prometheus/model/labels/regexp.go
Oleg Zaytsev 8b4c9459a2
Check utf8.RuneError result
Signed-off-by: Oleg Zaytsev <mail@olegzaytsev.com>
2024-05-13 17:44:26 +02:00

943 lines
27 KiB
Go

// Copyright 2020 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package labels
import (
"slices"
"strings"
"unicode/utf8"
"github.com/grafana/regexp"
"github.com/grafana/regexp/syntax"
)
const (
maxSetMatches = 256
// The minimum number of alternate values a regex should have to trigger
// the optimization done by optimizeEqualStringMatchers() and so use a map
// to match values instead of iterating over a list. This value has
// been computed running BenchmarkOptimizeEqualStringMatchers.
minEqualMultiStringMatcherMapThreshold = 16
)
type FastRegexMatcher struct {
// Under some conditions, re is nil because the expression is never parsed.
// We store the original string to be able to return it in GetRegexString().
reString string
re *regexp.Regexp
setMatches []string
stringMatcher StringMatcher
prefix string
suffix string
contains string
// matchString is the "compiled" function to run by MatchString().
matchString func(string) bool
}
func NewFastRegexMatcher(v string) (*FastRegexMatcher, error) {
m := &FastRegexMatcher{
reString: v,
}
m.stringMatcher, m.setMatches = optimizeAlternatingLiterals(v)
if m.stringMatcher != nil {
// If we already have a string matcher, we don't need to parse the regex
// or compile the matchString function. This also avoids the behavior in
// compileMatchStringFunction where it prefers to use setMatches when
// available, even if the string matcher is faster.
m.matchString = m.stringMatcher.Matches
} else {
parsed, err := syntax.Parse(v, syntax.Perl)
if err != nil {
return nil, err
}
// Simplify the syntax tree to run faster.
parsed = parsed.Simplify()
m.re, err = regexp.Compile("^(?:" + parsed.String() + ")$")
if err != nil {
return nil, err
}
if parsed.Op == syntax.OpConcat {
m.prefix, m.suffix, m.contains = optimizeConcatRegex(parsed)
}
if matches, caseSensitive := findSetMatches(parsed); caseSensitive {
m.setMatches = matches
}
m.stringMatcher = stringMatcherFromRegexp(parsed)
m.matchString = m.compileMatchStringFunction()
}
return m, nil
}
// compileMatchStringFunction returns the function to run by MatchString().
func (m *FastRegexMatcher) compileMatchStringFunction() func(string) bool {
// If the only optimization available is the string matcher, then we can just run it.
if len(m.setMatches) == 0 && m.prefix == "" && m.suffix == "" && m.contains == "" && m.stringMatcher != nil {
return m.stringMatcher.Matches
}
return func(s string) bool {
if len(m.setMatches) != 0 {
for _, match := range m.setMatches {
if match == s {
return true
}
}
return false
}
if m.prefix != "" && !strings.HasPrefix(s, m.prefix) {
return false
}
if m.suffix != "" && !strings.HasSuffix(s, m.suffix) {
return false
}
if m.contains != "" && !strings.Contains(s, m.contains) {
return false
}
if m.stringMatcher != nil {
return m.stringMatcher.Matches(s)
}
return m.re.MatchString(s)
}
}
// IsOptimized returns true if any fast-path optimization is applied to the
// regex matcher.
func (m *FastRegexMatcher) IsOptimized() bool {
return len(m.setMatches) > 0 || m.stringMatcher != nil || m.prefix != "" || m.suffix != "" || m.contains != ""
}
// findSetMatches extract equality matches from a regexp.
// Returns nil if we can't replace the regexp by only equality matchers or the regexp contains
// a mix of case sensitive and case insensitive matchers.
func findSetMatches(re *syntax.Regexp) (matches []string, caseSensitive bool) {
clearBeginEndText(re)
return findSetMatchesInternal(re, "")
}
func findSetMatchesInternal(re *syntax.Regexp, base string) (matches []string, caseSensitive bool) {
switch re.Op {
case syntax.OpBeginText:
// Correctly handling the begin text operator inside a regex is tricky,
// so in this case we fallback to the regex engine.
return nil, false
case syntax.OpEndText:
// Correctly handling the end text operator inside a regex is tricky,
// so in this case we fallback to the regex engine.
return nil, false
case syntax.OpLiteral:
return []string{base + string(re.Rune)}, isCaseSensitive(re)
case syntax.OpEmptyMatch:
if base != "" {
return []string{base}, isCaseSensitive(re)
}
case syntax.OpAlternate:
return findSetMatchesFromAlternate(re, base)
case syntax.OpCapture:
clearCapture(re)
return findSetMatchesInternal(re, base)
case syntax.OpConcat:
return findSetMatchesFromConcat(re, base)
case syntax.OpCharClass:
if len(re.Rune)%2 != 0 {
return nil, false
}
var matches []string
var totalSet int
for i := 0; i+1 < len(re.Rune); i += 2 {
totalSet += int(re.Rune[i+1]-re.Rune[i]) + 1
}
// limits the total characters that can be used to create matches.
// In some case like negation [^0-9] a lot of possibilities exists and that
// can create thousands of possible matches at which points we're better off using regexp.
if totalSet > maxSetMatches {
return nil, false
}
for i := 0; i+1 < len(re.Rune); i += 2 {
lo, hi := re.Rune[i], re.Rune[i+1]
for c := lo; c <= hi; c++ {
matches = append(matches, base+string(c))
}
}
return matches, isCaseSensitive(re)
default:
return nil, false
}
return nil, false
}
func findSetMatchesFromConcat(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) {
if len(re.Sub) == 0 {
return nil, false
}
clearCapture(re.Sub...)
matches = []string{base}
for i := 0; i < len(re.Sub); i++ {
var newMatches []string
for j, b := range matches {
m, caseSensitive := findSetMatchesInternal(re.Sub[i], b)
if m == nil {
return nil, false
}
if tooManyMatches(newMatches, m...) {
return nil, false
}
// All matches must have the same case sensitivity. If it's the first set of matches
// returned, we store its sensitivity as the expected case, and then we'll check all
// other ones.
if i == 0 && j == 0 {
matchesCaseSensitive = caseSensitive
}
if matchesCaseSensitive != caseSensitive {
return nil, false
}
newMatches = append(newMatches, m...)
}
matches = newMatches
}
return matches, matchesCaseSensitive
}
func findSetMatchesFromAlternate(re *syntax.Regexp, base string) (matches []string, matchesCaseSensitive bool) {
for i, sub := range re.Sub {
found, caseSensitive := findSetMatchesInternal(sub, base)
if found == nil {
return nil, false
}
if tooManyMatches(matches, found...) {
return nil, false
}
// All matches must have the same case sensitivity. If it's the first set of matches
// returned, we store its sensitivity as the expected case, and then we'll check all
// other ones.
if i == 0 {
matchesCaseSensitive = caseSensitive
}
if matchesCaseSensitive != caseSensitive {
return nil, false
}
matches = append(matches, found...)
}
return matches, matchesCaseSensitive
}
// clearCapture removes capture operation as they are not used for matching.
func clearCapture(regs ...*syntax.Regexp) {
for _, r := range regs {
// Iterate on the regexp because capture groups could be nested.
for r.Op == syntax.OpCapture {
*r = *r.Sub[0]
}
}
}
// clearBeginEndText removes the begin and end text from the regexp. Prometheus regexp are anchored to the beginning and end of the string.
func clearBeginEndText(re *syntax.Regexp) {
// Do not clear begin/end text from an alternate operator because it could
// change the actual regexp properties.
if re.Op == syntax.OpAlternate {
return
}
if len(re.Sub) == 0 {
return
}
if len(re.Sub) == 1 {
if re.Sub[0].Op == syntax.OpBeginText || re.Sub[0].Op == syntax.OpEndText {
// We need to remove this element. Since it's the only one, we convert into a matcher of an empty string.
// OpEmptyMatch is regexp's nop operator.
re.Op = syntax.OpEmptyMatch
re.Sub = nil
return
}
}
if re.Sub[0].Op == syntax.OpBeginText {
re.Sub = re.Sub[1:]
}
if re.Sub[len(re.Sub)-1].Op == syntax.OpEndText {
re.Sub = re.Sub[:len(re.Sub)-1]
}
}
// isCaseInsensitive tells if a regexp is case insensitive.
// The flag should be check at each level of the syntax tree.
func isCaseInsensitive(reg *syntax.Regexp) bool {
return (reg.Flags & syntax.FoldCase) != 0
}
// isCaseSensitive tells if a regexp is case sensitive.
// The flag should be check at each level of the syntax tree.
func isCaseSensitive(reg *syntax.Regexp) bool {
return !isCaseInsensitive(reg)
}
// tooManyMatches guards against creating too many set matches.
func tooManyMatches(matches []string, added ...string) bool {
return len(matches)+len(added) > maxSetMatches
}
func (m *FastRegexMatcher) MatchString(s string) bool {
return m.matchString(s)
}
func (m *FastRegexMatcher) SetMatches() []string {
// IMPORTANT: always return a copy, otherwise if the caller manipulate this slice it will
// also get manipulated in the cached FastRegexMatcher instance.
return slices.Clone(m.setMatches)
}
func (m *FastRegexMatcher) GetRegexString() string {
return m.reString
}
// optimizeAlternatingLiterals optimizes a regex of the form
//
// `literal1|literal2|literal3|...`
//
// this function returns an optimized StringMatcher or nil if the regex
// cannot be optimized in this way, and a list of setMatches up to maxSetMatches.
func optimizeAlternatingLiterals(s string) (StringMatcher, []string) {
if len(s) == 0 {
return emptyStringMatcher{}, nil
}
estimatedAlternates := strings.Count(s, "|") + 1
// If there are no alternates, check if the string is a literal
if estimatedAlternates == 1 {
if regexp.QuoteMeta(s) == s {
return &equalStringMatcher{s: s, caseSensitive: true}, []string{s}
}
return nil, nil
}
multiMatcher := newEqualMultiStringMatcher(true, estimatedAlternates)
for end := strings.IndexByte(s, '|'); end > -1; end = strings.IndexByte(s, '|') {
// Split the string into the next literal and the remainder
subMatch := s[:end]
s = s[end+1:]
// break if any of the submatches are not literals
if regexp.QuoteMeta(subMatch) != subMatch {
return nil, nil
}
multiMatcher.add(subMatch)
}
// break if the remainder is not a literal
if regexp.QuoteMeta(s) != s {
return nil, nil
}
multiMatcher.add(s)
return multiMatcher, multiMatcher.setMatches()
}
// optimizeConcatRegex returns literal prefix/suffix text that can be safely
// checked against the label value before running the regexp matcher.
func optimizeConcatRegex(r *syntax.Regexp) (prefix, suffix, contains string) {
sub := r.Sub
// We can safely remove begin and end text matchers respectively
// at the beginning and end of the regexp.
if len(sub) > 0 && sub[0].Op == syntax.OpBeginText {
sub = sub[1:]
}
if len(sub) > 0 && sub[len(sub)-1].Op == syntax.OpEndText {
sub = sub[:len(sub)-1]
}
if len(sub) == 0 {
return
}
// Given Prometheus regex matchers are always anchored to the begin/end
// of the text, if the first/last operations are literals, we can safely
// treat them as prefix/suffix.
if sub[0].Op == syntax.OpLiteral && (sub[0].Flags&syntax.FoldCase) == 0 {
prefix = string(sub[0].Rune)
}
if last := len(sub) - 1; sub[last].Op == syntax.OpLiteral && (sub[last].Flags&syntax.FoldCase) == 0 {
suffix = string(sub[last].Rune)
}
// If contains any literal which is not a prefix/suffix, we keep the
// 1st one. We do not keep the whole list of literals to simplify the
// fast path.
for i := 1; i < len(sub)-1; i++ {
if sub[i].Op == syntax.OpLiteral && (sub[i].Flags&syntax.FoldCase) == 0 {
contains = string(sub[i].Rune)
break
}
}
return
}
// StringMatcher is a matcher that matches a string in place of a regular expression.
type StringMatcher interface {
Matches(s string) bool
}
// stringMatcherFromRegexp attempts to replace a common regexp with a string matcher.
// It returns nil if the regexp is not supported.
func stringMatcherFromRegexp(re *syntax.Regexp) StringMatcher {
clearBeginEndText(re)
m := stringMatcherFromRegexpInternal(re)
m = optimizeEqualStringMatchers(m, minEqualMultiStringMatcherMapThreshold)
return m
}
func stringMatcherFromRegexpInternal(re *syntax.Regexp) StringMatcher {
clearCapture(re)
switch re.Op {
case syntax.OpBeginText:
// Correctly handling the begin text operator inside a regex is tricky,
// so in this case we fallback to the regex engine.
return nil
case syntax.OpEndText:
// Correctly handling the end text operator inside a regex is tricky,
// so in this case we fallback to the regex engine.
return nil
case syntax.OpPlus:
if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL {
return nil
}
return &anyNonEmptyStringMatcher{
matchNL: re.Sub[0].Op == syntax.OpAnyChar,
}
case syntax.OpStar:
if re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL {
return nil
}
// If the newline is valid, than this matcher literally match any string (even empty).
if re.Sub[0].Op == syntax.OpAnyChar {
return trueMatcher{}
}
// Any string is fine (including an empty one), as far as it doesn't contain any newline.
return anyStringWithoutNewlineMatcher{}
case syntax.OpQuest:
// Only optimize for ".?".
if len(re.Sub) != 1 || (re.Sub[0].Op != syntax.OpAnyChar && re.Sub[0].Op != syntax.OpAnyCharNotNL) {
return nil
}
return &zeroOrOneCharacterStringMatcher{
matchNL: re.Sub[0].Op == syntax.OpAnyChar,
}
case syntax.OpEmptyMatch:
return emptyStringMatcher{}
case syntax.OpLiteral:
return &equalStringMatcher{
s: string(re.Rune),
caseSensitive: !isCaseInsensitive(re),
}
case syntax.OpAlternate:
or := make([]StringMatcher, 0, len(re.Sub))
for _, sub := range re.Sub {
m := stringMatcherFromRegexpInternal(sub)
if m == nil {
return nil
}
or = append(or, m)
}
return orStringMatcher(or)
case syntax.OpConcat:
clearCapture(re.Sub...)
if len(re.Sub) == 0 {
return emptyStringMatcher{}
}
if len(re.Sub) == 1 {
return stringMatcherFromRegexpInternal(re.Sub[0])
}
var left, right StringMatcher
// Let's try to find if there's a first and last any matchers.
if re.Sub[0].Op == syntax.OpPlus || re.Sub[0].Op == syntax.OpStar || re.Sub[0].Op == syntax.OpQuest {
left = stringMatcherFromRegexpInternal(re.Sub[0])
if left == nil {
return nil
}
re.Sub = re.Sub[1:]
}
if re.Sub[len(re.Sub)-1].Op == syntax.OpPlus || re.Sub[len(re.Sub)-1].Op == syntax.OpStar || re.Sub[len(re.Sub)-1].Op == syntax.OpQuest {
right = stringMatcherFromRegexpInternal(re.Sub[len(re.Sub)-1])
if right == nil {
return nil
}
re.Sub = re.Sub[:len(re.Sub)-1]
}
matches, matchesCaseSensitive := findSetMatchesInternal(re, "")
if len(matches) == 0 && len(re.Sub) == 2 {
// We have not find fixed set matches. We look for other known cases that
// we can optimize.
switch {
// Prefix is literal.
case right == nil && re.Sub[0].Op == syntax.OpLiteral:
right = stringMatcherFromRegexpInternal(re.Sub[1])
if right != nil {
matches = []string{string(re.Sub[0].Rune)}
matchesCaseSensitive = !isCaseInsensitive(re.Sub[0])
}
// Suffix is literal.
case left == nil && re.Sub[1].Op == syntax.OpLiteral:
left = stringMatcherFromRegexpInternal(re.Sub[0])
if left != nil {
matches = []string{string(re.Sub[1].Rune)}
matchesCaseSensitive = !isCaseInsensitive(re.Sub[1])
}
}
}
// Ensure we've found some literals to match (optionally with a left and/or right matcher).
// If not, then this optimization doesn't trigger.
if len(matches) == 0 {
return nil
}
// Use the right (and best) matcher based on what we've found.
switch {
// No left and right matchers (only fixed set matches).
case left == nil && right == nil:
// if there's no any matchers on both side it's a concat of literals
or := make([]StringMatcher, 0, len(matches))
for _, match := range matches {
or = append(or, &equalStringMatcher{
s: match,
caseSensitive: matchesCaseSensitive,
})
}
return orStringMatcher(or)
// Right matcher with 1 fixed set match.
case left == nil && len(matches) == 1:
return &literalPrefixStringMatcher{
prefix: matches[0],
prefixCaseSensitive: matchesCaseSensitive,
right: right,
}
// Left matcher with 1 fixed set match.
case right == nil && len(matches) == 1:
return &literalSuffixStringMatcher{
left: left,
suffix: matches[0],
suffixCaseSensitive: matchesCaseSensitive,
}
// We found literals in the middle. We can trigger the fast path only if
// the matches are case sensitive because containsStringMatcher doesn't
// support case insensitive.
case matchesCaseSensitive:
return &containsStringMatcher{
substrings: matches,
left: left,
right: right,
}
}
}
return nil
}
// containsStringMatcher matches a string if it contains any of the substrings.
// If left and right are not nil, it's a contains operation where left and right must match.
// If left is nil, it's a hasPrefix operation and right must match.
// Finally, if right is nil it's a hasSuffix operation and left must match.
type containsStringMatcher struct {
// The matcher that must match the left side. Can be nil.
left StringMatcher
// At least one of these strings must match in the "middle", between left and right matchers.
substrings []string
// The matcher that must match the right side. Can be nil.
right StringMatcher
}
func (m *containsStringMatcher) Matches(s string) bool {
for _, substr := range m.substrings {
switch {
case m.right != nil && m.left != nil:
searchStartPos := 0
for {
pos := strings.Index(s[searchStartPos:], substr)
if pos < 0 {
break
}
// Since we started searching from searchStartPos, we have to add that offset
// to get the actual position of the substring inside the text.
pos += searchStartPos
// If both the left and right matchers match, then we can stop searching because
// we've found a match.
if m.left.Matches(s[:pos]) && m.right.Matches(s[pos+len(substr):]) {
return true
}
// Continue searching for another occurrence of the substring inside the text.
searchStartPos = pos + 1
}
case m.left != nil:
// If we have to check for characters on the left then we need to match a suffix.
if strings.HasSuffix(s, substr) && m.left.Matches(s[:len(s)-len(substr)]) {
return true
}
case m.right != nil:
if strings.HasPrefix(s, substr) && m.right.Matches(s[len(substr):]) {
return true
}
}
}
return false
}
// literalPrefixStringMatcher matches a string with the given literal prefix and right side matcher.
type literalPrefixStringMatcher struct {
prefix string
prefixCaseSensitive bool
// The matcher that must match the right side. Can be nil.
right StringMatcher
}
func (m *literalPrefixStringMatcher) Matches(s string) bool {
// Ensure the prefix matches.
if m.prefixCaseSensitive && !strings.HasPrefix(s, m.prefix) {
return false
}
if !m.prefixCaseSensitive && !hasPrefixCaseInsensitive(s, m.prefix) {
return false
}
// Ensure the right side matches.
return m.right.Matches(s[len(m.prefix):])
}
// literalSuffixStringMatcher matches a string with the given literal suffix and left side matcher.
type literalSuffixStringMatcher struct {
// The matcher that must match the left side. Can be nil.
left StringMatcher
suffix string
suffixCaseSensitive bool
}
func (m *literalSuffixStringMatcher) Matches(s string) bool {
// Ensure the suffix matches.
if m.suffixCaseSensitive && !strings.HasSuffix(s, m.suffix) {
return false
}
if !m.suffixCaseSensitive && !hasSuffixCaseInsensitive(s, m.suffix) {
return false
}
// Ensure the left side matches.
return m.left.Matches(s[:len(s)-len(m.suffix)])
}
// emptyStringMatcher matches an empty string.
type emptyStringMatcher struct{}
func (m emptyStringMatcher) Matches(s string) bool {
return len(s) == 0
}
// orStringMatcher matches any of the sub-matchers.
type orStringMatcher []StringMatcher
func (m orStringMatcher) Matches(s string) bool {
for _, matcher := range m {
if matcher.Matches(s) {
return true
}
}
return false
}
// equalStringMatcher matches a string exactly and support case insensitive.
type equalStringMatcher struct {
s string
caseSensitive bool
}
func (m *equalStringMatcher) Matches(s string) bool {
if m.caseSensitive {
return m.s == s
}
return strings.EqualFold(m.s, s)
}
type multiStringMatcherBuilder interface {
StringMatcher
add(s string)
setMatches() []string
}
func newEqualMultiStringMatcher(caseSensitive bool, estimatedSize int) multiStringMatcherBuilder {
// If the estimated size is low enough, it's faster to use a slice instead of a map.
if estimatedSize < minEqualMultiStringMatcherMapThreshold {
return &equalMultiStringSliceMatcher{caseSensitive: caseSensitive, values: make([]string, 0, estimatedSize)}
}
return &equalMultiStringMapMatcher{
values: make(map[string]struct{}, estimatedSize),
caseSensitive: caseSensitive,
}
}
// equalMultiStringSliceMatcher matches a string exactly against a slice of valid values.
type equalMultiStringSliceMatcher struct {
values []string
caseSensitive bool
}
func (m *equalMultiStringSliceMatcher) add(s string) {
m.values = append(m.values, s)
}
func (m *equalMultiStringSliceMatcher) setMatches() []string {
return m.values
}
func (m *equalMultiStringSliceMatcher) Matches(s string) bool {
if m.caseSensitive {
for _, v := range m.values {
if s == v {
return true
}
}
} else {
for _, v := range m.values {
if strings.EqualFold(s, v) {
return true
}
}
}
return false
}
// equalMultiStringMapMatcher matches a string exactly against a map of valid values.
type equalMultiStringMapMatcher struct {
// values contains values to match a string against. If the matching is case insensitive,
// the values here must be lowercase.
values map[string]struct{}
caseSensitive bool
}
func (m *equalMultiStringMapMatcher) add(s string) {
if !m.caseSensitive {
s = strings.ToLower(s)
}
m.values[s] = struct{}{}
}
func (m *equalMultiStringMapMatcher) setMatches() []string {
if len(m.values) >= maxSetMatches {
return nil
}
matches := make([]string, 0, len(m.values))
for s := range m.values {
matches = append(matches, s)
}
return matches
}
func (m *equalMultiStringMapMatcher) Matches(s string) bool {
if !m.caseSensitive {
s = strings.ToLower(s)
}
_, ok := m.values[s]
return ok
}
// anyStringWithoutNewlineMatcher is a stringMatcher which matches any string
// (including an empty one) as far as it doesn't contain any newline character.
type anyStringWithoutNewlineMatcher struct{}
func (m anyStringWithoutNewlineMatcher) Matches(s string) bool {
// We need to make sure it doesn't contain a newline. Since the newline is
// an ASCII character, we can use strings.IndexByte().
return strings.IndexByte(s, '\n') == -1
}
// anyNonEmptyStringMatcher is a stringMatcher which matches any non-empty string.
type anyNonEmptyStringMatcher struct {
matchNL bool
}
func (m *anyNonEmptyStringMatcher) Matches(s string) bool {
if m.matchNL {
// It's OK if the string contains a newline so we just need to make
// sure it's non-empty.
return len(s) > 0
}
// We need to make sure it non-empty and doesn't contain a newline.
// Since the newline is an ASCII character, we can use strings.IndexByte().
return len(s) > 0 && strings.IndexByte(s, '\n') == -1
}
// zeroOrOneCharacterStringMatcher is a StringMatcher which matches zero or one occurrence
// of any character. The newline character is matches only if matchNL is set to true.
type zeroOrOneCharacterStringMatcher struct {
matchNL bool
}
func (m *zeroOrOneCharacterStringMatcher) Matches(s string) bool {
// If there's more than one rune in the string, then it can't match.
if r, size := utf8.DecodeRuneInString(s); r == utf8.RuneError {
// Size is 0 for empty strings, 1 for invalid rune.
// Empty string matches, invalid rune matches if there isn't anything else.
return size == len(s)
} else if size < len(s) {
return false
}
// No need to check for the newline if the string is empty or matching a newline is OK.
if m.matchNL || len(s) == 0 {
return true
}
return s[0] != '\n'
}
// trueMatcher is a stringMatcher which matches any string (always returns true).
type trueMatcher struct{}
func (m trueMatcher) Matches(_ string) bool {
return true
}
// optimizeEqualStringMatchers optimize a specific case where all matchers are made by an
// alternation (orStringMatcher) of strings checked for equality (equalStringMatcher). In
// this specific case, when we have many strings to match against we can use a map instead
// of iterating over the list of strings.
func optimizeEqualStringMatchers(input StringMatcher, threshold int) StringMatcher {
var (
caseSensitive bool
caseSensitiveSet bool
numValues int
)
// Analyse the input StringMatcher to count the number of occurrences
// and ensure all of them have the same case sensitivity.
analyseCallback := func(matcher *equalStringMatcher) bool {
// Ensure we don't have mixed case sensitivity.
if caseSensitiveSet && caseSensitive != matcher.caseSensitive {
return false
} else if !caseSensitiveSet {
caseSensitive = matcher.caseSensitive
caseSensitiveSet = true
}
numValues++
return true
}
if !findEqualStringMatchers(input, analyseCallback) {
return input
}
// If the number of values found is less than the threshold, then we should skip the optimization.
if numValues < threshold {
return input
}
// Parse again the input StringMatcher to extract all values and storing them.
// We can skip the case sensitivity check because we've already checked it and
// if the code reach this point then it means all matchers have the same case sensitivity.
multiMatcher := newEqualMultiStringMatcher(caseSensitive, numValues)
// Ignore the return value because we already iterated over the input StringMatcher
// and it was all good.
findEqualStringMatchers(input, func(matcher *equalStringMatcher) bool {
multiMatcher.add(matcher.s)
return true
})
return multiMatcher
}
// findEqualStringMatchers analyze the input StringMatcher and calls the callback for each
// equalStringMatcher found. Returns true if and only if the input StringMatcher is *only*
// composed by an alternation of equalStringMatcher.
func findEqualStringMatchers(input StringMatcher, callback func(matcher *equalStringMatcher) bool) bool {
orInput, ok := input.(orStringMatcher)
if !ok {
return false
}
for _, m := range orInput {
switch casted := m.(type) {
case orStringMatcher:
if !findEqualStringMatchers(m, callback) {
return false
}
case *equalStringMatcher:
if !callback(casted) {
return false
}
default:
// It's not an equal string matcher, so we have to stop searching
// cause this optimization can't be applied.
return false
}
}
return true
}
func hasPrefixCaseInsensitive(s, prefix string) bool {
return len(s) >= len(prefix) && strings.EqualFold(s[0:len(prefix)], prefix)
}
func hasSuffixCaseInsensitive(s, suffix string) bool {
return len(s) >= len(suffix) && strings.EqualFold(s[len(s)-len(suffix):], suffix)
}