prometheus/rules/ast/functions.go
Julius Volz 54eb21b22a Fix time() behavior.
time() should return the timestamp for which the query is executed, not
the actual current time.

Change-Id: I430a45cabad7785cd58f95b1028a71dff4c87710
2014-07-28 18:27:46 +02:00

455 lines
13 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"fmt"
"math"
"sort"
"time"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/storage/metric"
"github.com/prometheus/prometheus/utility"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
name string
argTypes []ExprType
returnType ExprType
callFn func(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{}
}
// CheckArgTypes returns a non-nil error if the number or types of
// passed in arg nodes do not match the function's expectations.
func (function *Function) CheckArgTypes(args []Node) error {
if len(function.argTypes) != len(args) {
return fmt.Errorf(
"wrong number of arguments to function %v(): %v expected, %v given",
function.name, len(function.argTypes), len(args),
)
}
for idx, argType := range function.argTypes {
invalidType := false
var expectedType string
if _, ok := args[idx].(ScalarNode); argType == SCALAR && !ok {
invalidType = true
expectedType = "scalar"
}
if _, ok := args[idx].(VectorNode); argType == VECTOR && !ok {
invalidType = true
expectedType = "vector"
}
if _, ok := args[idx].(MatrixNode); argType == MATRIX && !ok {
invalidType = true
expectedType = "matrix"
}
if _, ok := args[idx].(StringNode); argType == STRING && !ok {
invalidType = true
expectedType = "string"
}
if invalidType {
return fmt.Errorf(
"wrong type for argument %v in function %v(), expected %v",
idx, function.name, expectedType,
)
}
}
return nil
}
// === time() clientmodel.SampleValue ===
func timeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return clientmodel.SampleValue(timestamp.Unix())
}
// === delta(matrix MatrixNode, isCounter ScalarNode) Vector ===
func deltaImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
matrixNode := args[0].(MatrixNode)
isCounter := args[1].(ScalarNode).Eval(timestamp, view) > 0
resultVector := Vector{}
// If we treat these metrics as counters, we need to fetch all values
// in the interval to find breaks in the timeseries' monotonicity.
// I.e. if a counter resets, we want to ignore that reset.
var matrixValue Matrix
if isCounter {
matrixValue = matrixNode.Eval(timestamp, view)
} else {
matrixValue = matrixNode.EvalBoundaries(timestamp, view)
}
for _, samples := range matrixValue {
// No sense in trying to compute a delta without at least two points. Drop
// this vector element.
if len(samples.Values) < 2 {
continue
}
counterCorrection := clientmodel.SampleValue(0)
lastValue := clientmodel.SampleValue(0)
for _, sample := range samples.Values {
currentValue := sample.Value
if isCounter && currentValue < lastValue {
counterCorrection += lastValue - currentValue
}
lastValue = currentValue
}
resultValue := lastValue - samples.Values[0].Value + counterCorrection
targetInterval := args[0].(*MatrixSelector).interval
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp)
if sampledInterval == 0 {
// Only found one sample. Cannot compute a rate from this.
continue
}
// Correct for differences in target vs. actual delta interval.
//
// Above, we didn't actually calculate the delta for the specified target
// interval, but for an interval between the first and last found samples
// under the target interval, which will usually have less time between
// them. Depending on how many samples are found under a target interval,
// the delta results are distorted and temporal aliasing occurs (ugly
// bumps). This effect is corrected for below.
intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval)
resultValue *= intervalCorrection
resultSample := &clientmodel.Sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: timestamp,
}
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === rate(node *MatrixNode) Vector ===
func rateImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
args = append(args, &ScalarLiteral{value: 1})
vector := deltaImpl(timestamp, view, args).(Vector)
// TODO: could be other type of MatrixNode in the future (right now, only
// MatrixSelector exists). Find a better way of getting the duration of a
// matrix, such as looking at the samples themselves.
interval := args[0].(*MatrixSelector).interval
for i := range vector {
vector[i].Value /= clientmodel.SampleValue(interval / time.Second)
}
return vector
}
type vectorByValueSorter struct {
vector Vector
}
func (sorter vectorByValueSorter) Len() int {
return len(sorter.vector)
}
func (sorter vectorByValueSorter) Less(i, j int) bool {
return sorter.vector[i].Value < sorter.vector[j].Value
}
func (sorter vectorByValueSorter) Swap(i, j int) {
sorter.vector[i], sorter.vector[j] = sorter.vector[j], sorter.vector[i]
}
// === sort(node *VectorNode) Vector ===
func sortImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
byValueSorter := vectorByValueSorter{
vector: args[0].(VectorNode).Eval(timestamp, view),
}
sort.Sort(byValueSorter)
return byValueSorter.vector
}
// === sortDesc(node *VectorNode) Vector ===
func sortDescImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
descByValueSorter := utility.ReverseSorter{
Interface: vectorByValueSorter{
vector: args[0].(VectorNode).Eval(timestamp, view),
},
}
sort.Sort(descByValueSorter)
return descByValueSorter.Interface.(vectorByValueSorter).vector
}
// === sampleVectorImpl() Vector ===
func sampleVectorImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return Vector{
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "0",
},
Value: 10,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "1",
},
Value: 20,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "2",
},
Value: 30,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "3",
"group": "canary",
},
Value: 40,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "2",
"group": "canary",
},
Value: 40,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "3",
"group": "mytest",
},
Value: 40,
Timestamp: timestamp,
},
&clientmodel.Sample{
Metric: clientmodel.Metric{
clientmodel.MetricNameLabel: "http_requests",
clientmodel.JobLabel: "api-server",
"instance": "3",
"group": "mytest",
},
Value: 40,
Timestamp: timestamp,
},
}
}
// === scalar(node *VectorNode) Scalar ===
func scalarImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
v := args[0].(VectorNode).Eval(timestamp, view)
if len(v) != 1 {
return clientmodel.SampleValue(math.NaN())
}
return clientmodel.SampleValue(v[0].Value)
}
// === count_scalar(vector VectorNode) model.SampleValue ===
func countScalarImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return clientmodel.SampleValue(len(args[0].(VectorNode).Eval(timestamp, view)))
}
func aggrOverTime(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node, aggrFn func(metric.Values) clientmodel.SampleValue) interface{} {
n := args[0].(MatrixNode)
matrixVal := n.Eval(timestamp, view)
resultVector := Vector{}
for _, el := range matrixVal {
if len(el.Values) == 0 {
continue
}
resultVector = append(resultVector, &clientmodel.Sample{
Metric: el.Metric,
Value: aggrFn(el.Values),
Timestamp: timestamp,
})
}
return resultVector
}
// === avg_over_time(matrix MatrixNode) Vector ===
func avgOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum / clientmodel.SampleValue(len(values))
})
}
// === count_over_time(matrix MatrixNode) Vector ===
func countOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
return clientmodel.SampleValue(len(values))
})
}
// === max_over_time(matrix MatrixNode) Vector ===
func maxOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.Value))
}
return clientmodel.SampleValue(max)
})
}
// === min_over_time(matrix MatrixNode) Vector ===
func minOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.Value))
}
return clientmodel.SampleValue(min)
})
}
// === sum_over_time(matrix MatrixNode) Vector ===
func sumOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
var sum clientmodel.SampleValue
for _, v := range values {
sum += v.Value
}
return sum
})
}
// === abs(vector VectorNode) Vector ===
func absImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
n := args[0].(VectorNode)
vector := n.Eval(timestamp, view)
for _, el := range vector {
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value)))
}
return vector
}
var functions = map[string]*Function{
"abs": {
name: "abs",
argTypes: []ExprType{VECTOR},
returnType: VECTOR,
callFn: absImpl,
},
"avg_over_time": {
name: "avg_over_time",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: avgOverTimeImpl,
},
"count_over_time": {
name: "count_over_time",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: countOverTimeImpl,
},
"count_scalar": {
name: "count_scalar",
argTypes: []ExprType{VECTOR},
returnType: SCALAR,
callFn: countScalarImpl,
},
"delta": {
name: "delta",
argTypes: []ExprType{MATRIX, SCALAR},
returnType: VECTOR,
callFn: deltaImpl,
},
"max_over_time": {
name: "max_over_time",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: maxOverTimeImpl,
},
"min_over_time": {
name: "min_over_time",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: minOverTimeImpl,
},
"rate": {
name: "rate",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: rateImpl,
},
"sampleVector": {
name: "sampleVector",
argTypes: []ExprType{},
returnType: VECTOR,
callFn: sampleVectorImpl,
},
"scalar": {
name: "scalar",
argTypes: []ExprType{VECTOR},
returnType: SCALAR,
callFn: scalarImpl,
},
"sort": {
name: "sort",
argTypes: []ExprType{VECTOR},
returnType: VECTOR,
callFn: sortImpl,
},
"sort_desc": {
name: "sort_desc",
argTypes: []ExprType{VECTOR},
returnType: VECTOR,
callFn: sortDescImpl,
},
"sum_over_time": {
name: "sum_over_time",
argTypes: []ExprType{MATRIX},
returnType: VECTOR,
callFn: sumOverTimeImpl,
},
"time": {
name: "time",
argTypes: []ExprType{},
returnType: SCALAR,
callFn: timeImpl,
},
}
// GetFunction returns a predefined Function object for the given
// name.
func GetFunction(name string) (*Function, error) {
function, ok := functions[name]
if !ok {
return nil, fmt.Errorf("couldn't find function %v()", name)
}
return function, nil
}