prometheus/storage/local/chunk/varbit.go
Julius Volz c212ef0326 Add Chunk.Utilization() methods
When using the chunking code in other projects (both Weave Prism and
ChronixDB ingester), you sometimes want to know how well you are
utilizing your chunks when closing/storing them.
2016-10-06 16:31:59 +02:00

1202 lines
38 KiB
Go

// Copyright 2016 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunk
import (
"encoding/binary"
"fmt"
"io"
"math"
"github.com/prometheus/common/model"
)
// The varbit chunk encoding is broadly similar to the double-delta
// chunks. However, it uses a number of different bit-widths to save the
// double-deltas (rather than 1, 2, or 4 bytes). Also, it doesn't use the delta
// of the first two samples of a chunk as the base delta, but uses a "sliding"
// delta, i.e. the delta of the two previous samples. Both differences make
// random access more expensive. Sample values can be encoded with the same
// double-delta scheme as timestamps, but different value encodings can be
// chosen adaptively, among them XOR encoding and "zero" encoding for constant
// sample values. Overall, the varbit encoding results in a much better
// compression ratio (~1.3 bytes per sample compared to ~3.3 bytes per sample
// with double-delta encoding, for typical data sets).
//
// Major parts of the varbit encoding are inspired by the following paper:
// Gorilla: A Fast, Scalable, In-Memory Time Series Database
// T. Pelkonen et al., Facebook Inc.
// http://www.vldb.org/pvldb/vol8/p1816-teller.pdf
// Note that there are significant differences, some due to the way Prometheus
// chunks work, others to optimize for the Prometheus use-case.
//
// Layout of a 1024 byte varbit chunk (big endian, wherever it matters):
// - first time (int64): 8 bytes bit 0000-0063
// - first value (float64): 8 bytes bit 0064-0127
// - last time (int64): 8 bytes bit 0128-0191
// - last value (float64): 8 bytes bit 0192-0255
// - first Δt (t1-t0, unsigned): 3 bytes bit 0256-0279
// - flags (byte) 1 byte bit 0280-0287
// - bit offset for next sample 2 bytes bit 0288-0303
// - first Δv for value encoding 1, otherwise payload
// 4 bytes bit 0304-0335
// - payload 973 bytes bit 0336-8119
// The following only exists if the chunk is still open. Otherwise, it might be
// used by payload.
// - bit offset for current ΔΔt=0 count 2 bytes bit 8120-8135
// - last Δt 3 bytes bit 8136-8159
// - special bytes for value encoding 4 bytes bit 8160-8191
// - for encoding 1: last Δv 4 bytes bit 8160-8191
// - for encoding 2: count of
// - last leading zeros (1 byte) 1 byte bit 8160-8167
// - last significant bits (1 byte) 1 byte bit 8168-8175
//
// FLAGS
//
// The two least significant bits of the flags byte define the value encoding
// for the whole chunk, see below. The most significant byte of the flags byte
// is set if the chunk is closed. No samples can be added anymore to a closed
// chunk. Furthermore, the last value of a closed chunk is only saved in the
// header (last time, last value), while in a chunk that is still open, the last
// sample in the payload is the same sample as saved in the header.
//
// The remaining bits in the flags byte are currently unused.
//
// TIMESTAMP ENCODING
//
// The 1st timestamp is saved directly.
//
// The difference to the 2nd timestamp is saved as first Δt. 3 bytes is enough
// for about 4.5h. Since we close a chunk after sitting idle for 1h, this
// limitation has no practical consequences. Should, for whatever reason, a
// larger delta be required, the chunk would be closed, i.e. the new sample is
// added as the last sample to the chunk, and the next sample will be added to a
// new chunk.
//
// From the 3rd timestamp on, a double-delta (ΔΔt) is saved:
// (t_{n} - t_{n-1}) - (t_{n-1} - t_{n-2})
// To perform that operation, the last Δt is saved at the end of the chunk for
// as long the chunk is not closed yet (see above).
//
// Most of the times, ΔΔt is zero, even with the ms-precision of
// Prometheus. Therefore, we save a ΔΔt of zero as a leading '0' bit followed by
// 7 bits counting the number of consecutive ΔΔt==0 (the count is offset by -1,
// so the range of 0 to 127 represents 1 to 128 repetitions).
//
// If ΔΔt != 0, we essentially apply the Gorilla encoding scheme (cf. section
// 4.1.1 in the paper) but with different bit buckets as Prometheus uses ms
// rather than s, and the default scrape interval is 1m rather than 4m). In
// particular:
//
// - If ΔΔt is between [-32,31], store '10' followed by a 6 bit value. This is
// for minor irregularities in the scrape interval.
//
// - If ΔΔt is between [-65536,65535], store '110' followed by a 17 bit
// value. This will typically happen if a scrape is missed completely.
//
// - If ΔΔt is betwees [-4194304,4194303], store '111' followed by a 23 bit
// value. This spans more than 1h, which is usually enough as we close a
// chunk anyway if it doesn't receive any sample in 1h.
//
// - Should we nevertheless encounter a larger ΔΔt, we simply close the chunk,
// add the new sample as the last of the chunk, and add subsequent samples to
// a new chunk.
//
// VALUE ENCODING
//
// Value encoding can change and is determined by the two least significant bits
// of the 'flags' byte at bit position 280. The encoding can be changed without
// transcoding upon adding the 3rd sample. After that, an encoding change
// results either in transcoding or in closing the chunk.
//
// The 1st sample value is always saved directly. The 2nd sample value is saved
// in the header as the last value. Upon saving the 3rd value, an encoding is
// chosen, and the chunk is prepared accordingly.
//
// The following value encodings exist (with their value in the flags byte):
//
// 0: "Zero encoding".
//
// In many time series, the value simply stays constant over a long time
// (e.g. the "up" time series). In that case, all sample values are determined
// by the 1st value, and no further value encoding is happening at all. The
// payload consists entirely of timestamps.
//
// 1: Integer double-delta encoding.
//
// Many Prometheus metrics are integer counters and change in a quite regular
// fashion, similar to timestamps. Thus, the same double-delta encoding can be
// applied. This encoding works like the timestamp encoding described above, but
// with different bit buckets and without counting of repeated ΔΔv=0. The case
// of ΔΔv=0 is represented by a single '0' bit for each occurrence. The first Δv
// is saved as an int32 at bit position 288. The most recent Δv is saved as an
// int32 at the end of the chunk (see above). If Δv cannot be represented as a
// 32 bit signed integer, no integer double-delta encoding can be applied.
//
// Bit buckets (lead-in bytes followed by (signed) value bits):
// - '0': 0 bit
// - '10': 6 bit
// - '110': 13 bit
// - '1110': 20 bit
// - '1111': 33 bit
// Since Δv is restricted to 32 bit, 33 bit are always enough for ΔΔv.
//
// 2: XOR encoding.
//
// This follows almost precisely the Gorilla value encoding (cf. section 4.1.2
// of the paper). The last count of leading zeros and the last count of
// meaningful bits in the XOR value is saved at the end of the chunk for as long
// as the chunk is not closed yet (see above). Note, though, that the number of
// significant bits is saved as (count-1), i.e. a saved value of 0 means 1
// significant bit, a saved value of 1 means 2, and so on. Also, we save the
// numbers of leading zeros and significant bits anew if they drop a
// lot. Otherwise, you can easily be locked in with a high number of significant
// bits.
//
// 3: Direct encoding.
//
// If the sample values are just random, it is most efficient to save sample
// values directly as float64.
//
// ZIPPING TIMESTAMPS AND VALUES TOGETHER
//
// Usually, encoded timestamps and encoded values simply alternate. There are
// two exceptions:
//
// (1) With the "zero encoding" for values, the payload only contains
// timestamps.
//
// (2) In a consecutive row of up to 128 ΔΔt=0 repeats, the count of timestamps
// determines how many sample values will follow directly after another.
const (
varbitMinLength = 128
varbitMaxLength = 8191
// Useful byte offsets.
varbitFirstTimeOffset = 0
varbitFirstValueOffset = 8
varbitLastTimeOffset = 16
varbitLastValueOffset = 24
varbitFirstTimeDeltaOffset = 32
varbitFlagOffset = 35
varbitNextSampleBitOffsetOffset = 36
varbitFirstValueDeltaOffset = 38
// The following are in the "footer" and only usable if the chunk is
// still open.
varbitCountOffsetBitOffset = ChunkLen - 9
varbitLastTimeDeltaOffset = ChunkLen - 7
varbitLastValueDeltaOffset = ChunkLen - 4
varbitLastLeadingZerosCountOffset = ChunkLen - 4
varbitLastSignificantBitsCountOffset = ChunkLen - 3
varbitFirstSampleBitOffset uint16 = 0 // Symbolic, don't really read or write here.
varbitSecondSampleBitOffset uint16 = 1 // Symbolic, don't really read or write here.
// varbitThirdSampleBitOffset is a bit special. Depending on the encoding, there can
// be various things at this offset. It's most of the time symbolic, but in the best
// case (zero encoding for values), it will be the real offset for the 3rd sample.
varbitThirdSampleBitOffset uint16 = varbitFirstValueDeltaOffset * 8
// If the bit offset for the next sample is above this threshold, no new
// samples can be added to the chunk's payload (because the payload has
// already reached the footer). However, one more sample can be saved in
// the header as the last sample.
varbitNextSampleBitOffsetThreshold = 8 * varbitCountOffsetBitOffset
varbitMaxTimeDelta = 1 << 24 // What fits into a 3-byte timestamp.
)
type varbitValueEncoding byte
const (
varbitZeroEncoding varbitValueEncoding = iota
varbitIntDoubleDeltaEncoding
varbitXOREncoding
varbitDirectEncoding
)
// varbitWorstCaseBitsPerSample provides the worst-case number of bits needed
// per sample with the various value encodings. The counts already include the
// up to 27 bits taken by a timestamp.
var varbitWorstCaseBitsPerSample = map[varbitValueEncoding]int{
varbitZeroEncoding: 27 + 0,
varbitIntDoubleDeltaEncoding: 27 + 38,
varbitXOREncoding: 27 + 13 + 64,
varbitDirectEncoding: 27 + 64,
}
// varbitChunk implements the chunk interface.
type varbitChunk []byte
// newVarbitChunk returns a newly allocated varbitChunk. For simplicity, all
// varbit chunks must have the length as determined by the ChunkLen constant.
func newVarbitChunk(enc varbitValueEncoding) *varbitChunk {
if ChunkLen < varbitMinLength || ChunkLen > varbitMaxLength {
panic(fmt.Errorf(
"invalid chunk length of %d bytes, need at least %d bytes and at most %d bytes",
ChunkLen, varbitMinLength, varbitMaxLength,
))
}
if enc > varbitDirectEncoding {
panic(fmt.Errorf("unknown varbit value encoding: %v", enc))
}
c := make(varbitChunk, ChunkLen)
c.setValueEncoding(enc)
return &c
}
// add implements chunk.
func (c *varbitChunk) Add(s model.SamplePair) ([]Chunk, error) {
offset := c.nextSampleOffset()
switch {
case c.closed():
return addToOverflowChunk(c, s)
case offset > varbitNextSampleBitOffsetThreshold:
return c.addLastSample(s), nil
case offset == varbitFirstSampleBitOffset:
return c.addFirstSample(s), nil
case offset == varbitSecondSampleBitOffset:
return c.addSecondSample(s)
}
return c.addLaterSample(s, offset)
}
// clone implements chunk.
func (c varbitChunk) Clone() Chunk {
clone := make(varbitChunk, len(c))
copy(clone, c)
return &clone
}
// NewIterator implements chunk.
func (c varbitChunk) NewIterator() Iterator {
return newVarbitChunkIterator(c)
}
// marshal implements chunk.
func (c varbitChunk) Marshal(w io.Writer) error {
n, err := w.Write(c)
if err != nil {
return err
}
if n != cap(c) {
return fmt.Errorf("wanted to write %d bytes, wrote %d", cap(c), n)
}
return nil
}
// marshalToBuf implements chunk.
func (c varbitChunk) MarshalToBuf(buf []byte) error {
n := copy(buf, c)
if n != len(c) {
return fmt.Errorf("wanted to copy %d bytes to buffer, copied %d", len(c), n)
}
return nil
}
// unmarshal implements chunk.
func (c varbitChunk) Unmarshal(r io.Reader) error {
_, err := io.ReadFull(r, c)
return err
}
// unmarshalFromBuf implements chunk.
func (c varbitChunk) UnmarshalFromBuf(buf []byte) error {
if copied := copy(c, buf); copied != cap(c) {
return fmt.Errorf("insufficient bytes copied from buffer during unmarshaling, want %d, got %d", cap(c), copied)
}
return nil
}
// encoding implements chunk.
func (c varbitChunk) Encoding() Encoding { return Varbit }
// Utilization implements chunk.
func (c varbitChunk) Utilization() float64 {
// 15 bytes is the length of the chunk footer.
return math.Min(float64(c.nextSampleOffset()/8+15)/float64(cap(c)), 1)
}
// FirstTime implements chunk.
func (c varbitChunk) FirstTime() model.Time {
return model.Time(
binary.BigEndian.Uint64(
c[varbitFirstTimeOffset:],
),
)
}
func (c varbitChunk) firstValue() model.SampleValue {
return model.SampleValue(
math.Float64frombits(
binary.BigEndian.Uint64(
c[varbitFirstValueOffset:],
),
),
)
}
func (c varbitChunk) lastTime() model.Time {
return model.Time(
binary.BigEndian.Uint64(
c[varbitLastTimeOffset:],
),
)
}
func (c varbitChunk) lastValue() model.SampleValue {
return model.SampleValue(
math.Float64frombits(
binary.BigEndian.Uint64(
c[varbitLastValueOffset:],
),
),
)
}
func (c varbitChunk) firstTimeDelta() model.Time {
// Only the first 3 bytes are actually the timestamp, so get rid of the
// last one by bitshifting.
return model.Time(c[varbitFirstTimeDeltaOffset+2]) |
model.Time(c[varbitFirstTimeDeltaOffset+1])<<8 |
model.Time(c[varbitFirstTimeDeltaOffset])<<16
}
// firstValueDelta returns an undefined result if the encoding type is not 1.
func (c varbitChunk) firstValueDelta() int32 {
return int32(binary.BigEndian.Uint32(c[varbitFirstValueDeltaOffset:]))
}
// lastTimeDelta returns an undefined result if the chunk is closed already.
func (c varbitChunk) lastTimeDelta() model.Time {
return model.Time(c[varbitLastTimeDeltaOffset+2]) |
model.Time(c[varbitLastTimeDeltaOffset+1])<<8 |
model.Time(c[varbitLastTimeDeltaOffset])<<16
}
// setLastTimeDelta must not be called if the chunk is closed already. It most
// not be called with a time that doesn't fit into 24bit, either.
func (c varbitChunk) setLastTimeDelta(dT model.Time) {
if dT > varbitMaxTimeDelta {
panic("Δt overflows 24 bit")
}
c[varbitLastTimeDeltaOffset] = byte(dT >> 16)
c[varbitLastTimeDeltaOffset+1] = byte(dT >> 8)
c[varbitLastTimeDeltaOffset+2] = byte(dT)
}
// lastValueDelta returns an undefined result if the chunk is closed already.
func (c varbitChunk) lastValueDelta() int32 {
return int32(binary.BigEndian.Uint32(c[varbitLastValueDeltaOffset:]))
}
// setLastValueDelta must not be called if the chunk is closed already.
func (c varbitChunk) setLastValueDelta(dV int32) {
binary.BigEndian.PutUint32(c[varbitLastValueDeltaOffset:], uint32(dV))
}
func (c varbitChunk) nextSampleOffset() uint16 {
return binary.BigEndian.Uint16(c[varbitNextSampleBitOffsetOffset:])
}
func (c varbitChunk) setNextSampleOffset(offset uint16) {
binary.BigEndian.PutUint16(c[varbitNextSampleBitOffsetOffset:], offset)
}
func (c varbitChunk) valueEncoding() varbitValueEncoding {
return varbitValueEncoding(c[varbitFlagOffset] & 0x03)
}
func (c varbitChunk) setValueEncoding(enc varbitValueEncoding) {
if enc > varbitDirectEncoding {
panic("invalid varbit value encoding")
}
c[varbitFlagOffset] &^= 0x03 // Clear.
c[varbitFlagOffset] |= byte(enc) // Set.
}
func (c varbitChunk) closed() bool {
return c[varbitFlagOffset] > 0x7F // Most significant bit set.
}
func (c varbitChunk) zeroDDTRepeats() (repeats uint64, offset uint16) {
offset = binary.BigEndian.Uint16(c[varbitCountOffsetBitOffset:])
if offset == 0 {
return 0, 0
}
return c.readBitPattern(offset, 7) + 1, offset
}
func (c varbitChunk) setZeroDDTRepeats(repeats uint64, offset uint16) {
switch repeats {
case 0:
// Just clear the offset.
binary.BigEndian.PutUint16(c[varbitCountOffsetBitOffset:], 0)
return
case 1:
// First time we set a repeat here, so set the offset. But only
// if we haven't reached the footer yet. (If that's the case, we
// would overwrite ourselves below, and we don't need the offset
// later anyway because no more samples will be added to this
// chunk.)
if offset+7 <= varbitNextSampleBitOffsetThreshold {
binary.BigEndian.PutUint16(c[varbitCountOffsetBitOffset:], offset)
}
default:
// For a change, we are writing somewhere where we have written
// before. We need to clear the bits first.
posIn1stByte := offset % 8
c[offset/8] &^= bitMask[7][posIn1stByte]
if posIn1stByte > 1 {
c[offset/8+1] &^= bitMask[posIn1stByte-1][0]
}
}
c.addBitPattern(offset, repeats-1, 7)
}
func (c varbitChunk) setLastSample(s model.SamplePair) {
binary.BigEndian.PutUint64(
c[varbitLastTimeOffset:],
uint64(s.Timestamp),
)
binary.BigEndian.PutUint64(
c[varbitLastValueOffset:],
math.Float64bits(float64(s.Value)),
)
}
// addFirstSample is a helper method only used by c.add(). It adds timestamp and
// value as base time and value.
func (c *varbitChunk) addFirstSample(s model.SamplePair) []Chunk {
binary.BigEndian.PutUint64(
(*c)[varbitFirstTimeOffset:],
uint64(s.Timestamp),
)
binary.BigEndian.PutUint64(
(*c)[varbitFirstValueOffset:],
math.Float64bits(float64(s.Value)),
)
c.setLastSample(s) // To simplify handling of single-sample chunks.
c.setNextSampleOffset(varbitSecondSampleBitOffset)
return []Chunk{c}
}
// addSecondSample is a helper method only used by c.add(). It calculates the
// first time delta from the provided sample and adds it to the chunk together
// with the provided sample as the last sample.
func (c *varbitChunk) addSecondSample(s model.SamplePair) ([]Chunk, error) {
firstTimeDelta := s.Timestamp - c.FirstTime()
if firstTimeDelta < 0 {
return nil, fmt.Errorf("first Δt is less than zero: %v", firstTimeDelta)
}
if firstTimeDelta > varbitMaxTimeDelta {
// A time delta too great. Still, we can add it as a last sample
// before overflowing.
return c.addLastSample(s), nil
}
(*c)[varbitFirstTimeDeltaOffset] = byte(firstTimeDelta >> 16)
(*c)[varbitFirstTimeDeltaOffset+1] = byte(firstTimeDelta >> 8)
(*c)[varbitFirstTimeDeltaOffset+2] = byte(firstTimeDelta)
// Also set firstTimeDelta as the last time delta to be able to use the
// normal methods for adding later samples.
c.setLastTimeDelta(firstTimeDelta)
c.setLastSample(s)
c.setNextSampleOffset(varbitThirdSampleBitOffset)
return []Chunk{c}, nil
}
// addLastSample isa a helper method only used by c.add() and in other helper
// methods called by c.add(). It simply sets the given sample as the last sample
// in the heador and declares the chunk closed. In other words, addLastSample
// adds the very last sample added to this chunk ever, while setLastSample sets
// the sample most recently added to the chunk so that it can be used for the
// calculations required to add the next sample.
func (c *varbitChunk) addLastSample(s model.SamplePair) []Chunk {
c.setLastSample(s)
(*c)[varbitFlagOffset] |= 0x80
return []Chunk{c}
}
// addLaterSample is a helper method only used by c.add(). It adds a third or
// later sample.
func (c *varbitChunk) addLaterSample(s model.SamplePair, offset uint16) ([]Chunk, error) {
var (
lastTime = c.lastTime()
lastTimeDelta = c.lastTimeDelta()
newTimeDelta = s.Timestamp - lastTime
lastValue = c.lastValue()
encoding = c.valueEncoding()
)
if newTimeDelta < 0 {
return nil, fmt.Errorf("Δt is less than zero: %v", newTimeDelta)
}
if offset == varbitThirdSampleBitOffset {
offset, encoding = c.prepForThirdSample(lastValue, s.Value, encoding)
}
if newTimeDelta > varbitMaxTimeDelta {
// A time delta too great. Still, we can add it as a last sample
// before overflowing.
return c.addLastSample(s), nil
}
// Analyze worst case, does it fit? If not, set new sample as the last.
if int(offset)+varbitWorstCaseBitsPerSample[encoding] > ChunkLen*8 {
return c.addLastSample(s), nil
}
// Transcoding/overflow decisions first.
if encoding == varbitZeroEncoding && s.Value != lastValue {
// Cannot go on with zero encoding.
if offset > ChunkLen*4 {
// Chunk already half full. Don't transcode, overflow instead.
return addToOverflowChunk(c, s)
}
if isInt32(s.Value - lastValue) {
// Trying int encoding looks promising.
return transcodeAndAdd(newVarbitChunk(varbitIntDoubleDeltaEncoding), c, s)
}
return transcodeAndAdd(newVarbitChunk(varbitXOREncoding), c, s)
}
if encoding == varbitIntDoubleDeltaEncoding && !isInt32(s.Value-lastValue) {
// Cannot go on with int encoding.
if offset > ChunkLen*4 {
// Chunk already half full. Don't transcode, overflow instead.
return addToOverflowChunk(c, s)
}
return transcodeAndAdd(newVarbitChunk(varbitXOREncoding), c, s)
}
offset, overflow := c.addDDTime(offset, lastTimeDelta, newTimeDelta)
if overflow {
return c.addLastSample(s), nil
}
switch encoding {
case varbitZeroEncoding:
// Nothing to do.
case varbitIntDoubleDeltaEncoding:
offset = c.addDDValue(offset, lastValue, s.Value)
case varbitXOREncoding:
offset = c.addXORValue(offset, lastValue, s.Value)
case varbitDirectEncoding:
offset = c.addBitPattern(offset, math.Float64bits(float64(s.Value)), 64)
default:
return nil, fmt.Errorf("unknown Varbit value encoding: %v", encoding)
}
c.setNextSampleOffset(offset)
c.setLastSample(s)
return []Chunk{c}, nil
}
func (c varbitChunk) prepForThirdSample(
lastValue, newValue model.SampleValue, encoding varbitValueEncoding,
) (uint16, varbitValueEncoding) {
var (
offset = varbitThirdSampleBitOffset
firstValue = c.firstValue()
firstValueDelta = lastValue - firstValue
firstXOR = math.Float64bits(float64(firstValue)) ^ math.Float64bits(float64(lastValue))
_, firstSignificantBits = countBits(firstXOR)
secondXOR = math.Float64bits(float64(lastValue)) ^ math.Float64bits(float64(newValue))
_, secondSignificantBits = countBits(secondXOR)
)
// Now pick an initial encoding and prepare things accordingly.
// However, never pick an encoding "below" the one initially set.
switch {
case encoding == varbitZeroEncoding && lastValue == firstValue && lastValue == newValue:
// Stay at zero encoding.
// No value to be set.
// No offset change required.
case encoding <= varbitIntDoubleDeltaEncoding && isInt32(firstValueDelta):
encoding = varbitIntDoubleDeltaEncoding
binary.BigEndian.PutUint32(
c[varbitFirstValueDeltaOffset:],
uint32(int32(firstValueDelta)),
)
c.setLastValueDelta(int32(firstValueDelta))
offset += 32
case encoding == varbitDirectEncoding || firstSignificantBits+secondSignificantBits > 100:
// Heuristics based on three samples only is a bit weak,
// but if we need 50+13 = 63 bits per sample already
// now, we might be better off going for direct encoding.
encoding = varbitDirectEncoding
// Put bit pattern directly where otherwise the delta would have gone.
binary.BigEndian.PutUint64(
c[varbitFirstValueDeltaOffset:],
math.Float64bits(float64(lastValue)),
)
offset += 64
default:
encoding = varbitXOREncoding
offset = c.addXORValue(offset, firstValue, lastValue)
}
c.setValueEncoding(encoding)
c.setNextSampleOffset(offset)
return offset, encoding
}
// addDDTime requires that lastTimeDelta and newTimeDelta are positive and don't overflow 24bit.
func (c varbitChunk) addDDTime(offset uint16, lastTimeDelta, newTimeDelta model.Time) (newOffset uint16, overflow bool) {
timeDD := newTimeDelta - lastTimeDelta
if !isSignedIntN(int64(timeDD), 23) {
return offset, true
}
c.setLastTimeDelta(newTimeDelta)
repeats, repeatsOffset := c.zeroDDTRepeats()
if timeDD == 0 {
if repeats == 0 || repeats == 128 {
// First zeroDDT, or counter full, prepare new counter.
offset = c.addZeroBit(offset)
repeatsOffset = offset
offset += 7
repeats = 0
}
c.setZeroDDTRepeats(repeats+1, repeatsOffset)
return offset, false
}
// No zero repeat. If we had any before, clear the DDT offset.
c.setZeroDDTRepeats(0, repeatsOffset)
switch {
case isSignedIntN(int64(timeDD), 6):
offset = c.addOneBitsWithTrailingZero(offset, 1)
offset = c.addSignedInt(offset, int64(timeDD), 6)
case isSignedIntN(int64(timeDD), 17):
offset = c.addOneBitsWithTrailingZero(offset, 2)
offset = c.addSignedInt(offset, int64(timeDD), 17)
case isSignedIntN(int64(timeDD), 23):
offset = c.addOneBits(offset, 3)
offset = c.addSignedInt(offset, int64(timeDD), 23)
default:
panic("unexpected required bits for ΔΔt")
}
return offset, false
}
// addDDValue requires that newValue-lastValue can be represented with an int32.
func (c varbitChunk) addDDValue(offset uint16, lastValue, newValue model.SampleValue) uint16 {
newValueDelta := int64(newValue - lastValue)
lastValueDelta := c.lastValueDelta()
valueDD := newValueDelta - int64(lastValueDelta)
c.setLastValueDelta(int32(newValueDelta))
switch {
case valueDD == 0:
return c.addZeroBit(offset)
case isSignedIntN(valueDD, 6):
offset = c.addOneBitsWithTrailingZero(offset, 1)
return c.addSignedInt(offset, valueDD, 6)
case isSignedIntN(valueDD, 13):
offset = c.addOneBitsWithTrailingZero(offset, 2)
return c.addSignedInt(offset, valueDD, 13)
case isSignedIntN(valueDD, 20):
offset = c.addOneBitsWithTrailingZero(offset, 3)
return c.addSignedInt(offset, valueDD, 20)
case isSignedIntN(valueDD, 33):
offset = c.addOneBits(offset, 4)
return c.addSignedInt(offset, valueDD, 33)
default:
panic("unexpected required bits for ΔΔv")
}
}
func (c varbitChunk) addXORValue(offset uint16, lastValue, newValue model.SampleValue) uint16 {
lastPattern := math.Float64bits(float64(lastValue))
newPattern := math.Float64bits(float64(newValue))
xor := lastPattern ^ newPattern
if xor == 0 {
return c.addZeroBit(offset)
}
lastLeadingBits := c[varbitLastLeadingZerosCountOffset]
lastSignificantBits := c[varbitLastSignificantBitsCountOffset]
newLeadingBits, newSignificantBits := countBits(xor)
// Short entry if the new significant bits fit into the same box as the
// last significant bits. However, should the new significant bits be
// shorter by 10 or more, go for a long entry instead, as we will
// probably save more (11 bit one-time overhead, potentially more to
// save later).
if newLeadingBits >= lastLeadingBits &&
newLeadingBits+newSignificantBits <= lastLeadingBits+lastSignificantBits &&
lastSignificantBits-newSignificantBits < 10 {
offset = c.addOneBitsWithTrailingZero(offset, 1)
return c.addBitPattern(
offset,
xor>>(64-lastLeadingBits-lastSignificantBits),
uint16(lastSignificantBits),
)
}
// Long entry.
c[varbitLastLeadingZerosCountOffset] = newLeadingBits
c[varbitLastSignificantBitsCountOffset] = newSignificantBits
offset = c.addOneBits(offset, 2)
offset = c.addBitPattern(offset, uint64(newLeadingBits), 5)
offset = c.addBitPattern(offset, uint64(newSignificantBits-1), 6) // Note -1!
return c.addBitPattern(
offset,
xor>>(64-newLeadingBits-newSignificantBits),
uint16(newSignificantBits),
)
}
func (c varbitChunk) addZeroBit(offset uint16) uint16 {
if offset < varbitNextSampleBitOffsetThreshold {
// Writing a zero to a never touched area is a no-op.
// Just increase the offset.
return offset + 1
}
newByte := c[offset/8] &^ bitMask[1][offset%8]
c[offset/8] = newByte
// TODO(beorn7): The two lines above could be written as
// c[offset/8] &^= bitMask[1][offset%8]
// However, that tickles a compiler bug with GOARCH=386.
// See https://github.com/prometheus/prometheus/issues/1509
return offset + 1
}
func (c varbitChunk) addOneBits(offset uint16, n uint16) uint16 {
if n > 7 {
panic("unexpected number of control bits")
}
b := 8 - offset%8
if b > n {
b = n
}
c[offset/8] |= bitMask[b][offset%8]
offset += b
b = n - b
if b > 0 {
c[offset/8] |= bitMask[b][0]
offset += b
}
return offset
}
func (c varbitChunk) addOneBitsWithTrailingZero(offset uint16, n uint16) uint16 {
offset = c.addOneBits(offset, n)
return c.addZeroBit(offset)
}
// addSignedInt adds i as a signed integer with n bits. It requires i to be
// representable as such. (Check with isSignedIntN first.)
func (c varbitChunk) addSignedInt(offset uint16, i int64, n uint16) uint16 {
if i < 0 && n < 64 {
i += 1 << n
}
return c.addBitPattern(offset, uint64(i), n)
}
// addBitPattern adds the last n bits of the given pattern. Other bits in the
// pattern must be 0.
func (c varbitChunk) addBitPattern(offset uint16, pattern uint64, n uint16) uint16 {
var (
byteOffset = offset / 8
bitsToWrite = 8 - offset%8
newOffset = offset + n
)
// Clean up the parts of the footer we will write into. (But not more as
// we are still using the value related part of the footer when we have
// already overwritten timestamp related parts.)
if newOffset > varbitNextSampleBitOffsetThreshold {
pos := offset
if pos < varbitNextSampleBitOffsetThreshold {
pos = varbitNextSampleBitOffsetThreshold
}
for pos < newOffset {
posInByte := pos % 8
bitsToClear := newOffset - pos
if bitsToClear > 8-posInByte {
bitsToClear = 8 - posInByte
}
c[pos/8] &^= bitMask[bitsToClear][posInByte]
pos += bitsToClear
}
}
for n > 0 {
if n <= bitsToWrite {
c[byteOffset] |= byte(pattern << (bitsToWrite - n))
break
}
c[byteOffset] |= byte(pattern >> (n - bitsToWrite))
n -= bitsToWrite
bitsToWrite = 8
byteOffset++
}
return newOffset
}
// readBitPattern reads n bits at the given offset and returns them as the last
// n bits in a uint64.
func (c varbitChunk) readBitPattern(offset, n uint16) uint64 {
var (
result uint64
byteOffset = offset / 8
bitOffset = offset % 8
trailingBits, bitsToRead uint16
)
for n > 0 {
trailingBits = 0
bitsToRead = 8 - bitOffset
if bitsToRead > n {
trailingBits = bitsToRead - n
bitsToRead = n
}
result <<= bitsToRead
result |= uint64(
(c[byteOffset] & bitMask[bitsToRead][bitOffset]) >> trailingBits,
)
n -= bitsToRead
byteOffset++
bitOffset = 0
}
return result
}
type varbitChunkIterator struct {
c varbitChunk
// pos is the bit position within the chunk for the next sample to be
// decoded when scan() is called (i.e. it is _not_ the bit position of
// the sample currently returned by value()). The symbolic values
// varbitFirstSampleBitOffset and varbitSecondSampleBitOffset are also
// used for pos. len is the offset of the first bit in the chunk that is
// not part of the payload. If pos==len, then the iterator is positioned
// behind the last sample in the payload. However, the next call of
// scan() still has to check if the chunk is closed, in which case there
// is one more sample, saved in the header. To mark the iterator as
// having scanned that last sample, too, pos is set to len+1.
pos, len uint16
t, dT model.Time
repeats byte // Repeats of ΔΔt=0.
v model.SampleValue
dV int64 // Only used for int value encoding.
leading, significant uint16
enc varbitValueEncoding
lastError error
rewound bool
nextT model.Time // Only for rewound state.
nextV model.SampleValue // Only for rewound state.
}
func newVarbitChunkIterator(c varbitChunk) *varbitChunkIterator {
return &varbitChunkIterator{
c: c,
len: c.nextSampleOffset(),
t: model.Earliest,
enc: c.valueEncoding(),
significant: 1,
}
}
// lastTimestamp implements Iterator.
func (it *varbitChunkIterator) LastTimestamp() (model.Time, error) {
if it.len == varbitFirstSampleBitOffset {
// No samples in the chunk yet.
return model.Earliest, it.lastError
}
return it.c.lastTime(), it.lastError
}
// contains implements Iterator.
func (it *varbitChunkIterator) Contains(t model.Time) (bool, error) {
last, err := it.LastTimestamp()
if err != nil {
it.lastError = err
return false, err
}
return !t.Before(it.c.FirstTime()) &&
!t.After(last), it.lastError
}
// scan implements Iterator.
func (it *varbitChunkIterator) Scan() bool {
if it.lastError != nil {
return false
}
if it.rewound {
it.t = it.nextT
it.v = it.nextV
it.rewound = false
return true
}
if it.pos > it.len {
return false
}
if it.pos == it.len && it.repeats == 0 {
it.pos = it.len + 1
if !it.c.closed() {
return false
}
it.t = it.c.lastTime()
it.v = it.c.lastValue()
return it.lastError == nil
}
if it.pos == varbitFirstSampleBitOffset {
it.t = it.c.FirstTime()
it.v = it.c.firstValue()
it.pos = varbitSecondSampleBitOffset
return it.lastError == nil
}
if it.pos == varbitSecondSampleBitOffset {
if it.len == varbitThirdSampleBitOffset && !it.c.closed() {
// Special case: Chunk has only two samples.
it.t = it.c.lastTime()
it.v = it.c.lastValue()
it.pos = it.len + 1
return it.lastError == nil
}
it.dT = it.c.firstTimeDelta()
it.t += it.dT
// Value depends on encoding.
switch it.enc {
case varbitZeroEncoding:
it.pos = varbitThirdSampleBitOffset
case varbitIntDoubleDeltaEncoding:
it.dV = int64(it.c.firstValueDelta())
it.v += model.SampleValue(it.dV)
it.pos = varbitThirdSampleBitOffset + 32
case varbitXOREncoding:
it.pos = varbitThirdSampleBitOffset
it.readXOR()
case varbitDirectEncoding:
it.v = model.SampleValue(math.Float64frombits(
binary.BigEndian.Uint64(it.c[varbitThirdSampleBitOffset/8:]),
))
it.pos = varbitThirdSampleBitOffset + 64
default:
it.lastError = fmt.Errorf("unknown varbit value encoding: %v", it.enc)
}
return it.lastError == nil
}
// 3rd sample or later does not have special cases anymore.
it.readDDT()
switch it.enc {
case varbitZeroEncoding:
// Do nothing.
case varbitIntDoubleDeltaEncoding:
it.readDDV()
case varbitXOREncoding:
it.readXOR()
case varbitDirectEncoding:
it.v = model.SampleValue(math.Float64frombits(it.readBitPattern(64)))
return it.lastError == nil
default:
it.lastError = fmt.Errorf("unknown varbit value encoding: %v", it.enc)
return false
}
return it.lastError == nil
}
// findAtOrBefore implements Iterator.
func (it *varbitChunkIterator) FindAtOrBefore(t model.Time) bool {
if it.len == 0 || t.Before(it.c.FirstTime()) {
return false
}
last := it.c.lastTime()
if !t.Before(last) {
it.t = last
it.v = it.c.lastValue()
it.pos = it.len + 1
return true
}
if t == it.t {
return it.lastError == nil
}
if t.Before(it.t) || it.rewound {
it.reset()
}
var (
prevT = model.Earliest
prevV model.SampleValue
)
for it.Scan() && t.After(it.t) {
prevT = it.t
prevV = it.v
// TODO(beorn7): If we are in a repeat, we could iterate forward
// much faster.
}
if t == it.t {
return it.lastError == nil
}
it.rewind(prevT, prevV)
return it.lastError == nil
}
// findAtOrAfter implements Iterator.
func (it *varbitChunkIterator) FindAtOrAfter(t model.Time) bool {
if it.len == 0 || t.After(it.c.lastTime()) {
return false
}
first := it.c.FirstTime()
if !t.After(first) {
it.reset()
return it.Scan()
}
if t == it.t {
return it.lastError == nil
}
if t.Before(it.t) {
it.reset()
}
for it.Scan() && t.After(it.t) {
// TODO(beorn7): If we are in a repeat, we could iterate forward
// much faster.
}
return it.lastError == nil
}
// value implements Iterator.
func (it *varbitChunkIterator) Value() model.SamplePair {
return model.SamplePair{
Timestamp: it.t,
Value: it.v,
}
}
// err implements Iterator.
func (it *varbitChunkIterator) Err() error {
return it.lastError
}
func (it *varbitChunkIterator) readDDT() {
if it.repeats > 0 {
it.repeats--
} else {
switch it.readControlBits(3) {
case 0:
it.repeats = byte(it.readBitPattern(7))
case 1:
it.dT += model.Time(it.readSignedInt(6))
case 2:
it.dT += model.Time(it.readSignedInt(17))
case 3:
it.dT += model.Time(it.readSignedInt(23))
default:
panic("unexpected number of control bits")
}
}
it.t += it.dT
}
func (it *varbitChunkIterator) readDDV() {
switch it.readControlBits(4) {
case 0:
// Do nothing.
case 1:
it.dV += it.readSignedInt(6)
case 2:
it.dV += it.readSignedInt(13)
case 3:
it.dV += it.readSignedInt(20)
case 4:
it.dV += it.readSignedInt(33)
default:
panic("unexpected number of control bits")
}
it.v += model.SampleValue(it.dV)
}
func (it *varbitChunkIterator) readXOR() {
switch it.readControlBits(2) {
case 0:
return
case 1:
// Do nothing right now. All done below.
case 2:
it.leading = uint16(it.readBitPattern(5))
it.significant = uint16(it.readBitPattern(6)) + 1
default:
panic("unexpected number of control bits")
}
pattern := math.Float64bits(float64(it.v))
pattern ^= it.readBitPattern(it.significant) << (64 - it.significant - it.leading)
it.v = model.SampleValue(math.Float64frombits(pattern))
}
// readControlBits reads successive 1-bits and stops after reading the first
// 0-bit. It also stops once it has read max bits. It returns the number of read
// 1-bits.
func (it *varbitChunkIterator) readControlBits(max uint16) uint16 {
var count uint16
for count < max && int(it.pos/8) < len(it.c) {
b := it.c[it.pos/8] & bitMask[1][it.pos%8]
it.pos++
if b == 0 {
return count
}
count++
}
if int(it.pos/8) >= len(it.c) {
it.lastError = errChunkBoundsExceeded
}
return count
}
func (it *varbitChunkIterator) readBitPattern(n uint16) uint64 {
if len(it.c)*8 < int(it.pos)+int(n) {
it.lastError = errChunkBoundsExceeded
return 0
}
u := it.c.readBitPattern(it.pos, n)
it.pos += n
return u
}
func (it *varbitChunkIterator) readSignedInt(n uint16) int64 {
u := it.readBitPattern(n)
if n < 64 && u >= 1<<(n-1) {
u -= 1 << n
}
return int64(u)
}
// reset puts the chunk iterator into the state it had upon creation.
func (it *varbitChunkIterator) reset() {
it.pos = 0
it.t = model.Earliest
it.dT = 0
it.repeats = 0
it.v = 0
it.dV = 0
it.leading = 0
it.significant = 1
it.rewound = false
}
// rewind "rewinds" the chunk iterator by one step. Since one cannot simply
// rewind a Varbit chunk, the old values have to be provided by the
// caller. Rewinding an already rewound chunk panics. After a call of scan or
// reset, a chunk can be rewound again.
func (it *varbitChunkIterator) rewind(t model.Time, v model.SampleValue) {
if it.rewound {
panic("cannot rewind varbit chunk twice")
}
it.rewound = true
it.nextT = it.t
it.nextV = it.v
it.t = t
it.v = v
}