prometheus/rules/ast/ast.go
Julius Volz 0877680761 Implement a COUNT ... BY aggregation operator.
This also removes the now obsolete scalar count() function and corrects the
expressions test naming (broken in
2202cd71c9 (L6R59))
so that the expression tests will actually run.
2013-05-08 16:35:16 +02:00

709 lines
17 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ast
import (
"errors"
"fmt"
"github.com/prometheus/prometheus/model"
"github.com/prometheus/prometheus/storage/metric"
"log"
"math"
"sort"
"strings"
"time"
)
// ----------------------------------------------------------------------------
// Raw data value types.
type Vector model.Samples
type Matrix []model.SampleSet
type groupedAggregation struct {
labels model.Metric
value model.SampleValue
groupCount int
}
type labelValuePair struct {
label model.LabelName
value model.LabelValue
}
// ----------------------------------------------------------------------------
// Enums.
// Rule language expression types.
type ExprType int
const (
SCALAR ExprType = iota
VECTOR
MATRIX
STRING
)
// Binary operator types.
type BinOpType int
const (
ADD BinOpType = iota
SUB
MUL
DIV
MOD
NE
EQ
GT
LT
GE
LE
AND
OR
)
// Aggregation types.
type AggrType int
const (
SUM AggrType = iota
AVG
MIN
MAX
COUNT
)
// ----------------------------------------------------------------------------
// Interfaces.
// All node interfaces include the Node interface.
type Node interface {
Type() ExprType
NodeTreeToDotGraph() string
Children() []Node
}
// All node types implement one of the following interfaces. The name of the
// interface represents the type returned to the parent node.
type ScalarNode interface {
Node
Eval(timestamp time.Time, view *viewAdapter) model.SampleValue
}
type VectorNode interface {
Node
Eval(timestamp time.Time, view *viewAdapter) Vector
}
type MatrixNode interface {
Node
Eval(timestamp time.Time, view *viewAdapter) Matrix
EvalBoundaries(timestamp time.Time, view *viewAdapter) Matrix
}
type StringNode interface {
Node
Eval(timestamp time.Time, view *viewAdapter) string
}
// ----------------------------------------------------------------------------
// ScalarNode types.
type (
// A numeric literal.
ScalarLiteral struct {
value model.SampleValue
}
// A function of numeric return type.
ScalarFunctionCall struct {
function *Function
args []Node
}
// An arithmetic expression of numeric type.
ScalarArithExpr struct {
opType BinOpType
lhs ScalarNode
rhs ScalarNode
}
)
// ----------------------------------------------------------------------------
// VectorNode types.
type (
// Vector literal, i.e. metric name plus labelset.
VectorLiteral struct {
labels model.LabelSet
// Fingerprints are populated from labels at query analysis time.
fingerprints model.Fingerprints
}
// A function of vector return type.
VectorFunctionCall struct {
function *Function
args []Node
}
// A vector aggregation with vector return type.
VectorAggregation struct {
aggrType AggrType
groupBy []model.LabelName
vector VectorNode
}
// An arithmetic expression of vector type.
VectorArithExpr struct {
opType BinOpType
lhs VectorNode
rhs Node
}
)
// ----------------------------------------------------------------------------
// MatrixNode types.
type (
// Matrix literal, i.e. metric name plus labelset and timerange.
MatrixLiteral struct {
labels model.LabelSet
// Fingerprints are populated from labels at query analysis time.
fingerprints model.Fingerprints
interval time.Duration
}
)
// ----------------------------------------------------------------------------
// StringNode types.
type (
// String literal.
StringLiteral struct {
str string
}
// A function of string return type.
StringFunctionCall struct {
function *Function
args []Node
}
)
// ----------------------------------------------------------------------------
// Implementations.
// Node.Type() methods.
func (node ScalarLiteral) Type() ExprType { return SCALAR }
func (node ScalarFunctionCall) Type() ExprType { return SCALAR }
func (node ScalarArithExpr) Type() ExprType { return SCALAR }
func (node VectorLiteral) Type() ExprType { return VECTOR }
func (node VectorFunctionCall) Type() ExprType { return VECTOR }
func (node VectorAggregation) Type() ExprType { return VECTOR }
func (node VectorArithExpr) Type() ExprType { return VECTOR }
func (node MatrixLiteral) Type() ExprType { return MATRIX }
func (node StringLiteral) Type() ExprType { return STRING }
func (node StringFunctionCall) Type() ExprType { return STRING }
// Node.Children() methods.
func (node ScalarLiteral) Children() []Node { return []Node{} }
func (node ScalarFunctionCall) Children() []Node { return node.args }
func (node ScalarArithExpr) Children() []Node { return []Node{node.lhs, node.rhs} }
func (node VectorLiteral) Children() []Node { return []Node{} }
func (node VectorFunctionCall) Children() []Node { return node.args }
func (node VectorAggregation) Children() []Node { return []Node{node.vector} }
func (node VectorArithExpr) Children() []Node { return []Node{node.lhs, node.rhs} }
func (node MatrixLiteral) Children() []Node { return []Node{} }
func (node StringLiteral) Children() []Node { return []Node{} }
func (node StringFunctionCall) Children() []Node { return node.args }
func (node *ScalarLiteral) Eval(timestamp time.Time, view *viewAdapter) model.SampleValue {
return node.value
}
func (node *ScalarArithExpr) Eval(timestamp time.Time, view *viewAdapter) model.SampleValue {
lhs := node.lhs.Eval(timestamp, view)
rhs := node.rhs.Eval(timestamp, view)
return evalScalarBinop(node.opType, lhs, rhs)
}
func (node *ScalarFunctionCall) Eval(timestamp time.Time, view *viewAdapter) model.SampleValue {
return node.function.callFn(timestamp, view, node.args).(model.SampleValue)
}
func (node *VectorAggregation) labelsToGroupingKey(labels model.Metric) string {
keyParts := []string{}
for _, keyLabel := range node.groupBy {
keyParts = append(keyParts, string(labels[keyLabel]))
}
return strings.Join(keyParts, ",") // TODO not safe when label value contains comma.
}
func labelsToKey(labels model.Metric) string {
keyParts := []string{}
for label, value := range labels {
keyParts = append(keyParts, fmt.Sprintf("%v='%v'", label, value))
}
sort.Strings(keyParts)
return strings.Join(keyParts, ",") // TODO not safe when label value contains comma.
}
func EvalVectorInstant(node VectorNode, timestamp time.Time, storage *metric.TieredStorage) (vector Vector, err error) {
viewAdapter, err := viewAdapterForInstantQuery(node, timestamp, storage)
if err != nil {
return
}
vector = node.Eval(timestamp, viewAdapter)
return
}
func EvalVectorRange(node VectorNode, start time.Time, end time.Time, interval time.Duration, storage *metric.TieredStorage) (matrix Matrix, err error) {
// Explicitly initialize to an empty matrix since a nil Matrix encodes to
// null in JSON.
matrix = Matrix{}
viewAdapter, err := viewAdapterForRangeQuery(node, start, end, interval, storage)
if err != nil {
return
}
// TODO implement watchdog timer for long-running queries.
sampleSets := map[string]*model.SampleSet{}
for t := start; t.Before(end); t = t.Add(interval) {
vector := node.Eval(t, viewAdapter)
for _, sample := range vector {
samplePair := model.SamplePair{
Value: sample.Value,
Timestamp: sample.Timestamp,
}
groupingKey := labelsToKey(sample.Metric)
if sampleSets[groupingKey] == nil {
sampleSets[groupingKey] = &model.SampleSet{
Metric: sample.Metric,
Values: model.Values{samplePair},
}
} else {
sampleSets[groupingKey].Values = append(sampleSets[groupingKey].Values, samplePair)
}
}
}
for _, sampleSet := range sampleSets {
matrix = append(matrix, *sampleSet)
}
return
}
func labelIntersection(metric1, metric2 model.Metric) model.Metric {
intersection := model.Metric{}
for label, value := range metric1 {
if metric2[label] == value {
intersection[label] = value
}
}
return intersection
}
func (node *VectorAggregation) groupedAggregationsToVector(aggregations map[string]*groupedAggregation, timestamp time.Time) Vector {
vector := Vector{}
for _, aggregation := range aggregations {
switch node.aggrType {
case AVG:
aggregation.value = aggregation.value / model.SampleValue(aggregation.groupCount)
case COUNT:
aggregation.value = model.SampleValue(aggregation.groupCount)
default:
// For other aggregations, we already have the right value.
}
sample := model.Sample{
Metric: aggregation.labels,
Value: aggregation.value,
Timestamp: timestamp,
}
vector = append(vector, sample)
}
return vector
}
func (node *VectorAggregation) Eval(timestamp time.Time, view *viewAdapter) Vector {
vector := node.vector.Eval(timestamp, view)
result := map[string]*groupedAggregation{}
for _, sample := range vector {
groupingKey := node.labelsToGroupingKey(sample.Metric)
if groupedResult, ok := result[groupingKey]; ok {
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
switch node.aggrType {
case SUM:
groupedResult.value += sample.Value
case AVG:
groupedResult.value += sample.Value
groupedResult.groupCount++
case MAX:
if groupedResult.value < sample.Value {
groupedResult.value = sample.Value
}
case MIN:
if groupedResult.value > sample.Value {
groupedResult.value = sample.Value
}
case COUNT:
groupedResult.groupCount++
default:
panic("Unknown aggregation type")
}
} else {
result[groupingKey] = &groupedAggregation{
labels: sample.Metric,
value: sample.Value,
groupCount: 1,
}
}
}
return node.groupedAggregationsToVector(result, timestamp)
}
func (node *VectorLiteral) Eval(timestamp time.Time, view *viewAdapter) Vector {
values, err := view.GetValueAtTime(node.fingerprints, timestamp)
if err != nil {
log.Printf("Unable to get vector values")
return Vector{}
}
return values
}
func (node *VectorFunctionCall) Eval(timestamp time.Time, view *viewAdapter) Vector {
return node.function.callFn(timestamp, view, node.args).(Vector)
}
func evalScalarBinop(opType BinOpType,
lhs model.SampleValue,
rhs model.SampleValue) model.SampleValue {
switch opType {
case ADD:
return lhs + rhs
case SUB:
return lhs - rhs
case MUL:
return lhs * rhs
case DIV:
if rhs != 0 {
return lhs / rhs
} else {
return model.SampleValue(math.Inf(int(rhs)))
}
case MOD:
if rhs != 0 {
return model.SampleValue(int(lhs) % int(rhs))
} else {
return model.SampleValue(math.Inf(int(rhs)))
}
case EQ:
if lhs == rhs {
return 1
} else {
return 0
}
case NE:
if lhs != rhs {
return 1
} else {
return 0
}
case GT:
if lhs > rhs {
return 1
} else {
return 0
}
case LT:
if lhs < rhs {
return 1
} else {
return 0
}
case GE:
if lhs >= rhs {
return 1
} else {
return 0
}
case LE:
if lhs <= rhs {
return 1
} else {
return 0
}
}
panic("Not all enum values enumerated in switch")
}
func evalVectorBinop(opType BinOpType,
lhs model.SampleValue,
rhs model.SampleValue) (model.SampleValue, bool) {
switch opType {
case ADD:
return lhs + rhs, true
case SUB:
return lhs - rhs, true
case MUL:
return lhs * rhs, true
case DIV:
if rhs != 0 {
return lhs / rhs, true
} else {
return model.SampleValue(math.Inf(int(rhs))), true
}
case MOD:
if rhs != 0 {
return model.SampleValue(int(lhs) % int(rhs)), true
} else {
return model.SampleValue(math.Inf(int(rhs))), true
}
case EQ:
if lhs == rhs {
return lhs, true
} else {
return 0, false
}
case NE:
if lhs != rhs {
return lhs, true
} else {
return 0, false
}
case GT:
if lhs > rhs {
return lhs, true
} else {
return 0, false
}
case LT:
if lhs < rhs {
return lhs, true
} else {
return 0, false
}
case GE:
if lhs >= rhs {
return lhs, true
} else {
return 0, false
}
case LE:
if lhs <= rhs {
return lhs, true
} else {
return 0, false
}
case AND:
return lhs, true
case OR:
return lhs, true // TODO: implement OR
}
panic("Not all enum values enumerated in switch")
}
func labelsEqual(labels1, labels2 model.Metric) bool {
if len(labels1) != len(labels2) {
return false
}
for label, value := range labels1 {
if labels2[label] != value && label != model.MetricNameLabel {
return false
}
}
return true
}
func (node *VectorArithExpr) Eval(timestamp time.Time, view *viewAdapter) Vector {
lhs := node.lhs.Eval(timestamp, view)
result := Vector{}
if node.rhs.Type() == SCALAR {
rhs := node.rhs.(ScalarNode).Eval(timestamp, view)
for _, lhsSample := range lhs {
value, keep := evalVectorBinop(node.opType, lhsSample.Value, rhs)
if keep {
lhsSample.Value = value
result = append(result, lhsSample)
}
}
return result
} else if node.rhs.Type() == VECTOR {
rhs := node.rhs.(VectorNode).Eval(timestamp, view)
for _, lhsSample := range lhs {
for _, rhsSample := range rhs {
if labelsEqual(lhsSample.Metric, rhsSample.Metric) {
value, keep := evalVectorBinop(node.opType, lhsSample.Value, rhsSample.Value)
if keep {
lhsSample.Value = value
result = append(result, lhsSample)
}
}
}
}
return result
}
panic("Invalid vector arithmetic expression operands")
}
func (node *MatrixLiteral) Eval(timestamp time.Time, view *viewAdapter) Matrix {
interval := &model.Interval{
OldestInclusive: timestamp.Add(-node.interval),
NewestInclusive: timestamp,
}
values, err := view.GetRangeValues(node.fingerprints, interval)
if err != nil {
log.Printf("Unable to get values for vector interval")
return Matrix{}
}
return values
}
func (node *MatrixLiteral) EvalBoundaries(timestamp time.Time, view *viewAdapter) Matrix {
interval := &model.Interval{
OldestInclusive: timestamp.Add(-node.interval),
NewestInclusive: timestamp,
}
values, err := view.GetBoundaryValues(node.fingerprints, interval)
if err != nil {
log.Printf("Unable to get boundary values for vector interval")
return Matrix{}
}
return values
}
func (matrix Matrix) Len() int {
return len(matrix)
}
func (matrix Matrix) Less(i, j int) bool {
return labelsToKey(matrix[i].Metric) < labelsToKey(matrix[j].Metric)
}
func (matrix Matrix) Swap(i, j int) {
matrix[i], matrix[j] = matrix[j], matrix[i]
}
func (node *StringLiteral) Eval(timestamp time.Time, view *viewAdapter) string {
return node.str
}
func (node *StringFunctionCall) Eval(timestamp time.Time, view *viewAdapter) string {
return node.function.callFn(timestamp, view, node.args).(string)
}
// ----------------------------------------------------------------------------
// Constructors.
func NewScalarLiteral(value model.SampleValue) *ScalarLiteral {
return &ScalarLiteral{
value: value,
}
}
func NewVectorLiteral(labels model.LabelSet) *VectorLiteral {
return &VectorLiteral{
labels: labels,
}
}
func NewVectorAggregation(aggrType AggrType, vector VectorNode, groupBy []model.LabelName) *VectorAggregation {
return &VectorAggregation{
aggrType: aggrType,
groupBy: groupBy,
vector: vector,
}
}
func NewFunctionCall(function *Function, args []Node) (Node, error) {
if err := function.CheckArgTypes(args); err != nil {
return nil, err
}
switch function.returnType {
case SCALAR:
return &ScalarFunctionCall{
function: function,
args: args,
}, nil
case VECTOR:
return &VectorFunctionCall{
function: function,
args: args,
}, nil
case STRING:
return &StringFunctionCall{
function: function,
args: args,
}, nil
}
panic("Function with invalid return type")
}
func nodesHaveTypes(nodes []Node, exprTypes []ExprType) bool {
for _, node := range nodes {
correctType := false
for _, exprType := range exprTypes {
if node.Type() == exprType {
correctType = true
}
}
if !correctType {
return false
}
}
return true
}
func NewArithExpr(opType BinOpType, lhs Node, rhs Node) (Node, error) {
if !nodesHaveTypes([]Node{lhs, rhs}, []ExprType{SCALAR, VECTOR}) {
return nil, errors.New("Binary operands must be of vector or scalar type")
}
if lhs.Type() == SCALAR && rhs.Type() == VECTOR {
return nil, errors.New("Left side of vector binary operation must be of vector type")
}
if opType == AND || opType == OR {
if lhs.Type() == SCALAR || rhs.Type() == SCALAR {
return nil, errors.New("AND and OR operators may only be used between vectors")
}
}
if lhs.Type() == VECTOR || rhs.Type() == VECTOR {
return &VectorArithExpr{
opType: opType,
lhs: lhs.(VectorNode),
rhs: rhs,
}, nil
}
return &ScalarArithExpr{
opType: opType,
lhs: lhs.(ScalarNode),
rhs: rhs.(ScalarNode),
}, nil
}
func NewMatrixLiteral(vector *VectorLiteral, interval time.Duration) *MatrixLiteral {
return &MatrixLiteral{
labels: vector.labels,
interval: interval,
}
}
func NewStringLiteral(str string) *StringLiteral {
return &StringLiteral{
str: str,
}
}