mirror of
https://github.com/prometheus/prometheus.git
synced 2024-12-30 07:59:40 -08:00
ec999ff397
This can happen in the situation where the system scales up the number of shards massively (to deal with some backlog), then scales it down again as the number of samples sent during the time period is less than the number received.
515 lines
14 KiB
Go
515 lines
14 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package remote
|
|
|
|
import (
|
|
"math"
|
|
"sync"
|
|
"time"
|
|
|
|
"golang.org/x/time/rate"
|
|
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
"github.com/prometheus/common/log"
|
|
"github.com/prometheus/common/model"
|
|
"github.com/prometheus/prometheus/config"
|
|
"github.com/prometheus/prometheus/relabel"
|
|
)
|
|
|
|
// String constants for instrumentation.
|
|
const (
|
|
namespace = "prometheus"
|
|
subsystem = "remote_storage"
|
|
queue = "queue"
|
|
|
|
// We track samples in/out and how long pushes take using an Exponentially
|
|
// Weighted Moving Average.
|
|
ewmaWeight = 0.2
|
|
shardUpdateDuration = 10 * time.Second
|
|
|
|
// Allow 30% too many shards before scaling down.
|
|
shardToleranceFraction = 0.3
|
|
|
|
// Limit to 1 log event every 10s
|
|
logRateLimit = 0.1
|
|
logBurst = 10
|
|
)
|
|
|
|
var (
|
|
succeededSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "succeeded_samples_total",
|
|
Help: "Total number of samples successfully sent to remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
failedSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "failed_samples_total",
|
|
Help: "Total number of samples which failed on send to remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
droppedSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "dropped_samples_total",
|
|
Help: "Total number of samples which were dropped due to the queue being full.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
sentBatchDuration = prometheus.NewHistogramVec(
|
|
prometheus.HistogramOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "sent_batch_duration_seconds",
|
|
Help: "Duration of sample batch send calls to the remote storage.",
|
|
Buckets: prometheus.DefBuckets,
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queueLength = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queue_length",
|
|
Help: "The number of processed samples queued to be sent to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queueCapacity = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queue_capacity",
|
|
Help: "The capacity of the queue of samples to be sent to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
numShards = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards",
|
|
Help: "The number of shards used for parallel sending to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
)
|
|
|
|
func init() {
|
|
prometheus.MustRegister(succeededSamplesTotal)
|
|
prometheus.MustRegister(failedSamplesTotal)
|
|
prometheus.MustRegister(droppedSamplesTotal)
|
|
prometheus.MustRegister(sentBatchDuration)
|
|
prometheus.MustRegister(queueLength)
|
|
prometheus.MustRegister(queueCapacity)
|
|
prometheus.MustRegister(numShards)
|
|
}
|
|
|
|
// QueueManagerConfig is the configuration for the queue used to write to remote
|
|
// storage.
|
|
type QueueManagerConfig struct {
|
|
// Number of samples to buffer per shard before we start dropping them.
|
|
QueueCapacity int
|
|
// Max number of shards, i.e. amount of concurrency.
|
|
MaxShards int
|
|
// Maximum number of samples per send.
|
|
MaxSamplesPerSend int
|
|
// Maximum time sample will wait in buffer.
|
|
BatchSendDeadline time.Duration
|
|
// Max number of times to retry a batch on recoverable errors.
|
|
MaxRetries int
|
|
// On recoverable errors, backoff exponentially.
|
|
MinBackoff time.Duration
|
|
MaxBackoff time.Duration
|
|
}
|
|
|
|
// defaultQueueManagerConfig is the default remote queue configuration.
|
|
var defaultQueueManagerConfig = QueueManagerConfig{
|
|
// With a maximum of 1000 shards, assuming an average of 100ms remote write
|
|
// time and 100 samples per batch, we will be able to push 1M samples/s.
|
|
MaxShards: 1000,
|
|
MaxSamplesPerSend: 100,
|
|
|
|
// By default, buffer 1000 batches, which at 100ms per batch is 1:40mins. At
|
|
// 1000 shards, this will buffer 100M samples total.
|
|
QueueCapacity: 100 * 1000,
|
|
BatchSendDeadline: 5 * time.Second,
|
|
|
|
// Max number of times to retry a batch on recoverable errors.
|
|
MaxRetries: 10,
|
|
MinBackoff: 30 * time.Millisecond,
|
|
MaxBackoff: 100 * time.Millisecond,
|
|
}
|
|
|
|
// StorageClient defines an interface for sending a batch of samples to an
|
|
// external timeseries database.
|
|
type StorageClient interface {
|
|
// Store stores the given samples in the remote storage.
|
|
Store(model.Samples) error
|
|
// Name identifies the remote storage implementation.
|
|
Name() string
|
|
}
|
|
|
|
// QueueManager manages a queue of samples to be sent to the Storage
|
|
// indicated by the provided StorageClient.
|
|
type QueueManager struct {
|
|
cfg QueueManagerConfig
|
|
externalLabels model.LabelSet
|
|
relabelConfigs []*config.RelabelConfig
|
|
client StorageClient
|
|
queueName string
|
|
logLimiter *rate.Limiter
|
|
|
|
shardsMtx sync.Mutex
|
|
shards *shards
|
|
numShards int
|
|
reshardChan chan int
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
|
|
samplesIn, samplesOut, samplesOutDuration *ewmaRate
|
|
integralAccumulator float64
|
|
}
|
|
|
|
// NewQueueManager builds a new QueueManager.
|
|
func NewQueueManager(cfg QueueManagerConfig, externalLabels model.LabelSet, relabelConfigs []*config.RelabelConfig, client StorageClient) *QueueManager {
|
|
t := &QueueManager{
|
|
cfg: cfg,
|
|
externalLabels: externalLabels,
|
|
relabelConfigs: relabelConfigs,
|
|
client: client,
|
|
queueName: client.Name(),
|
|
|
|
logLimiter: rate.NewLimiter(logRateLimit, logBurst),
|
|
numShards: 1,
|
|
reshardChan: make(chan int),
|
|
quit: make(chan struct{}),
|
|
|
|
samplesIn: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
}
|
|
t.shards = t.newShards(t.numShards)
|
|
numShards.WithLabelValues(t.queueName).Set(float64(t.numShards))
|
|
queueCapacity.WithLabelValues(t.queueName).Set(float64(t.cfg.QueueCapacity))
|
|
|
|
return t
|
|
}
|
|
|
|
// Append queues a sample to be sent to the remote storage. It drops the
|
|
// sample on the floor if the queue is full.
|
|
// Always returns nil.
|
|
func (t *QueueManager) Append(s *model.Sample) error {
|
|
var snew model.Sample
|
|
snew = *s
|
|
snew.Metric = s.Metric.Clone()
|
|
|
|
for ln, lv := range t.externalLabels {
|
|
if _, ok := s.Metric[ln]; !ok {
|
|
snew.Metric[ln] = lv
|
|
}
|
|
}
|
|
|
|
snew.Metric = model.Metric(
|
|
relabel.Process(model.LabelSet(snew.Metric), t.relabelConfigs...))
|
|
|
|
if snew.Metric == nil {
|
|
return nil
|
|
}
|
|
|
|
t.shardsMtx.Lock()
|
|
enqueued := t.shards.enqueue(&snew)
|
|
t.shardsMtx.Unlock()
|
|
|
|
if enqueued {
|
|
queueLength.WithLabelValues(t.queueName).Inc()
|
|
} else {
|
|
droppedSamplesTotal.WithLabelValues(t.queueName).Inc()
|
|
if t.logLimiter.Allow() {
|
|
log.Warn("Remote storage queue full, discarding sample. Multiple subsequent messages of this kind may be suppressed.")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// NeedsThrottling implements storage.SampleAppender. It will always return
|
|
// false as a remote storage drops samples on the floor if backlogging instead
|
|
// of asking for throttling.
|
|
func (*QueueManager) NeedsThrottling() bool {
|
|
return false
|
|
}
|
|
|
|
// Start the queue manager sending samples to the remote storage.
|
|
// Does not block.
|
|
func (t *QueueManager) Start() {
|
|
t.wg.Add(2)
|
|
go t.updateShardsLoop()
|
|
go t.reshardLoop()
|
|
|
|
t.shardsMtx.Lock()
|
|
defer t.shardsMtx.Unlock()
|
|
t.shards.start()
|
|
}
|
|
|
|
// Stop stops sending samples to the remote storage and waits for pending
|
|
// sends to complete.
|
|
func (t *QueueManager) Stop() {
|
|
log.Infof("Stopping remote storage...")
|
|
close(t.quit)
|
|
t.wg.Wait()
|
|
|
|
t.shardsMtx.Lock()
|
|
defer t.shardsMtx.Unlock()
|
|
t.shards.stop()
|
|
log.Info("Remote storage stopped.")
|
|
}
|
|
|
|
func (t *QueueManager) updateShardsLoop() {
|
|
defer t.wg.Done()
|
|
|
|
ticker := time.Tick(shardUpdateDuration)
|
|
for {
|
|
select {
|
|
case <-ticker:
|
|
t.calculateDesiredShards()
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) calculateDesiredShards() {
|
|
t.samplesIn.tick()
|
|
t.samplesOut.tick()
|
|
t.samplesOutDuration.tick()
|
|
|
|
// We use the number of incoming samples as a prediction of how much work we
|
|
// will need to do next iteration. We add to this any pending samples
|
|
// (received - send) so we can catch up with any backlog. We use the average
|
|
// outgoing batch latency to work out how many shards we need.
|
|
var (
|
|
samplesIn = t.samplesIn.rate()
|
|
samplesOut = t.samplesOut.rate()
|
|
samplesPending = samplesIn - samplesOut
|
|
samplesOutDuration = t.samplesOutDuration.rate()
|
|
)
|
|
|
|
// We use an integral accumulator, like in a PID, to help dampen oscillation.
|
|
t.integralAccumulator = t.integralAccumulator + (samplesPending * 0.1)
|
|
|
|
if samplesOut <= 0 {
|
|
return
|
|
}
|
|
|
|
var (
|
|
timePerSample = samplesOutDuration / samplesOut
|
|
desiredShards = (timePerSample * (samplesIn + samplesPending + t.integralAccumulator)) / float64(time.Second)
|
|
)
|
|
log.Debugf("QueueManager.caclulateDesiredShards samplesIn=%f, samplesOut=%f, samplesPending=%f, desiredShards=%f",
|
|
samplesIn, samplesOut, samplesPending, desiredShards)
|
|
|
|
// Changes in the number of shards must be greater than shardToleranceFraction.
|
|
var (
|
|
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
|
|
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
|
|
)
|
|
log.Debugf("QueueManager.updateShardsLoop %f <= %f <= %f", lowerBound, desiredShards, upperBound)
|
|
if lowerBound <= desiredShards && desiredShards <= upperBound {
|
|
return
|
|
}
|
|
|
|
numShards := int(math.Ceil(desiredShards))
|
|
if numShards > t.cfg.MaxShards {
|
|
numShards = t.cfg.MaxShards
|
|
} else if numShards < 1 {
|
|
numShards = 1
|
|
}
|
|
if numShards == t.numShards {
|
|
return
|
|
}
|
|
|
|
// Resharding can take some time, and we want this loop
|
|
// to stay close to shardUpdateDuration.
|
|
select {
|
|
case t.reshardChan <- numShards:
|
|
log.Infof("Remote storage resharding from %d to %d shards.", t.numShards, numShards)
|
|
t.numShards = numShards
|
|
default:
|
|
log.Infof("Currently resharding, skipping.")
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) reshardLoop() {
|
|
defer t.wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case numShards := <-t.reshardChan:
|
|
t.reshard(numShards)
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) reshard(n int) {
|
|
numShards.WithLabelValues(t.queueName).Set(float64(n))
|
|
|
|
t.shardsMtx.Lock()
|
|
newShards := t.newShards(n)
|
|
oldShards := t.shards
|
|
t.shards = newShards
|
|
t.shardsMtx.Unlock()
|
|
|
|
oldShards.stop()
|
|
|
|
// We start the newShards after we have stopped (the therefore completely
|
|
// flushed) the oldShards, to guarantee we only every deliver samples in
|
|
// order.
|
|
newShards.start()
|
|
}
|
|
|
|
type shards struct {
|
|
qm *QueueManager
|
|
queues []chan *model.Sample
|
|
done chan struct{}
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
func (t *QueueManager) newShards(numShards int) *shards {
|
|
queues := make([]chan *model.Sample, numShards)
|
|
for i := 0; i < numShards; i++ {
|
|
queues[i] = make(chan *model.Sample, t.cfg.QueueCapacity)
|
|
}
|
|
s := &shards{
|
|
qm: t,
|
|
queues: queues,
|
|
done: make(chan struct{}),
|
|
}
|
|
s.wg.Add(numShards)
|
|
return s
|
|
}
|
|
|
|
func (s *shards) len() int {
|
|
return len(s.queues)
|
|
}
|
|
|
|
func (s *shards) start() {
|
|
for i := 0; i < len(s.queues); i++ {
|
|
go s.runShard(i)
|
|
}
|
|
}
|
|
|
|
func (s *shards) stop() {
|
|
for _, shard := range s.queues {
|
|
close(shard)
|
|
}
|
|
s.wg.Wait()
|
|
}
|
|
|
|
func (s *shards) enqueue(sample *model.Sample) bool {
|
|
s.qm.samplesIn.incr(1)
|
|
|
|
fp := sample.Metric.FastFingerprint()
|
|
shard := uint64(fp) % uint64(len(s.queues))
|
|
|
|
select {
|
|
case s.queues[shard] <- sample:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
func (s *shards) runShard(i int) {
|
|
defer s.wg.Done()
|
|
queue := s.queues[i]
|
|
|
|
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
|
|
// If we have fewer samples than that, flush them out after a deadline
|
|
// anyways.
|
|
pendingSamples := model.Samples{}
|
|
|
|
for {
|
|
select {
|
|
case sample, ok := <-queue:
|
|
if !ok {
|
|
if len(pendingSamples) > 0 {
|
|
log.Debugf("Flushing %d samples to remote storage...", len(pendingSamples))
|
|
s.sendSamples(pendingSamples)
|
|
log.Debugf("Done flushing.")
|
|
}
|
|
return
|
|
}
|
|
|
|
queueLength.WithLabelValues(s.qm.queueName).Dec()
|
|
pendingSamples = append(pendingSamples, sample)
|
|
|
|
for len(pendingSamples) >= s.qm.cfg.MaxSamplesPerSend {
|
|
s.sendSamples(pendingSamples[:s.qm.cfg.MaxSamplesPerSend])
|
|
pendingSamples = pendingSamples[s.qm.cfg.MaxSamplesPerSend:]
|
|
}
|
|
case <-time.After(s.qm.cfg.BatchSendDeadline):
|
|
if len(pendingSamples) > 0 {
|
|
s.sendSamples(pendingSamples)
|
|
pendingSamples = pendingSamples[:0]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *shards) sendSamples(samples model.Samples) {
|
|
begin := time.Now()
|
|
s.sendSamplesWithBackoff(samples)
|
|
|
|
// These counters are used to caclulate the dynamic sharding, and as such
|
|
// should be maintained irrespective of success or failure.
|
|
s.qm.samplesOut.incr(int64(len(samples)))
|
|
s.qm.samplesOutDuration.incr(int64(time.Since(begin)))
|
|
}
|
|
|
|
// sendSamples to the remote storage with backoff for recoverable errors.
|
|
func (s *shards) sendSamplesWithBackoff(samples model.Samples) {
|
|
backoff := s.qm.cfg.MinBackoff
|
|
for retries := s.qm.cfg.MaxRetries; retries > 0; retries-- {
|
|
begin := time.Now()
|
|
err := s.qm.client.Store(samples)
|
|
|
|
sentBatchDuration.WithLabelValues(s.qm.queueName).Observe(time.Since(begin).Seconds())
|
|
if err == nil {
|
|
succeededSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
|
return
|
|
}
|
|
|
|
log.Warnf("Error sending %d samples to remote storage: %s", len(samples), err)
|
|
if _, ok := err.(recoverableError); !ok {
|
|
break
|
|
}
|
|
time.Sleep(backoff)
|
|
backoff = backoff * 2
|
|
if backoff > s.qm.cfg.MaxBackoff {
|
|
backoff = s.qm.cfg.MaxBackoff
|
|
}
|
|
}
|
|
|
|
failedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
|
}
|