mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-14 09:34:05 -08:00
8f4c7ece92
The use of naked return values is frowned upon. This is the first of two bulk updates to remove them.
642 lines
16 KiB
Go
642 lines
16 KiB
Go
// Copyright 2013 Prometheus Team
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package metric
|
|
|
|
import (
|
|
"fmt"
|
|
"github.com/prometheus/prometheus/coding"
|
|
"github.com/prometheus/prometheus/coding/indexable"
|
|
"github.com/prometheus/prometheus/model"
|
|
dto "github.com/prometheus/prometheus/model/generated"
|
|
"github.com/prometheus/prometheus/utility/test"
|
|
"math"
|
|
"math/rand"
|
|
"testing"
|
|
"testing/quick"
|
|
"time"
|
|
)
|
|
|
|
const (
|
|
stochasticMaximumVariance = 8
|
|
)
|
|
|
|
func BasicLifecycleTests(p MetricPersistence, t test.Tester) {
|
|
if p == nil {
|
|
t.Errorf("Received nil Metric Persistence.\n")
|
|
return
|
|
}
|
|
}
|
|
|
|
func ReadEmptyTests(p MetricPersistence, t test.Tester) {
|
|
hasLabelPair := func(x int) (success bool) {
|
|
name := model.LabelName(string(x))
|
|
value := model.LabelValue(string(x))
|
|
|
|
labelSet := model.LabelSet{
|
|
name: value,
|
|
}
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
|
|
success = len(fingerprints) == 0
|
|
if !success {
|
|
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
err := quick.Check(hasLabelPair, nil)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
|
|
hasLabelName := func(x int) (success bool) {
|
|
labelName := model.LabelName(string(x))
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
|
|
success = len(fingerprints) == 0
|
|
if !success {
|
|
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
err = quick.Check(hasLabelName, nil)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
}
|
|
|
|
func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) {
|
|
appendSample := func(x int) (success bool) {
|
|
v := model.SampleValue(x)
|
|
ts := time.Unix(int64(x), int64(x))
|
|
labelName := model.LabelName(x)
|
|
labelValue := model.LabelValue(x)
|
|
l := model.Metric{labelName: labelValue}
|
|
|
|
sample := model.Sample{
|
|
Value: v,
|
|
Timestamp: ts,
|
|
Metric: l,
|
|
}
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
success = err == nil
|
|
if !success {
|
|
t.Error(err)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
t.Error(err)
|
|
}
|
|
}
|
|
|
|
func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) {
|
|
appendSample := func(x int) (success bool) {
|
|
v := model.SampleValue(x)
|
|
ts := time.Unix(int64(x), int64(x))
|
|
labelName := model.LabelName(x)
|
|
labelValue := model.LabelValue(x)
|
|
l := model.Metric{labelName: labelValue}
|
|
|
|
sample := model.Sample{
|
|
Value: v,
|
|
Timestamp: ts,
|
|
Metric: l,
|
|
}
|
|
|
|
err := p.AppendSample(sample)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) != 1 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
return
|
|
}
|
|
|
|
fingerprints, err = p.GetFingerprintsForLabelSet(model.LabelSet{
|
|
labelName: labelValue,
|
|
})
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) != 1 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
return
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
t.Error(err)
|
|
}
|
|
}
|
|
|
|
func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) {
|
|
appendSample := func(x int) bool {
|
|
sample := model.Sample{
|
|
Value: model.SampleValue(x),
|
|
Timestamp: time.Unix(int64(x), 0),
|
|
Metric: model.Metric{model.MetricNameLabel: "my_metric"},
|
|
}
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
return err == nil
|
|
}
|
|
|
|
if err := quick.Check(appendSample, nil); err != nil {
|
|
t.Error(err)
|
|
}
|
|
}
|
|
|
|
func levelDBGetRangeValues(l *LevelDBMetricPersistence, fp model.Fingerprint, i model.Interval) (samples model.Values, err error) {
|
|
k := &dto.SampleKey{
|
|
Fingerprint: fp.ToDTO(),
|
|
Timestamp: indexable.EncodeTime(i.OldestInclusive),
|
|
}
|
|
|
|
e := coding.NewPBEncoder(k).MustEncode()
|
|
|
|
iterator := l.MetricSamples.NewIterator(true)
|
|
defer iterator.Close()
|
|
|
|
for valid := iterator.Seek(e); valid; valid = iterator.Next() {
|
|
retrievedKey, err := extractSampleKey(iterator)
|
|
if err != nil {
|
|
return samples, err
|
|
}
|
|
|
|
if retrievedKey.FirstTimestamp.After(i.NewestInclusive) {
|
|
break
|
|
}
|
|
|
|
if !retrievedKey.Fingerprint.Equal(fp) {
|
|
break
|
|
}
|
|
|
|
retrievedValues, err := extractSampleValues(iterator)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
samples = append(samples, retrievedValues...)
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func StochasticTests(persistenceMaker func() (MetricPersistence, test.Closer), t test.Tester) {
|
|
stochastic := func(x int) (success bool) {
|
|
p, closer := persistenceMaker()
|
|
defer closer.Close()
|
|
defer p.Close()
|
|
|
|
seed := rand.NewSource(int64(x))
|
|
random := rand.New(seed)
|
|
|
|
numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1
|
|
numberOfSharedLabels := random.Intn(stochasticMaximumVariance)
|
|
numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance)
|
|
numberOfSamples := random.Intn(stochasticMaximumVariance) + 2
|
|
numberOfRangeScans := random.Intn(stochasticMaximumVariance)
|
|
|
|
metricTimestamps := map[int]map[int64]bool{}
|
|
metricEarliestSample := map[int]int64{}
|
|
metricNewestSample := map[int]int64{}
|
|
|
|
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
|
|
sample := model.Sample{
|
|
Metric: model.Metric{},
|
|
}
|
|
|
|
v := model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
|
|
sample.Metric[model.MetricNameLabel] = v
|
|
|
|
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
|
|
l := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
|
|
v := model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex))
|
|
|
|
sample.Metric[l] = v
|
|
}
|
|
|
|
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
|
|
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
|
|
v := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
|
|
|
|
sample.Metric[l] = v
|
|
}
|
|
|
|
timestamps := map[int64]bool{}
|
|
metricTimestamps[metricIndex] = timestamps
|
|
var (
|
|
newestSample int64 = math.MinInt64
|
|
oldestSample int64 = math.MaxInt64
|
|
nextTimestamp func() int64
|
|
)
|
|
|
|
nextTimestamp = func() int64 {
|
|
var candidate int64
|
|
candidate = random.Int63n(math.MaxInt32 - 1)
|
|
|
|
if _, has := timestamps[candidate]; has {
|
|
// WART
|
|
candidate = nextTimestamp()
|
|
}
|
|
|
|
timestamps[candidate] = true
|
|
|
|
if candidate < oldestSample {
|
|
oldestSample = candidate
|
|
}
|
|
|
|
if candidate > newestSample {
|
|
newestSample = candidate
|
|
}
|
|
|
|
return candidate
|
|
}
|
|
|
|
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
|
|
sample.Timestamp = time.Unix(nextTimestamp(), 0)
|
|
sample.Value = model.SampleValue(sampleIndex)
|
|
|
|
err := p.AppendSample(sample)
|
|
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
}
|
|
|
|
metricEarliestSample[metricIndex] = oldestSample
|
|
metricNewestSample[metricIndex] = newestSample
|
|
|
|
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
|
|
labelPair := model.LabelSet{
|
|
model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)): model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)),
|
|
}
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelPair)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) == 0 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
|
|
return
|
|
}
|
|
|
|
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
|
|
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) == 0 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
for sharedIndex := 0; sharedIndex < numberOfSharedLabels; sharedIndex++ {
|
|
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedIndex))
|
|
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
|
|
if len(fingerprints) != numberOfMetrics {
|
|
t.Errorf("expected fingerprint count of %d, got %d", numberOfMetrics, len(fingerprints))
|
|
return
|
|
}
|
|
}
|
|
|
|
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
|
|
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
|
|
labelName := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
|
|
labelValue := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
|
|
labelSet := model.LabelSet{
|
|
labelName: labelValue,
|
|
}
|
|
|
|
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) != 1 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
return
|
|
}
|
|
|
|
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
|
|
if err != nil {
|
|
t.Error(err)
|
|
return
|
|
}
|
|
if len(fingerprints) != 1 {
|
|
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
|
|
return
|
|
}
|
|
}
|
|
|
|
metric := model.Metric{}
|
|
metric[model.MetricNameLabel] = model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
|
|
|
|
for i := 0; i < numberOfSharedLabels; i++ {
|
|
l := model.LabelName(fmt.Sprintf("shared_label_%d", i))
|
|
v := model.LabelValue(fmt.Sprintf("label_%d", i))
|
|
|
|
metric[l] = v
|
|
}
|
|
|
|
for i := 0; i < numberOfUnsharedLabels; i++ {
|
|
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i))
|
|
v := model.LabelValue(fmt.Sprintf("private_label_%d", i))
|
|
|
|
metric[l] = v
|
|
}
|
|
|
|
for i := 0; i < numberOfRangeScans; i++ {
|
|
timestamps := metricTimestamps[metricIndex]
|
|
|
|
var first int64 = 0
|
|
var second int64 = 0
|
|
|
|
for {
|
|
firstCandidate := random.Int63n(int64(len(timestamps)))
|
|
secondCandidate := random.Int63n(int64(len(timestamps)))
|
|
|
|
smallest := int64(-1)
|
|
largest := int64(-1)
|
|
|
|
if firstCandidate == secondCandidate {
|
|
continue
|
|
} else if firstCandidate > secondCandidate {
|
|
largest = firstCandidate
|
|
smallest = secondCandidate
|
|
} else {
|
|
largest = secondCandidate
|
|
smallest = firstCandidate
|
|
}
|
|
|
|
j := int64(0)
|
|
for i := range timestamps {
|
|
if j == smallest {
|
|
first = i
|
|
} else if j == largest {
|
|
second = i
|
|
break
|
|
}
|
|
j++
|
|
}
|
|
|
|
break
|
|
}
|
|
|
|
begin := first
|
|
end := second
|
|
|
|
if second < first {
|
|
begin, end = second, first
|
|
}
|
|
|
|
interval := model.Interval{
|
|
OldestInclusive: time.Unix(begin, 0),
|
|
NewestInclusive: time.Unix(end, 0),
|
|
}
|
|
|
|
samples := model.Values{}
|
|
fp := model.NewFingerprintFromMetric(metric)
|
|
switch persistence := p.(type) {
|
|
case *LevelDBMetricPersistence:
|
|
var err error
|
|
samples, err = levelDBGetRangeValues(persistence, fp, interval)
|
|
if err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
if len(samples) < 2 {
|
|
t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples))
|
|
}
|
|
default:
|
|
samples = p.GetRangeValues(fp, interval)
|
|
if len(samples) < 2 {
|
|
t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
if err := quick.Check(stochastic, nil); err != nil {
|
|
t.Error(err)
|
|
}
|
|
}
|
|
|
|
// Test Definitions Follow
|
|
|
|
var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests)
|
|
|
|
func TestLevelDBBasicLifecycle(t *testing.T) {
|
|
testLevelDBBasicLifecycle(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBBasicLifecycle(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBBasicLifecycle(b)
|
|
}
|
|
}
|
|
|
|
var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests)
|
|
|
|
func TestLevelDBReadEmpty(t *testing.T) {
|
|
testLevelDBReadEmpty(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBReadEmpty(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBReadEmpty(b)
|
|
}
|
|
}
|
|
|
|
var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests)
|
|
|
|
func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) {
|
|
testLevelDBAppendSampleAsPureSparseAppend(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBAppendSampleAsPureSparseAppend(b)
|
|
}
|
|
}
|
|
|
|
var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests)
|
|
|
|
func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) {
|
|
testLevelDBAppendSampleAsSparseAppendWithReads(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBAppendSampleAsSparseAppendWithReads(b)
|
|
}
|
|
}
|
|
|
|
var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests)
|
|
|
|
func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) {
|
|
testLevelDBAppendSampleAsPureSingleEntityAppend(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBAppendSampleAsPureSingleEntityAppend(b)
|
|
}
|
|
}
|
|
|
|
func testLevelDBStochastic(t test.Tester) {
|
|
persistenceMaker := func() (MetricPersistence, test.Closer) {
|
|
temporaryDirectory := test.NewTemporaryDirectory("test_leveldb_stochastic", t)
|
|
|
|
p, err := NewLevelDBMetricPersistence(temporaryDirectory.Path())
|
|
if err != nil {
|
|
t.Errorf("Could not start up LevelDB: %q\n", err)
|
|
}
|
|
|
|
return p, temporaryDirectory
|
|
}
|
|
|
|
StochasticTests(persistenceMaker, t)
|
|
}
|
|
|
|
func TestLevelDBStochastic(t *testing.T) {
|
|
testLevelDBStochastic(t)
|
|
}
|
|
|
|
func BenchmarkLevelDBStochastic(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testLevelDBStochastic(b)
|
|
}
|
|
}
|
|
|
|
var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests)
|
|
|
|
func TestMemoryBasicLifecycle(t *testing.T) {
|
|
testMemoryBasicLifecycle(t)
|
|
}
|
|
|
|
func BenchmarkMemoryBasicLifecycle(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryBasicLifecycle(b)
|
|
}
|
|
}
|
|
|
|
var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests)
|
|
|
|
func TestMemoryReadEmpty(t *testing.T) {
|
|
testMemoryReadEmpty(t)
|
|
}
|
|
|
|
func BenchmarkMemoryReadEmpty(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryReadEmpty(b)
|
|
}
|
|
}
|
|
|
|
var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests)
|
|
|
|
func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) {
|
|
testMemoryAppendSampleAsPureSparseAppend(t)
|
|
}
|
|
|
|
func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryAppendSampleAsPureSparseAppend(b)
|
|
}
|
|
}
|
|
|
|
var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests)
|
|
|
|
func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) {
|
|
testMemoryAppendSampleAsSparseAppendWithReads(t)
|
|
}
|
|
|
|
func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryAppendSampleAsSparseAppendWithReads(b)
|
|
}
|
|
}
|
|
|
|
var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests)
|
|
|
|
func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) {
|
|
testMemoryAppendSampleAsPureSingleEntityAppend(t)
|
|
}
|
|
|
|
func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryAppendSampleAsPureSingleEntityAppend(b)
|
|
}
|
|
}
|
|
|
|
func testMemoryStochastic(t test.Tester) {
|
|
persistenceMaker := func() (MetricPersistence, test.Closer) {
|
|
return NewMemorySeriesStorage(), test.NilCloser
|
|
}
|
|
|
|
StochasticTests(persistenceMaker, t)
|
|
}
|
|
|
|
func TestMemoryStochastic(t *testing.T) {
|
|
testMemoryStochastic(t)
|
|
}
|
|
|
|
func BenchmarkMemoryStochastic(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
testMemoryStochastic(b)
|
|
}
|
|
}
|