prometheus/storage/metric/tiered/compaction_regression_test.go
Julius Volz 01f652cb4c Separate storage implementation from interfaces.
This was initially motivated by wanting to distribute the rule checker
tool under `tools/rule_checker`. However, this was not possible without
also distributing the LevelDB dynamic libraries because the tool
transitively depended on Levigo:

rule checker -> query layer -> tiered storage layer -> leveldb

This change separates external storage interfaces from the
implementation (tiered storage, leveldb storage, memory storage) by
putting them into separate packages:

- storage/metric: public, implementation-agnostic interfaces
- storage/metric/tiered: tiered storage implementation, including memory
                         and LevelDB storage.

I initially also considered splitting up the implementation into
separate packages for tiered storage, memory storage, and LevelDB
storage, but these are currently so intertwined that it would be another
major project in itself.

The query layers and most other parts of Prometheus now have notion of
the storage implementation anymore and just use whatever implementation
they get passed in via interfaces.

The rule_checker is now a static binary :)

Change-Id: I793bbf631a8648ca31790e7e772ecf9c2b92f7a0
2014-04-16 13:30:19 +02:00

268 lines
8.3 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tiered
import (
"flag"
"fmt"
"sort"
"testing"
"time"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/storage/metric"
clientmodel "github.com/prometheus/client_golang/model"
)
type nopCurationStateUpdater struct{}
func (n *nopCurationStateUpdater) UpdateCurationState(*metric.CurationState) {}
func generateTestSamples(endTime clientmodel.Timestamp, numTs int, samplesPerTs int, interval time.Duration) clientmodel.Samples {
samples := make(clientmodel.Samples, 0, numTs*samplesPerTs)
startTime := endTime.Add(-interval * time.Duration(samplesPerTs-1))
for ts := 0; ts < numTs; ts++ {
metric := clientmodel.Metric{}
metric[clientmodel.MetricNameLabel] = clientmodel.LabelValue(fmt.Sprintf("metric_%d", ts))
for i := 0; i < samplesPerTs; i++ {
sample := &clientmodel.Sample{
Metric: metric,
Value: clientmodel.SampleValue(ts + 1000*i),
Timestamp: startTime.Add(interval * time.Duration(i)),
}
samples = append(samples, sample)
}
}
sort.Sort(samples)
return samples
}
type compactionChecker struct {
t *testing.T
sampleIdx int
numChunks int
expectedSamples clientmodel.Samples
}
func (c *compactionChecker) Operate(key, value interface{}) *storage.OperatorError {
c.numChunks++
sampleKey := key.(*SampleKey)
if sampleKey.FirstTimestamp.After(sampleKey.LastTimestamp) {
c.t.Fatalf("Chunk FirstTimestamp (%v) is after LastTimestamp (%v): %v", sampleKey.FirstTimestamp.Unix(), sampleKey.LastTimestamp.Unix(), sampleKey)
}
fp := &clientmodel.Fingerprint{}
for _, sample := range value.(metric.Values) {
if sample.Timestamp.Before(sampleKey.FirstTimestamp) || sample.Timestamp.After(sampleKey.LastTimestamp) {
c.t.Fatalf("Sample not within chunk boundaries: chunk FirstTimestamp (%v), chunk LastTimestamp (%v) vs. sample Timestamp (%v)", sampleKey.FirstTimestamp.Unix(), sampleKey.LastTimestamp.Unix(), sample.Timestamp)
}
expected := c.expectedSamples[c.sampleIdx]
fp.LoadFromMetric(expected.Metric)
if !sampleKey.Fingerprint.Equal(fp) {
c.t.Fatalf("%d. Expected fingerprint %s, got %s", c.sampleIdx, fp, sampleKey.Fingerprint)
}
sp := &metric.SamplePair{
Value: expected.Value,
Timestamp: expected.Timestamp,
}
if !sample.Equal(sp) {
c.t.Fatalf("%d. Expected sample %s, got %s", c.sampleIdx, sp, sample)
}
c.sampleIdx++
}
return nil
}
func checkStorageSaneAndEquivalent(t *testing.T, name string, ts *TieredStorage, samples clientmodel.Samples, expectedNumChunks int) {
cc := &compactionChecker{
expectedSamples: samples,
t: t,
}
entire, err := ts.DiskStorage.MetricSamples.ForEach(&MetricSamplesDecoder{}, &AcceptAllFilter{}, cc)
if err != nil {
t.Fatalf("%s: Error checking samples: %s", name, err)
}
if !entire {
t.Fatalf("%s: Didn't scan entire corpus", name)
}
if cc.numChunks != expectedNumChunks {
t.Fatalf("%s: Expected %d chunks, got %d", name, expectedNumChunks, cc.numChunks)
}
}
type compactionTestScenario struct {
leveldbChunkSize int
numTimeseries int
samplesPerTs int
ignoreYoungerThan time.Duration
maximumMutationPoolBatch int
minimumGroupSize int
uncompactedChunks int
compactedChunks int
}
func (s compactionTestScenario) test(t *testing.T) {
defer flag.Set("leveldbChunkSize", flag.Lookup("leveldbChunkSize").Value.String())
flag.Set("leveldbChunkSize", fmt.Sprintf("%d", s.leveldbChunkSize))
ts, closer := NewTestTieredStorage(t)
defer closer.Close()
// 1. Store test values.
samples := generateTestSamples(testInstant, s.numTimeseries, s.samplesPerTs, time.Minute)
ts.AppendSamples(samples)
ts.Flush()
// 2. Check sanity of uncompacted values.
checkStorageSaneAndEquivalent(t, "Before compaction", ts, samples, s.uncompactedChunks)
// 3. Compact test storage.
processor := NewCompactionProcessor(&CompactionProcessorOptions{
MaximumMutationPoolBatch: s.maximumMutationPoolBatch,
MinimumGroupSize: s.minimumGroupSize,
})
defer processor.Close()
curator := NewCurator(&CuratorOptions{
Stop: make(chan struct{}),
ViewQueue: ts.ViewQueue,
})
defer curator.Close()
err := curator.Run(s.ignoreYoungerThan, testInstant, processor, ts.DiskStorage.CurationRemarks, ts.DiskStorage.MetricSamples, ts.DiskStorage.MetricHighWatermarks, &nopCurationStateUpdater{})
if err != nil {
t.Fatalf("Failed to run curator: %s", err)
}
// 4. Check sanity of compacted values.
checkStorageSaneAndEquivalent(t, "After compaction", ts, samples, s.compactedChunks)
}
func TestCompaction(t *testing.T) {
scenarios := []compactionTestScenario{
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
//
// AFTER COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 10
// 5 | A | 11 .. 15
// 10 | B | 1 .. 10
// 5 | B | 11 .. 15
// 10 | C | 1 .. 10
// 5 | C | 11 .. 15
{
leveldbChunkSize: 5,
numTimeseries: 3,
samplesPerTs: 15,
ignoreYoungerThan: time.Minute,
maximumMutationPoolBatch: 30,
minimumGroupSize: 10,
uncompactedChunks: 9,
compactedChunks: 6,
},
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
//
// AFTER COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 15
// 10 | B | 1 .. 15
// 10 | C | 1 .. 15
{
leveldbChunkSize: 5,
numTimeseries: 3,
samplesPerTs: 15,
ignoreYoungerThan: time.Minute,
maximumMutationPoolBatch: 30,
minimumGroupSize: 30,
uncompactedChunks: 9,
compactedChunks: 3,
},
// BEFORE COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 5 | A | 1 .. 5
// 5 | A | 6 .. 10
// 5 | A | 11 .. 15
// 5 | A | 16 .. 20
// 5 | B | 1 .. 5
// 5 | B | 6 .. 10
// 5 | B | 11 .. 15
// 5 | B | 16 .. 20
// 5 | C | 1 .. 5
// 5 | C | 6 .. 10
// 5 | C | 11 .. 15
// 5 | C | 16 .. 20
//
// AFTER COMPACTION:
//
// Chunk size | Fingerprint | Samples
// 10 | A | 1 .. 15
// 10 | A | 16 .. 20
// 10 | B | 1 .. 15
// 10 | B | 16 .. 20
// 10 | C | 1 .. 15
// 10 | C | 16 .. 20
{
leveldbChunkSize: 5,
numTimeseries: 3,
samplesPerTs: 20,
ignoreYoungerThan: time.Minute,
maximumMutationPoolBatch: 30,
minimumGroupSize: 10,
uncompactedChunks: 12,
compactedChunks: 6,
},
}
for _, s := range scenarios {
s.test(t)
}
}