mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-16 00:08:39 -08:00
ff08f0b6fe
Fixes https://github.com/prometheus/prometheus/issues/481 While doing so, clean up and fix a few other things: - Fix `go vet` warnings (@fabxc to blame ;). - Fix a racey problem with unarchiving: Whenever we unarchive a series, we essentially want to do something with it. However, until we have done something with it, it appears like a series that is ready to be archived or even purged. So e.g. it would be ignored during checkpointing. With this fix, we always load the chunkDescs upon unarchiving. This is wasteful if we only want to add a new sample to an archived time series, but the (presumably more common) case where we access an archived time series in a query doesn't become more expensive. - The change above streamlined the getOrCreateSeries ond newMemorySeries flow. Also, the modTime is now always set correctly. - Fix the leveldb-backed implementation of KeyValueStore.Delete. It had the wrong behavior of still returning true, nil if a non-existing key has been passed in.
576 lines
16 KiB
Go
576 lines
16 KiB
Go
// Copyright 2014 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package local
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"sort"
|
|
|
|
clientmodel "github.com/prometheus/client_golang/model"
|
|
|
|
"github.com/prometheus/prometheus/storage/metric"
|
|
)
|
|
|
|
// The 37-byte header of a delta-encoded chunk looks like:
|
|
//
|
|
// - used buf bytes: 2 bytes
|
|
// - time double-delta bytes: 1 bytes
|
|
// - value double-delta bytes: 1 bytes
|
|
// - is integer: 1 byte
|
|
// - base time: 8 bytes
|
|
// - base value: 8 bytes
|
|
// - base time delta: 8 bytes
|
|
// - base value delta: 8 bytes
|
|
const (
|
|
doubleDeltaHeaderBytes = 37
|
|
|
|
doubleDeltaHeaderBufLenOffset = 0
|
|
doubleDeltaHeaderTimeBytesOffset = 2
|
|
doubleDeltaHeaderValueBytesOffset = 3
|
|
doubleDeltaHeaderIsIntOffset = 4
|
|
doubleDeltaHeaderBaseTimeOffset = 5
|
|
doubleDeltaHeaderBaseValueOffset = 13
|
|
doubleDeltaHeaderBaseTimeDeltaOffset = 21
|
|
doubleDeltaHeaderBaseValueDeltaOffset = 29
|
|
)
|
|
|
|
// A doubleDeltaEncodedChunk adaptively stores sample timestamps and values with
|
|
// a double-delta encoding of various types (int, float) and bit widths. A base
|
|
// value and timestamp and a base delta for each is saved in the header. The
|
|
// payload consists of double-deltas, i.e. deviations from the values and
|
|
// timestamps calculated by applying the base value and time and the base deltas.
|
|
// However, once 8 bytes would be needed to encode a double-delta value, a
|
|
// fall-back to the absolute numbers happens (so that timestamps are saved
|
|
// directly as int64 and values as float64).
|
|
// doubleDeltaEncodedChunk implements the chunk interface.
|
|
type doubleDeltaEncodedChunk []byte
|
|
|
|
// newDoubleDeltaEncodedChunk returns a newly allocated doubleDeltaEncodedChunk.
|
|
func newDoubleDeltaEncodedChunk(tb, vb deltaBytes, isInt bool, length int) *doubleDeltaEncodedChunk {
|
|
if tb < 1 {
|
|
panic("need at least 1 time delta byte")
|
|
}
|
|
if length < doubleDeltaHeaderBytes+16 {
|
|
panic(fmt.Errorf(
|
|
"chunk length %d bytes is insufficient, need at least %d",
|
|
length, doubleDeltaHeaderBytes+16,
|
|
))
|
|
}
|
|
c := make(doubleDeltaEncodedChunk, doubleDeltaHeaderIsIntOffset+1, length)
|
|
|
|
c[doubleDeltaHeaderTimeBytesOffset] = byte(tb)
|
|
c[doubleDeltaHeaderValueBytesOffset] = byte(vb)
|
|
if vb < d8 && isInt { // Only use int for fewer than 8 value double-delta bytes.
|
|
c[doubleDeltaHeaderIsIntOffset] = 1
|
|
} else {
|
|
c[doubleDeltaHeaderIsIntOffset] = 0
|
|
}
|
|
return &c
|
|
}
|
|
|
|
// add implements chunk.
|
|
func (c doubleDeltaEncodedChunk) add(s *metric.SamplePair) []chunk {
|
|
if c.len() == 0 {
|
|
return c.addFirstSample(s)
|
|
}
|
|
|
|
tb := c.timeBytes()
|
|
vb := c.valueBytes()
|
|
|
|
if c.len() == 1 {
|
|
return c.addSecondSample(s, tb, vb)
|
|
}
|
|
|
|
remainingBytes := cap(c) - len(c)
|
|
sampleSize := c.sampleSize()
|
|
|
|
// Do we generally have space for another sample in this chunk? If not,
|
|
// overflow into a new one.
|
|
if remainingBytes < sampleSize {
|
|
overflowChunks := newChunk().add(s)
|
|
return []chunk{&c, overflowChunks[0]}
|
|
}
|
|
|
|
projectedTime := c.baseTime() + clientmodel.Timestamp(c.len())*c.baseTimeDelta()
|
|
ddt := s.Timestamp - projectedTime
|
|
|
|
projectedValue := c.baseValue() + clientmodel.SampleValue(c.len())*c.baseValueDelta()
|
|
ddv := s.Value - projectedValue
|
|
|
|
ntb, nvb, nInt := tb, vb, c.isInt()
|
|
// If the new sample is incompatible with the current encoding, reencode the
|
|
// existing chunk data into new chunk(s).
|
|
if c.isInt() && !isInt64(ddv) {
|
|
// int->float.
|
|
nvb = d4
|
|
nInt = false
|
|
} else if !c.isInt() && vb == d4 && projectedValue+clientmodel.SampleValue(float32(ddv)) != s.Value {
|
|
// float32->float64.
|
|
nvb = d8
|
|
} else {
|
|
if tb < d8 {
|
|
// Maybe more bytes for timestamp.
|
|
ntb = max(tb, bytesNeededForSignedTimestampDelta(ddt))
|
|
}
|
|
if c.isInt() && vb < d8 {
|
|
// Maybe more bytes for sample value.
|
|
nvb = max(vb, bytesNeededForIntegerSampleValueDelta(ddv))
|
|
}
|
|
}
|
|
if tb != ntb || vb != nvb || c.isInt() != nInt {
|
|
if len(c)*2 < cap(c) {
|
|
return transcodeAndAdd(newDoubleDeltaEncodedChunk(ntb, nvb, nInt, cap(c)), &c, s)
|
|
}
|
|
// Chunk is already half full. Better create a new one and save the transcoding efforts.
|
|
overflowChunks := newChunk().add(s)
|
|
return []chunk{&c, overflowChunks[0]}
|
|
}
|
|
|
|
offset := len(c)
|
|
c = c[:offset+sampleSize]
|
|
|
|
switch tb {
|
|
case d1:
|
|
c[offset] = byte(ddt)
|
|
case d2:
|
|
binary.LittleEndian.PutUint16(c[offset:], uint16(ddt))
|
|
case d4:
|
|
binary.LittleEndian.PutUint32(c[offset:], uint32(ddt))
|
|
case d8:
|
|
// Store the absolute value (no delta) in case of d8.
|
|
binary.LittleEndian.PutUint64(c[offset:], uint64(s.Timestamp))
|
|
default:
|
|
panic("invalid number of bytes for time delta")
|
|
}
|
|
|
|
offset += int(tb)
|
|
|
|
if c.isInt() {
|
|
switch vb {
|
|
case d0:
|
|
// No-op. Constant delta is stored as base value.
|
|
case d1:
|
|
c[offset] = byte(int8(ddv))
|
|
case d2:
|
|
binary.LittleEndian.PutUint16(c[offset:], uint16(int16(ddv)))
|
|
case d4:
|
|
binary.LittleEndian.PutUint32(c[offset:], uint32(int32(ddv)))
|
|
// d8 must not happen. Those samples are encoded as float64.
|
|
default:
|
|
panic("invalid number of bytes for integer delta")
|
|
}
|
|
} else {
|
|
switch vb {
|
|
case d4:
|
|
binary.LittleEndian.PutUint32(c[offset:], math.Float32bits(float32(ddv)))
|
|
case d8:
|
|
// Store the absolute value (no delta) in case of d8.
|
|
binary.LittleEndian.PutUint64(c[offset:], math.Float64bits(float64(s.Value)))
|
|
default:
|
|
panic("invalid number of bytes for floating point delta")
|
|
}
|
|
}
|
|
return []chunk{&c}
|
|
}
|
|
|
|
// clone implements chunk.
|
|
func (c doubleDeltaEncodedChunk) clone() chunk {
|
|
clone := make(doubleDeltaEncodedChunk, len(c), cap(c))
|
|
copy(clone, c)
|
|
return &clone
|
|
}
|
|
|
|
// firstTime implements chunk.
|
|
func (c doubleDeltaEncodedChunk) firstTime() clientmodel.Timestamp {
|
|
return c.baseTime()
|
|
}
|
|
|
|
// newIterator implements chunk.
|
|
func (c *doubleDeltaEncodedChunk) newIterator() chunkIterator {
|
|
return &doubleDeltaEncodedChunkIterator{
|
|
c: *c,
|
|
len: c.len(),
|
|
baseT: c.baseTime(),
|
|
baseΔT: c.baseTimeDelta(),
|
|
baseV: c.baseValue(),
|
|
baseΔV: c.baseValueDelta(),
|
|
tBytes: c.timeBytes(),
|
|
vBytes: c.valueBytes(),
|
|
isInt: c.isInt(),
|
|
}
|
|
}
|
|
|
|
// marshal implements chunk.
|
|
func (c doubleDeltaEncodedChunk) marshal(w io.Writer) error {
|
|
if len(c) > math.MaxUint16 {
|
|
panic("chunk buffer length would overflow a 16 bit uint.")
|
|
}
|
|
binary.LittleEndian.PutUint16(c[doubleDeltaHeaderBufLenOffset:], uint16(len(c)))
|
|
|
|
n, err := w.Write(c[:cap(c)])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if n != cap(c) {
|
|
return fmt.Errorf("wanted to write %d bytes, wrote %d", len(c), n)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// unmarshal implements chunk.
|
|
func (c *doubleDeltaEncodedChunk) unmarshal(r io.Reader) error {
|
|
*c = (*c)[:cap(*c)]
|
|
if _, err := io.ReadFull(r, *c); err != nil {
|
|
return err
|
|
}
|
|
*c = (*c)[:binary.LittleEndian.Uint16((*c)[doubleDeltaHeaderBufLenOffset:])]
|
|
return nil
|
|
}
|
|
|
|
// unmarshalFromBuf implements chunk.
|
|
func (c *doubleDeltaEncodedChunk) unmarshalFromBuf(buf []byte) {
|
|
*c = (*c)[:cap(*c)]
|
|
copy(*c, buf)
|
|
*c = (*c)[:binary.LittleEndian.Uint16((*c)[doubleDeltaHeaderBufLenOffset:])]
|
|
}
|
|
|
|
// encoding implements chunk.
|
|
func (c doubleDeltaEncodedChunk) encoding() chunkEncoding { return doubleDelta }
|
|
|
|
func (c doubleDeltaEncodedChunk) baseTime() clientmodel.Timestamp {
|
|
return clientmodel.Timestamp(
|
|
binary.LittleEndian.Uint64(
|
|
c[doubleDeltaHeaderBaseTimeOffset:],
|
|
),
|
|
)
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) baseValue() clientmodel.SampleValue {
|
|
return clientmodel.SampleValue(
|
|
math.Float64frombits(
|
|
binary.LittleEndian.Uint64(
|
|
c[doubleDeltaHeaderBaseValueOffset:],
|
|
),
|
|
),
|
|
)
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) baseTimeDelta() clientmodel.Timestamp {
|
|
if len(c) < doubleDeltaHeaderBaseTimeDeltaOffset+8 {
|
|
return 0
|
|
}
|
|
return clientmodel.Timestamp(
|
|
binary.LittleEndian.Uint64(
|
|
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
|
|
),
|
|
)
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) baseValueDelta() clientmodel.SampleValue {
|
|
if len(c) < doubleDeltaHeaderBaseValueDeltaOffset+8 {
|
|
return 0
|
|
}
|
|
return clientmodel.SampleValue(
|
|
math.Float64frombits(
|
|
binary.LittleEndian.Uint64(
|
|
c[doubleDeltaHeaderBaseValueDeltaOffset:],
|
|
),
|
|
),
|
|
)
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) timeBytes() deltaBytes {
|
|
return deltaBytes(c[doubleDeltaHeaderTimeBytesOffset])
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) valueBytes() deltaBytes {
|
|
return deltaBytes(c[doubleDeltaHeaderValueBytesOffset])
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) sampleSize() int {
|
|
return int(c.timeBytes() + c.valueBytes())
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) len() int {
|
|
if len(c) <= doubleDeltaHeaderIsIntOffset+1 {
|
|
return 0
|
|
}
|
|
if len(c) <= doubleDeltaHeaderBaseValueOffset+8 {
|
|
return 1
|
|
}
|
|
return (len(c)-doubleDeltaHeaderBytes)/c.sampleSize() + 2
|
|
}
|
|
|
|
func (c doubleDeltaEncodedChunk) isInt() bool {
|
|
return c[doubleDeltaHeaderIsIntOffset] == 1
|
|
}
|
|
|
|
// addFirstSample is a helper method only used by c.add(). It adds timestamp and
|
|
// value as base time and value.
|
|
func (c doubleDeltaEncodedChunk) addFirstSample(s *metric.SamplePair) []chunk {
|
|
c = c[:doubleDeltaHeaderBaseValueOffset+8]
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseTimeOffset:],
|
|
uint64(s.Timestamp),
|
|
)
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseValueOffset:],
|
|
math.Float64bits(float64(s.Value)),
|
|
)
|
|
return []chunk{&c}
|
|
}
|
|
|
|
// addSecondSample is a helper method only used by c.add(). It calculates the
|
|
// base delta from the provided sample and adds it to the chunk.
|
|
func (c doubleDeltaEncodedChunk) addSecondSample(s *metric.SamplePair, tb, vb deltaBytes) []chunk {
|
|
baseTimeDelta := s.Timestamp - c.baseTime()
|
|
if baseTimeDelta < 0 {
|
|
panic("base time delta is less than zero")
|
|
}
|
|
c = c[:doubleDeltaHeaderBytes]
|
|
if tb >= d8 || bytesNeededForUnsignedTimestampDelta(baseTimeDelta) >= d8 {
|
|
// If already the base delta needs d8 (or we are at d8
|
|
// already, anyway), we better encode this timestamp
|
|
// directly rather than as a delta and switch everything
|
|
// to d8.
|
|
c[doubleDeltaHeaderTimeBytesOffset] = byte(d8)
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
|
|
uint64(s.Timestamp),
|
|
)
|
|
} else {
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseTimeDeltaOffset:],
|
|
uint64(baseTimeDelta),
|
|
)
|
|
}
|
|
baseValue := c.baseValue()
|
|
baseValueDelta := s.Value - baseValue
|
|
if vb >= d8 || baseValue+baseValueDelta != s.Value {
|
|
// If we can't reproduce the original sample value (or
|
|
// if we are at d8 already, anyway), we better encode
|
|
// this value directly rather than as a delta and switch
|
|
// everything to d8.
|
|
c[doubleDeltaHeaderValueBytesOffset] = byte(d8)
|
|
c[doubleDeltaHeaderIsIntOffset] = 0
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseValueDeltaOffset:],
|
|
math.Float64bits(float64(s.Value)),
|
|
)
|
|
} else {
|
|
binary.LittleEndian.PutUint64(
|
|
c[doubleDeltaHeaderBaseValueDeltaOffset:],
|
|
math.Float64bits(float64(baseValueDelta)),
|
|
)
|
|
}
|
|
return []chunk{&c}
|
|
}
|
|
|
|
// doubleDeltaEncodedChunkIterator implements chunkIterator.
|
|
type doubleDeltaEncodedChunkIterator struct {
|
|
c doubleDeltaEncodedChunk
|
|
len int
|
|
baseT, baseΔT clientmodel.Timestamp
|
|
baseV, baseΔV clientmodel.SampleValue
|
|
tBytes, vBytes deltaBytes
|
|
isInt bool
|
|
}
|
|
|
|
// length implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) length() int { return it.len }
|
|
|
|
// valueAtTime implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) valueAtTime(t clientmodel.Timestamp) metric.Values {
|
|
i := sort.Search(it.len, func(i int) bool {
|
|
return !it.timestampAtIndex(i).Before(t)
|
|
})
|
|
|
|
switch i {
|
|
case 0:
|
|
return metric.Values{metric.SamplePair{
|
|
Timestamp: it.timestampAtIndex(0),
|
|
Value: it.sampleValueAtIndex(0),
|
|
}}
|
|
case it.len:
|
|
return metric.Values{metric.SamplePair{
|
|
Timestamp: it.timestampAtIndex(it.len - 1),
|
|
Value: it.sampleValueAtIndex(it.len - 1),
|
|
}}
|
|
default:
|
|
ts := it.timestampAtIndex(i)
|
|
if ts.Equal(t) {
|
|
return metric.Values{metric.SamplePair{
|
|
Timestamp: ts,
|
|
Value: it.sampleValueAtIndex(i),
|
|
}}
|
|
}
|
|
return metric.Values{
|
|
metric.SamplePair{
|
|
Timestamp: it.timestampAtIndex(i - 1),
|
|
Value: it.sampleValueAtIndex(i - 1),
|
|
},
|
|
metric.SamplePair{
|
|
Timestamp: ts,
|
|
Value: it.sampleValueAtIndex(i),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
// rangeValues implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) rangeValues(in metric.Interval) metric.Values {
|
|
oldest := sort.Search(it.len, func(i int) bool {
|
|
return !it.timestampAtIndex(i).Before(in.OldestInclusive)
|
|
})
|
|
|
|
newest := sort.Search(it.len, func(i int) bool {
|
|
return it.timestampAtIndex(i).After(in.NewestInclusive)
|
|
})
|
|
|
|
if oldest == it.len {
|
|
return nil
|
|
}
|
|
|
|
result := make(metric.Values, 0, newest-oldest)
|
|
for i := oldest; i < newest; i++ {
|
|
result = append(result, metric.SamplePair{
|
|
Timestamp: it.timestampAtIndex(i),
|
|
Value: it.sampleValueAtIndex(i),
|
|
})
|
|
}
|
|
return result
|
|
}
|
|
|
|
// contains implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) contains(t clientmodel.Timestamp) bool {
|
|
return !t.Before(it.baseT) && !t.After(it.timestampAtIndex(it.len-1))
|
|
}
|
|
|
|
// values implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) values() <-chan *metric.SamplePair {
|
|
valuesChan := make(chan *metric.SamplePair)
|
|
go func() {
|
|
for i := 0; i < it.len; i++ {
|
|
valuesChan <- &metric.SamplePair{
|
|
Timestamp: it.timestampAtIndex(i),
|
|
Value: it.sampleValueAtIndex(i),
|
|
}
|
|
}
|
|
close(valuesChan)
|
|
}()
|
|
return valuesChan
|
|
}
|
|
|
|
// timestampAtIndex implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) timestampAtIndex(idx int) clientmodel.Timestamp {
|
|
if idx == 0 {
|
|
return it.baseT
|
|
}
|
|
if idx == 1 {
|
|
// If time bytes are at d8, the time is saved directly rather
|
|
// than as a difference.
|
|
if it.tBytes == d8 {
|
|
return it.baseΔT
|
|
}
|
|
return it.baseT + it.baseΔT
|
|
}
|
|
|
|
offset := doubleDeltaHeaderBytes + (idx-2)*int(it.tBytes+it.vBytes)
|
|
|
|
switch it.tBytes {
|
|
case d1:
|
|
return it.baseT +
|
|
clientmodel.Timestamp(idx)*it.baseΔT +
|
|
clientmodel.Timestamp(int8(it.c[offset]))
|
|
case d2:
|
|
return it.baseT +
|
|
clientmodel.Timestamp(idx)*it.baseΔT +
|
|
clientmodel.Timestamp(int16(binary.LittleEndian.Uint16(it.c[offset:])))
|
|
case d4:
|
|
return it.baseT +
|
|
clientmodel.Timestamp(idx)*it.baseΔT +
|
|
clientmodel.Timestamp(int32(binary.LittleEndian.Uint32(it.c[offset:])))
|
|
case d8:
|
|
// Take absolute value for d8.
|
|
return clientmodel.Timestamp(binary.LittleEndian.Uint64(it.c[offset:]))
|
|
default:
|
|
panic("invalid number of bytes for time delta")
|
|
}
|
|
}
|
|
|
|
// lastTimestamp implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) lastTimestamp() clientmodel.Timestamp {
|
|
return it.timestampAtIndex(it.len - 1)
|
|
}
|
|
|
|
// sampleValueAtIndex implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) sampleValueAtIndex(idx int) clientmodel.SampleValue {
|
|
if idx == 0 {
|
|
return it.baseV
|
|
}
|
|
if idx == 1 {
|
|
// If value bytes are at d8, the value is saved directly rather
|
|
// than as a difference.
|
|
if it.vBytes == d8 {
|
|
return it.baseΔV
|
|
}
|
|
return it.baseV + it.baseΔV
|
|
}
|
|
|
|
offset := doubleDeltaHeaderBytes + (idx-2)*int(it.tBytes+it.vBytes) + int(it.tBytes)
|
|
|
|
if it.isInt {
|
|
switch it.vBytes {
|
|
case d0:
|
|
return it.baseV +
|
|
clientmodel.SampleValue(idx)*it.baseΔV
|
|
case d1:
|
|
return it.baseV +
|
|
clientmodel.SampleValue(idx)*it.baseΔV +
|
|
clientmodel.SampleValue(int8(it.c[offset]))
|
|
case d2:
|
|
return it.baseV +
|
|
clientmodel.SampleValue(idx)*it.baseΔV +
|
|
clientmodel.SampleValue(int16(binary.LittleEndian.Uint16(it.c[offset:])))
|
|
case d4:
|
|
return it.baseV +
|
|
clientmodel.SampleValue(idx)*it.baseΔV +
|
|
clientmodel.SampleValue(int32(binary.LittleEndian.Uint32(it.c[offset:])))
|
|
// No d8 for ints.
|
|
default:
|
|
panic("invalid number of bytes for integer delta")
|
|
}
|
|
} else {
|
|
switch it.vBytes {
|
|
case d4:
|
|
return it.baseV +
|
|
clientmodel.SampleValue(idx)*it.baseΔV +
|
|
clientmodel.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(it.c[offset:])))
|
|
case d8:
|
|
// Take absolute value for d8.
|
|
return clientmodel.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(it.c[offset:])))
|
|
default:
|
|
panic("invalid number of bytes for floating point delta")
|
|
}
|
|
}
|
|
}
|
|
|
|
// lastSampleValue implements chunkIterator.
|
|
func (it *doubleDeltaEncodedChunkIterator) lastSampleValue() clientmodel.SampleValue {
|
|
return it.sampleValueAtIndex(it.len - 1)
|
|
}
|