exec(ctx context.Context, q *query) (Value, error) {
ctx, cancel := context.WithTimeout(ctx, ng.options.Timeout)
q.cancel = cancel
queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start()
if err := ng.gate.Start(ctx); err != nil {
return nil, err
}
defer ng.gate.Done()
queueTimer.Stop()
// Cancel when execution is done or an error was raised.
defer q.cancel()
const env = "query execution"
evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start()
defer evalTimer.Stop()
// The base context might already be canceled on the first iteration (e.g. during shutdown).
if err := contextDone(ctx, env); err != nil {
return nil, err
}
switch s := q.Statement().(type) {
case *EvalStmt:
return ng.execEvalStmt(ctx, q, s)
case testStmt:
return nil, s(ctx)
}
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement()))
}
func timeMilliseconds(t time.Time) int64 {
return t.UnixNano() / int64(time.Millisecond/time.Nanosecond)
}
func durationMilliseconds(d time.Duration) int64 {
return int64(d / (time.Millisecond / time.Nanosecond))
}
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) {
prepareTimer := query.stats.GetTimer(stats.QueryPreparationTime).Start()
querier, err := ng.populateIterators(ctx, s)
prepareTimer.Stop()
if err != nil {
return nil, err
}
defer querier.Close()
evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start()
// Instant evaluation.
if s.Start == s.End && s.Interval == 0 {
evaluator := &evaluator{
Timestamp: timeMilliseconds(s.Start),
ctx: ctx,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, err
}
evalTimer.Stop()
return val, nil
}
numSteps := int(s.End.Sub(s.Start) / s.Interval)
// Range evaluation.
sampleStreams := map[uint64]sampleStream{}
for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) {
if err := contextDone(ctx, "range evaluation"); err != nil {
return nil, err
}
evaluator := &evaluator{
Timestamp: timeMilliseconds(ts),
ctx: ctx,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, err
}
switch v := val.(type) {
case Scalar:
// As the expression type does not change we can safely default to 0
// as the fingerprint for Scalar expressions.
ss, ok := sampleStreams[0]
if !ok {
ss = sampleStream{Values: make([]samplePair, 0, numSteps)}
sampleStreams[0] = ss
}
ss.Values = append(ss.Values, samplePair{
v: v.v,
t: v.t,
})
case Vector:
for _, sample := range v {
h := sample.Metric.Hash()
ss, ok := sampleStreams[h]
if !ok {
ss = sampleStream{
Metric: sample.Metric,
Values: make([]samplePair, 0, numSteps),
}
sampleStreams[h] = ss
}
ss.Values = append(ss.Values, samplePair{
v: sample.Value,
t: sample.Timestamp,
})
}
default:
panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
}
}
evalTimer.Stop()
if err := contextDone(ctx, "expression evaluation"); err != nil {
return nil, err
}
appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start()
mat := Matrix{}
for _, ss := range sampleStreams {
mat = append(mat, ss)
}
appendTimer.Stop()
if err := contextDone(ctx, "expression evaluation"); err != nil {
return nil, err
}
// Turn Matrix type with protected metric into model.Matrix.
resMatrix := mat
// TODO(fabxc): order ensured by storage?
// sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start()
// sort.Sort(resMatrix)
// sortTimer.Stop()
return resMatrix, nil
}
func (ng *Engine) populateIterators(ctx context.Context, s *EvalStmt) (tsdb.Querier, error) {
var maxOffset time.Duration
Inspect(s.Expr, func(node Node) bool {
switch n := node.(type) {
case *VectorSelector:
if n.Offset > maxOffset {
maxOffset = n.Offset + StalenessDelta
}
case *MatrixSelector:
if n.Offset > maxOffset {
maxOffset = n.Offset + n.Range
}
}
return true
})
mint := s.Start.Add(-maxOffset)
querier, err := ng.queryable.Querier(timeMilliseconds(mint), timeMilliseconds(s.End))
if err != nil {
return nil, err
}
Inspect(s.Expr, func(node Node) bool {
switch n := node.(type) {
case *VectorSelector:
sel := make(labels.Selector, 0, len(n.LabelMatchers))
for _, m := range n.LabelMatchers {
sel = append(sel, m.matcher())
}
n.series, err = expandSeriesSet(querier.Select(sel...))
if err != nil {
return false
}
for _, s := range n.series {
it := tsdb.NewBuffer(s.Iterator(), durationMilliseconds(StalenessDelta))
n.iterators = append(n.iterators, it)
}
case *MatrixSelector:
sel := make(labels.Selector, 0, len(n.LabelMatchers))
for _, m := range n.LabelMatchers {
sel = append(sel, m.matcher())
}
n.series, err = expandSeriesSet(querier.Select(sel...))
if err != nil {
return false
}
for _, s := range n.series {
it := tsdb.NewBuffer(s.Iterator(), durationMilliseconds(n.Range))
n.iterators = append(n.iterators, it)
}
}
return true
})
return querier, err
}
func expandSeriesSet(it tsdb.SeriesSet) (res []tsdb.Series, err error) {
for it.Next() {
res = append(res, it.Series())
}
return res, it.Err()
}
// An evaluator evaluates given expressions at a fixed timestamp. It is attached to an
// engine through which it connects to a querier and reports errors. On timeout or
// cancellation of its context it terminates.
type evaluator struct {
ctx context.Context
Timestamp int64 // time in milliseconds
}
// fatalf causes a panic with the input formatted into an error.
func (ev *evaluator) errorf(format string, args ...interface{}) {
ev.error(fmt.Errorf(format, args...))
}
// fatal causes a panic with the given error.
func (ev *evaluator) error(err error) {
panic(err)
}
// recover is the handler that turns panics into returns from the top level of evaluation.
func (ev *evaluator) recover(errp *error) {
e := recover()
if e != nil {
if _, ok := e.(runtime.Error); ok {
// Print the stack trace but do not inhibit the running application.
buf := make([]byte, 64<<10)
buf = buf[:runtime.Stack(buf, false)]
log.Errorf("parser panic: %v\n%s", e, buf)
*errp = fmt.Errorf("unexpected error")
} else {
*errp = e.(error)
}
}
}
// evalScalar attempts to evaluate e to a Scalar value and errors otherwise.
func (ev *evaluator) evalScalar(e Expr) Scalar {
val := ev.eval(e)
sv, ok := val.(Scalar)
if !ok {
ev.errorf("expected Scalar but got %s", documentedType(val.Type()))
}
return sv
}
// evalVector attempts to evaluate e to a Vector value and errors otherwise.
func (ev *evaluator) evalVector(e Expr) Vector {
val := ev.eval(e)
vec, ok := val.(Vector)
if !ok {
ev.errorf("expected instant Vector but got %s", documentedType(val.Type()))
}
return vec
}
// evalInt attempts to evaluate e into an integer and errors otherwise.
func (ev *evaluator) evalInt(e Expr) int64 {
sc := ev.evalScalar(e)
if !convertibleToInt64(sc.v) {
ev.errorf("Scalar value %v overflows int64", sc.v)
}
return int64(sc.v)
}
// evalFloat attempts to evaluate e into a float and errors otherwise.
func (ev *evaluator) evalFloat(e Expr) float64 {
sc := ev.evalScalar(e)
return float64(sc.v)
}
// evalMatrix attempts to evaluate e into a Matrix and errors otherwise.
// The error message uses the term "range Vector" to match the user facing
// documentation.
func (ev *evaluator) evalMatrix(e Expr) Matrix {
val := ev.eval(e)
mat, ok := val.(Matrix)
if !ok {
ev.errorf("expected range Vector but got %s", documentedType(val.Type()))
}
return mat
}
// evalString attempts to evaluate e to a string value and errors otherwise.
func (ev *evaluator) evalString(e Expr) stringVal {
val := ev.eval(e)
sv, ok := val.(stringVal)
if !ok {
ev.errorf("expected string but got %s", documentedType(val.Type()))
}
return sv
}
// evalOneOf evaluates e and errors unless the result is of one of the given types.
func (ev *evaluator) evalOneOf(e Expr, t1, t2 ValueType) Value {
val := ev.eval(e)
if val.Type() != t1 && val.Type() != t2 {
ev.errorf("expected %s or %s but got %s", documentedType(t1), documentedType(t2), documentedType(val.Type()))
}
return val
}
func (ev *evaluator) Eval(expr Expr) (v Value, err error) {
defer ev.recover(&err)
return ev.eval(expr), nil
}
// eval evaluates the given expression as the given AST expression node requires.
func (ev *evaluator) eval(expr Expr) Value {
// This is the top-level evaluation method.
// Thus, we check for timeout/cancelation here.
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
ev.error(err)
}
switch e := expr.(type) {
case *AggregateExpr:
Vector := ev.evalVector(e.Expr)
return ev.aggregation(e.Op, e.Grouping, e.Without, e.KeepCommonLabels, e.Param, Vector)
case *BinaryExpr:
lhs := ev.evalOneOf(e.LHS, ValueTypeScalar, ValueTypeVector)
rhs := ev.evalOneOf(e.RHS, ValueTypeScalar, ValueTypeVector)
switch lt, rt := lhs.Type(), rhs.Type(); {
case lt == ValueTypeScalar && rt == ValueTypeScalar:
return Scalar{
v: ScalarBinop(e.Op, lhs.(Scalar).v, rhs.(Scalar).v),
t: ev.Timestamp,
}
case lt == ValueTypeVector && rt == ValueTypeVector:
switch e.Op {
case itemLAND:
return ev.VectorAnd(lhs.(Vector), rhs.(Vector), e.VectorMatching)
case itemLOR:
return ev.VectorOr(lhs.(Vector), rhs.(Vector), e.VectorMatching)
case itemLUnless:
return ev.VectorUnless(lhs.(Vector), rhs.(Vector), e.VectorMatching)
default:
return ev.VectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching, e.ReturnBool)
}
case lt == ValueTypeVector && rt == ValueTypeScalar:
return ev.VectorScalarBinop(e.Op, lhs.(Vector), rhs.(Scalar), false, e.ReturnBool)
case lt == ValueTypeScalar && rt == ValueTypeVector:
return ev.VectorScalarBinop(e.Op, rhs.(Vector), lhs.(Scalar), true, e.ReturnBool)
}
case *Call:
return e.Func.Call(ev, e.Args)
case *MatrixSelector:
return ev.MatrixSelector(e)
case *NumberLiteral:
return Scalar{v: e.Val, t: ev.Timestamp}
case *ParenExpr:
return ev.eval(e.Expr)
case *StringLiteral:
return stringVal{s: e.Val, t: ev.Timestamp}
case *UnaryExpr:
se := ev.evalOneOf(e.Expr, ValueTypeScalar, ValueTypeVector)
// Only + and - are possible operators.
if e.Op == itemSUB {
switch v := se.(type) {
case Scalar:
v.v = -v.v
case Vector:
for i, sv := range v {
v[i].Value = -sv.Value
}
}
}
return se
case *VectorSelector:
return ev.VectorSelector(e)
}
panic(fmt.Errorf("unhandled expression of type: %T", expr))
}
// VectorSelector evaluates a *VectorSelector expression.
func (ev *evaluator) VectorSelector(node *VectorSelector) Vector {
var (
ok bool
vec = make(Vector, 0, len(node.series))
refTime = ev.Timestamp - durationMilliseconds(node.Offset)
)
for i, it := range node.iterators {
if !it.Seek(refTime) {
if it.Err() != nil {
ev.error(it.Err())
}
continue
}
t, v := it.Values()
if t > refTime {
t, v, ok = it.PeekBack()
if !ok || t < refTime-durationMilliseconds(StalenessDelta) {
continue
}
}
vec = append(vec, sample{
Metric: node.series[i].Labels(),
Value: v,
Timestamp: int64(ev.Timestamp),
})
}
return vec
}
// MatrixSelector evaluates a *MatrixSelector expression.
func (ev *evaluator) MatrixSelector(node *MatrixSelector) Matrix {
var (
offset = durationMilliseconds(node.Offset)
maxt = ev.Timestamp - offset
mint = maxt - durationMilliseconds(node.Range)
Matrix = make(Matrix, 0, len(node.series))
)
for i, it := range node.iterators {
ss := sampleStream{
Metric: node.series[i].Labels(),
Values: make([]samplePair, 0, 16),
}
if !it.Seek(maxt) {
if it.Err() != nil {
ev.error(it.Err())
}
continue
}
buf := it.Buffer()
for buf.Next() {
t, v := buf.Values()
// Values in the buffer are guaranteed to be smaller than maxt.
if t >= mint {
ss.Values = append(ss.Values, samplePair{t: t + offset, v: v})
}
}
// The seeked sample might also be in the range.
t, v := it.Values()
if t == maxt {
ss.Values = append(ss.Values, samplePair{t: t + offset, v: v})
}
Matrix = append(Matrix, ss)
}
return Matrix
}
func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := signatureFunc(matching.On, matching.MatchingLabels...)
var result Vector
// The set of signatures for the right-hand side Vector.
rightSigs := map[uint64]struct{}{}
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
rightSigs[sigf(rs.Metric)] = struct{}{}
}
for _, ls := range lhs {
// If there's a matching entry in the right-hand side Vector, add the sample.
if _, ok := rightSigs[sigf(ls.Metric)]; ok {
result = append(result, ls)
}
}
return result
}
func (ev *evaluator) VectorOr(lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := signatureFunc(matching.On, matching.MatchingLabels...)
var result Vector
leftSigs := map[uint64]struct{}{}
// Add everything from the left-hand-side Vector.
for _, ls := range lhs {
leftSigs[sigf(ls.Metric)] = struct{}{}
result = append(result, ls)
}
// Add all right-hand side elements which have not been added from the left-hand side.
for _, rs := range rhs {
if _, ok := leftSigs[sigf(rs.Metric)]; !ok {
result = append(result, rs)
}
}
return result
}
func (ev *evaluator) VectorUnless(lhs, rhs Vector, matching *VectorMatching) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := signatureFunc(matching.On, matching.MatchingLabels...)
rightSigs := map[uint64]struct{}{}
for _, rs := range rhs {
rightSigs[sigf(rs.Metric)] = struct{}{}
}
var result Vector
for _, ls := range lhs {
if _, ok := rightSigs[sigf(ls.Metric)]; !ok {
result = append(result, ls)
}
}
return result
}
// VectorBinop evaluates a binary operation between two Vectors, excluding set operators.
func (ev *evaluator) VectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching, returnBool bool) Vector {
if matching.Card == CardManyToMany {
panic("many-to-many only allowed for set operators")
}
var (
result = Vector{}
sigf = signatureFunc(matching.On, matching.MatchingLabels...)
)
// The control flow below handles one-to-one or many-to-one matching.
// For one-to-many, swap sidedness and account for the swap when calculating
// values.
if matching.Card == CardOneToMany {
lhs, rhs = rhs, lhs
}
// All samples from the rhs hashed by the matching label/values.
rightSigs := map[uint64]sample{}
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
sig := sigf(rs.Metric)
// The rhs is guaranteed to be the 'one' side. Having multiple samples
// with the same signature means that the matching is many-to-many.
if _, found := rightSigs[sig]; found {
// Many-to-many matching not allowed.
ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side")
}
rightSigs[sig] = rs
}
// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
// the value is a set of signatures to detect duplicated result elements.
matchedSigs := map[uint64]map[uint64]struct{}{}
// For all lhs samples find a respective rhs sample and perform
// the binary operation.
for _, ls := range lhs {
sig := sigf(ls.Metric)
rs, found := rightSigs[sig] // Look for a match in the rhs Vector.
if !found {
continue
}
// Account for potentially swapped sidedness.
vl, vr := ls.Value, rs.Value
if matching.Card == CardOneToMany {
vl, vr = vr, vl
}
value, keep := VectorElemBinop(op, vl, vr)
if returnBool {
if keep {
value = 1.0
} else {
value = 0.0
}
} else if !keep {
continue
}
metric := resultMetric(ls.Metric, rs.Metric, op, matching)
insertedSigs, exists := matchedSigs[sig]
if matching.Card == CardOneToOne {
if exists {
ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
}
matchedSigs[sig] = nil // Set existence to true.
} else {
// In many-to-one matching the grouping labels have to ensure a unique metric
// for the result Vector. Check whether those labels have already been added for
// the same matching labels.
insertSig := metric.Hash()
if !exists {
insertedSigs = map[uint64]struct{}{}
matchedSigs[sig] = insertedSigs
} else if _, duplicate := insertedSigs[insertSig]; duplicate {
ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
}
insertedSigs[insertSig] = struct{}{}
}
result = append(result, sample{
Metric: metric,
Value: value,
Timestamp: ev.Timestamp,
})
}
return result
}
func hashWithoutLabels(lset labels.Labels, names ...string) uint64 {
cm := make(labels.Labels, 0, len(lset)-len(names)-1)
Outer:
for _, l := range lset {
for _, n := range names {
if n == l.Name {
continue Outer
}
}
if l.Name == MetricNameLabel {
continue
}
cm = append(cm, l)
}
return cm.Hash()
}
func hashForLabels(lset labels.Labels, names ...string) uint64 {
cm := make(labels.Labels, 0, len(names))
for _, l := range lset {
for _, n := range names {
if l.Name == n {
cm = append(cm, l)
break
}
}
}
return cm.Hash()
}
// signatureFunc returns a function that calculates the signature for a metric
// ignoring the provided labels. If on, then the given labels are only used instead.
func signatureFunc(on bool, names ...string) func(labels.Labels) uint64 {
// TODO(fabxc): ensure names are sorted and then use that and sortedness
// of labels by names to speed up the operations below.
// Alternatively, inline the hashing and don't build new label sets.
if on {
return func(lset labels.Labels) uint64 { return hashForLabels(lset, names...) }
}
return func(lset labels.Labels) uint64 { return hashWithoutLabels(lset, names...) }
}
// resultMetric returns the metric for the given sample(s) based on the Vector
// binary operation and the matching options.
func resultMetric(lhs, rhs labels.Labels, op itemType, matching *VectorMatching) labels.Labels {
// del and add hold modifications to the LHS input metric.
// Deletions are applied first.
del := make([]string, 0, 16)
add := make([]labels.Label, 0, 16)
if shouldDropMetricName(op) {
del = append(del, MetricNameLabel)
}
if matching.Card == CardOneToOne {
if matching.On {
Outer:
for _, l := range lhs {
for _, n := range matching.MatchingLabels {
if l.Name == n {
continue Outer
}
}
del = append(del, l.Name)
}
} else {
del = append(del, matching.MatchingLabels...)
}
}
for _, ln := range matching.Include {
// We always want to delete the include label on the LHS
// before adding an included one or not.
del = append(del, ln)
// Included labels from the `group_x` modifier are taken from the "one"-side.
if v := rhs.Get(ln); v != "" {
add = append(add, labels.Label{Name: ln, Value: v})
}
}
return modifiedLabels(lhs, del, add)
}
func modifiedLabels(lhs labels.Labels, del []string, add []labels.Label) labels.Labels {
res := make(labels.Labels, 0, len(lhs)+len(add)-len(del))
Outer:
for _, l := range lhs {
for _, n := range del {
if l.Name == n {
continue Outer
}
}
res = append(res, l)
}
res = append(res, add...)
sort.Sort(res)
return res
}
// VectorScalarBinop evaluates a binary operation between a Vector and a Scalar.
func (ev *evaluator) VectorScalarBinop(op itemType, lhs Vector, rhs Scalar, swap, returnBool bool) Vector {
vec := make(Vector, 0, len(lhs))
for _, lhsSample := range lhs {
lv, rv := lhsSample.Value, rhs.v
// lhs always contains the Vector. If the original position was different
// swap for calculating the value.
if swap {
lv, rv = rv, lv
}
value, keep := VectorElemBinop(op, lv, rv)
if returnBool {
if keep {
value = 1.0
} else {
value = 0.0
}
keep = true
}
if keep {
lhsSample.Value = value
lhsSample.Metric = copyLabels(lhsSample.Metric, shouldDropMetricName(op))
vec = append(vec, lhsSample)
}
}
return vec
}
func copyLabels(metric labels.Labels, withName bool) labels.Labels {
if withName {
cm := make(labels.Labels, len(metric))
copy(cm, metric)
return cm
}
cm := make(labels.Labels, 0, len(metric)-1)
for _, l := range metric {
if l.Name != MetricNameLabel {
cm = append(cm, l)
}
}
return cm
}
// ScalarBinop evaluates a binary operation between two Scalars.
func ScalarBinop(op itemType, lhs, rhs float64) float64 {
switch op {
case itemADD:
return lhs + rhs
case itemSUB:
return lhs - rhs
case itemMUL:
return lhs * rhs
case itemDIV:
return lhs / rhs
case itemPOW:
return math.Pow(float64(lhs), float64(rhs))
case itemMOD:
return math.Mod(float64(lhs), float64(rhs))
case itemEQL:
return btos(lhs == rhs)
case itemNEQ:
return btos(lhs != rhs)
case itemGTR:
return btos(lhs > rhs)
case itemLSS:
return btos(lhs < rhs)
case itemGTE:
return btos(lhs >= rhs)
case itemLTE:
return btos(lhs <= rhs)
}
panic(fmt.Errorf("operator %q not allowed for Scalar operations", op))
}
// VectorElemBinop evaluates a binary operation between two Vector elements.
func VectorElemBinop(op itemType, lhs, rhs float64) (float64, bool) {
switch op {
case itemADD:
return lhs + rhs, true
case itemSUB:
return lhs - rhs, true
case itemMUL:
return lhs * rhs, true
case itemDIV:
return lhs / rhs, true
case itemPOW:
return math.Pow(float64(lhs), float64(rhs)), true
case itemMOD:
return math.Mod(float64(lhs), float64(rhs)), true
case itemEQL:
return lhs, lhs == rhs
case itemNEQ:
return lhs, lhs != rhs
case itemGTR:
return lhs, lhs > rhs
case itemLSS:
return lhs, lhs < rhs
case itemGTE:
return lhs, lhs >= rhs
case itemLTE:
return lhs, lhs <= rhs
}
panic(fmt.Errorf("operator %q not allowed for operations between Vectors", op))
}
// intersection returns the metric of common label/value pairs of two input metrics.
func intersection(ls1, ls2 labels.Labels) labels.Labels {
res := make(labels.Labels, 0, 5)
for _, l1 := range ls1 {
for _, l2 := range ls2 {
if l1.Name == l2.Name && l1.Value == l2.Value {
res = append(res, l1)
continue
}
}
}
return res
}
type groupedAggregation struct {
labels labels.Labels
value float64
valuesSquaredSum float64
groupCount int
heap VectorByValueHeap
reverseHeap VectorByReverseValueHeap
}
// aggregation evaluates an aggregation operation on a Vector.
func (ev *evaluator) aggregation(op itemType, grouping []string, without bool, keepCommon bool, param Expr, vec Vector) Vector {
result := map[uint64]*groupedAggregation{}
var k int64
if op == itemTopK || op == itemBottomK {
k = ev.evalInt(param)
if k < 1 {
return Vector{}
}
}
var q float64
if op == itemQuantile {
q = ev.evalFloat(param)
}
var valueLabel string
if op == itemCountValues {
valueLabel = ev.evalString(param).s
if !without {
grouping = append(grouping, valueLabel)
}
}
for _, s := range vec {
var (
del []string
add []labels.Label
)
if without {
del = append(grouping, MetricNameLabel)
}
if op == itemCountValues {
del = append(del, valueLabel)
add = append(add, labels.Label{Name: valueLabel, Value: fmt.Sprintf("%f", s.Value)})
}
var (
metric = modifiedLabels(s.Metric, del, add)
groupingKey = metric.Hash()
)
group, ok := result[groupingKey]
// Add a new group if it doesn't exist.
if !ok {
var m labels.Labels
if keepCommon {
m = copyLabels(metric, false)
} else if without {
m = metric
} else {
m = make(labels.Labels, 0, len(grouping))
for _, l := range s.Metric {
for _, n := range grouping {
if l.Name == n {
m = append(m, labels.Label{Name: n, Value: l.Value})
break
}
}
}
}
result[groupingKey] = &groupedAggregation{
labels: m,
value: s.Value,
valuesSquaredSum: s.Value * s.Value,
groupCount: 1,
}
if op == itemTopK || op == itemQuantile {
result[groupingKey].heap = make(VectorByValueHeap, 0, k)
heap.Push(&result[groupingKey].heap, &sample{Value: s.Value, Metric: s.Metric})
} else if op == itemBottomK {
result[groupingKey].reverseHeap = make(VectorByReverseValueHeap, 0, k)
heap.Push(&result[groupingKey].reverseHeap, &sample{Value: s.Value, Metric: s.Metric})
}
continue
}
// Add the sample to the existing group.
if keepCommon {
group.labels = intersection(group.labels, s.Metric)
}
switch op {
case itemSum:
group.value += s.Value
case itemAvg:
group.value += s.Value
group.groupCount++
case itemMax:
if group.value < s.Value || math.IsNaN(float64(group.value)) {
group.value = s.Value
}
case itemMin:
if group.value > s.Value || math.IsNaN(float64(group.value)) {
group.value = s.Value
}
case itemCount, itemCountValues:
group.groupCount++
case itemStdvar, itemStddev:
group.value += s.Value
group.valuesSquaredSum += s.Value * s.Value
group.groupCount++
case itemTopK:
if int64(len(group.heap)) < k || group.heap[0].Value < s.Value || math.IsNaN(float64(group.heap[0].Value)) {
if int64(len(group.heap)) == k {
heap.Pop(&group.heap)
}
heap.Push(&group.heap, &sample{Value: s.Value, Metric: s.Metric})
}
case itemBottomK:
if int64(len(group.reverseHeap)) < k || group.reverseHeap[0].Value > s.Value || math.IsNaN(float64(group.reverseHeap[0].Value)) {
if int64(len(group.reverseHeap)) == k {
heap.Pop(&group.reverseHeap)
}
heap.Push(&group.reverseHeap, &sample{Value: s.Value, Metric: s.Metric})
}
case itemQuantile:
group.heap = append(group.heap, s)
default:
panic(fmt.Errorf("expected aggregation operator but got %q", op))
}
}
// Construct the result Vector from the aggregated groups.
resultVector := make(Vector, 0, len(result))
for _, aggr := range result {
switch op {
case itemAvg:
aggr.value = aggr.value / float64(aggr.groupCount)
case itemCount, itemCountValues:
aggr.value = float64(aggr.groupCount)
case itemStdvar:
avg := float64(aggr.value) / float64(aggr.groupCount)
aggr.value = float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg
case itemStddev:
avg := float64(aggr.value) / float64(aggr.groupCount)
aggr.value = math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)
case itemTopK:
// The heap keeps the lowest value on top, so reverse it.
sort.Sort(sort.Reverse(aggr.heap))
for _, v := range aggr.heap {
resultVector = append(resultVector, sample{
Metric: v.Metric,
Value: v.Value,
Timestamp: ev.Timestamp,
})
}
continue // Bypass default append.
case itemBottomK:
// The heap keeps the lowest value on top, so reverse it.
sort.Sort(sort.Reverse(aggr.reverseHeap))
for _, v := range aggr.reverseHeap {
resultVector = append(resultVector, sample{
Metric: v.Metric,
Value: v.Value,
Timestamp: ev.Timestamp,
})
}
continue // Bypass default append.
case itemQuantile:
aggr.value = quantile(q, aggr.heap)
default:
// For other aggregations, we already have the right value.
}
resultVector = append(resultVector, sample{
Metric: aggr.labels,
Value: aggr.value,
Timestamp: ev.Timestamp,
})
}
return resultVector
}
// btos returns 1 if b is true, 0 otherwise.
func btos(b bool) float64 {
if b {
return 1
}
return 0
}
// shouldDropMetricName returns whether the metric name should be dropped in the
// result of the op operation.
func shouldDropMetricName(op itemType) bool {
switch op {
case itemADD, itemSUB, itemDIV, itemMUL, itemMOD:
return true
default:
return false
}
}
// StalenessDelta determines the time since the last sample after which a time
// series is considered stale.
var StalenessDelta = 5 * time.Minute
// A queryGate controls the maximum number of concurrently running and waiting queries.
type queryGate struct {
ch chan struct{}
}
// newQueryGate returns a query gate that limits the number of queries
// being concurrently executed.
func newQueryGate(length int) *queryGate {
return &queryGate{
ch: make(chan struct{}, length),
}
}
// Start blocks until the gate has a free spot or the context is done.
func (g *queryGate) Start(ctx context.Context) error {
select {
case <-ctx.Done():
return contextDone(ctx, "query queue")
case g.ch <- struct{}{}:
return nil
}
}
// Done releases a single spot in the gate.
func (g *queryGate) Done() {
select {
case <-g.ch:
default:
panic("engine.queryGate.Done: more operations done than started")
}
}
// documentedType returns the internal type to the equivalent
// user facing terminology as defined in the documentation.
func documentedType(t ValueType) string {
switch t {
case "Vector":
return "instant Vector"
case "Matrix":
return "range Vector"
default:
return string(t)
}
}