prometheus/storage/local/mapper.go
2015-05-21 01:38:50 +02:00

182 lines
5.7 KiB
Go

package local
import (
"fmt"
"sort"
"strings"
"sync"
"sync/atomic"
"github.com/prometheus/log"
clientmodel "github.com/prometheus/client_golang/model"
)
const maxMappedFP = 1 << 20 // About 1M fingerprints reserved for mapping.
var separatorString = string([]byte{clientmodel.SeparatorByte})
// fpMappings maps original fingerprints to a map of string representations of
// metrics to the truly unique fingerprint.
type fpMappings map[clientmodel.Fingerprint]map[string]clientmodel.Fingerprint
// fpMapper is used to map fingerprints in order to work around fingerprint
// collisions.
type fpMapper struct {
// highestMappedFP has to be aligned for atomic operations.
highestMappedFP clientmodel.Fingerprint
mtx sync.RWMutex // Protects mappings.
mappings fpMappings
fpToSeries *seriesMap
p *persistence
}
// newFPMapper loads the collision map from the persistence and
// returns an fpMapper ready to use.
func newFPMapper(fpToSeries *seriesMap, p *persistence) (*fpMapper, error) {
r := &fpMapper{
fpToSeries: fpToSeries,
p: p,
}
mappings, nextFP, err := p.loadFPMappings()
if err != nil {
return nil, err
}
r.mappings = mappings
r.highestMappedFP = nextFP
return r, nil
}
// mapFP takes a raw fingerprint (as returned by Metrics.FastFingerprint) and
// returns a truly unique fingerprint. The caller must have locked the raw
// fingerprint.
//
// If an error is encountered, it is returned together with the unchanged raw
// fingerprint.
func (r *fpMapper) mapFP(fp clientmodel.Fingerprint, m clientmodel.Metric) (clientmodel.Fingerprint, error) {
// First check if we are in the reserved FP space, in which case this is
// automatically a collision that has to be mapped.
if fp <= maxMappedFP {
return r.maybeAddMapping(fp, m)
}
// Then check the most likely case: This fp belongs to a series that is
// already in memory.
s, ok := r.fpToSeries.get(fp)
if ok {
// FP exists in memory, but is it for the same metric?
if m.Equal(s.metric) {
// Yupp. We are done.
return fp, nil
}
// Collision detected!
return r.maybeAddMapping(fp, m)
}
// Metric is not in memory. Before doing the expensive archive lookup,
// check if we have a mapping for this metric in place already.
r.mtx.RLock()
mappedFPs, fpAlreadyMapped := r.mappings[fp]
r.mtx.RUnlock()
if fpAlreadyMapped {
// We indeed have mapped fp historically.
ms := metricToUniqueString(m)
// fp is locked by the caller, so no further locking of
// 'collisions' required (it is specific to fp).
mappedFP, ok := mappedFPs[ms]
if ok {
// Historical mapping found, return the mapped FP.
return mappedFP, nil
}
}
// If we are here, FP does not exist in memory and is either not mapped
// at all, or existing mappings for FP are not for m. Check if we have
// something for FP in the archive.
archivedMetric, err := r.p.getArchivedMetric(fp)
if err != nil {
return fp, err
}
if archivedMetric != nil {
// FP exists in archive, but is it for the same metric?
if m.Equal(archivedMetric) {
// Yupp. We are done.
return fp, nil
}
// Collision detected!
return r.maybeAddMapping(fp, m)
}
// As fp does not exist, neither in memory nor in archive, we can safely
// keep it unmapped.
return fp, nil
}
// maybeAddMapping is only used internally. It takes a detected collision and
// adds it to the collisions map if not yet there. In any case, it returns the
// truly unique fingerprint for the colliding metric.
func (r *fpMapper) maybeAddMapping(
fp clientmodel.Fingerprint,
collidingMetric clientmodel.Metric,
) (clientmodel.Fingerprint, error) {
ms := metricToUniqueString(collidingMetric)
r.mtx.RLock()
mappedFPs, ok := r.mappings[fp]
r.mtx.RUnlock()
if ok {
// fp is locked by the caller, so no further locking required.
mappedFP, ok := mappedFPs[ms]
if ok {
return mappedFP, nil // Existing mapping.
}
// A new mapping has to be created.
mappedFP = r.nextMappedFP()
mappedFPs[ms] = mappedFP
r.mtx.RLock()
// Checkpoint mappings after each change.
err := r.p.checkpointFPMappings(r.mappings)
r.mtx.RUnlock()
log.Infof(
"Collision detected for fingerprint %v, metric %v, mapping to new fingerprint %v.",
fp, collidingMetric, mappedFP,
)
return mappedFP, err
}
// This is the first collision for fp.
mappedFP := r.nextMappedFP()
mappedFPs = map[string]clientmodel.Fingerprint{ms: mappedFP}
r.mtx.Lock()
r.mappings[fp] = mappedFPs
// Checkpoint mappings after each change.
err := r.p.checkpointFPMappings(r.mappings)
r.mtx.Unlock()
log.Infof(
"Collision detected for fingerprint %v, metric %v, mapping to new fingerprint %v.",
fp, collidingMetric, mappedFP,
)
return mappedFP, err
}
func (r *fpMapper) nextMappedFP() clientmodel.Fingerprint {
mappedFP := clientmodel.Fingerprint(atomic.AddUint64((*uint64)(&r.highestMappedFP), 1))
if mappedFP > maxMappedFP {
panic(fmt.Errorf("more than %v fingerprints mapped in collision detection", maxMappedFP))
}
return mappedFP
}
// metricToUniqueString turns a metric into a string in a reproducible and
// unique way, i.e. the same metric will always create the same string, and
// different metrics will always create different strings. In a way, it is the
// "ideal" fingerprint function, only that it is more expensive than the
// FastFingerprint function, and its result is not suitable as a key for maps
// and indexes as it might become really large, causing a lot of hashing effort
// in maps and a lot of storage overhead in indexes.
func metricToUniqueString(m clientmodel.Metric) string {
parts := make([]string, 0, len(m))
for ln, lv := range m {
parts = append(parts, string(ln)+separatorString+string(lv))
}
sort.Strings(parts)
return strings.Join(parts, separatorString)
}