prometheus/storage/local/persistence.go
Julius Volz 8d80bf4696 Fix some dead code, missing error checks, shadowings.
I applied
https://medium.com/@jgautheron/quality-pipeline-for-go-projects-497e34d6567
and was greeted with a deluge of warnings, most of which were not
applicable or really fixable realistically. These are some of the first
ones I decided to fix.
2016-01-11 16:48:15 +01:00

1607 lines
49 KiB
Go

// Copyright 2014 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package local
import (
"bufio"
"encoding/binary"
"fmt"
"io"
"io/ioutil"
"os"
"path"
"path/filepath"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/model"
"github.com/prometheus/log"
"github.com/prometheus/prometheus/storage/local/codable"
"github.com/prometheus/prometheus/storage/local/index"
"github.com/prometheus/prometheus/util/flock"
)
const (
// Version of the storage as it can be found in the version file.
// Increment to protect against incompatible changes.
Version = 1
versionFileName = "VERSION"
seriesFileSuffix = ".db"
seriesTempFileSuffix = ".db.tmp"
seriesDirNameLen = 2 // How many bytes of the fingerprint in dir name.
headsFileName = "heads.db"
headsTempFileName = "heads.db.tmp"
headsFormatVersion = 2
headsFormatLegacyVersion = 1 // Can read, but will never write.
headsMagicString = "PrometheusHeads"
mappingsFileName = "mappings.db"
mappingsTempFileName = "mappings.db.tmp"
mappingsFormatVersion = 1
mappingsMagicString = "PrometheusMappings"
dirtyFileName = "DIRTY"
fileBufSize = 1 << 16 // 64kiB.
chunkHeaderLen = 17
chunkHeaderTypeOffset = 0
chunkHeaderFirstTimeOffset = 1
chunkHeaderLastTimeOffset = 9
chunkLenWithHeader = chunkLen + chunkHeaderLen
chunkMaxBatchSize = 64 // How many chunks to load at most in one batch.
indexingMaxBatchSize = 1024 * 1024
indexingBatchTimeout = 500 * time.Millisecond // Commit batch when idle for that long.
indexingQueueCapacity = 1024 * 16
)
var fpLen = len(model.Fingerprint(0).String()) // Length of a fingerprint as string.
const (
flagHeadChunkPersisted byte = 1 << iota
// Add more flags here like:
// flagFoo
// flagBar
)
type indexingOpType byte
const (
add indexingOpType = iota
remove
)
type indexingOp struct {
fingerprint model.Fingerprint
metric model.Metric
opType indexingOpType
}
// A Persistence is used by a Storage implementation to store samples
// persistently across restarts. The methods are only goroutine-safe if
// explicitly marked as such below. The chunk-related methods persistChunks,
// dropChunks, loadChunks, and loadChunkDescs can be called concurrently with
// each other if each call refers to a different fingerprint.
type persistence struct {
basePath string
archivedFingerprintToMetrics *index.FingerprintMetricIndex
archivedFingerprintToTimeRange *index.FingerprintTimeRangeIndex
labelPairToFingerprints *index.LabelPairFingerprintIndex
labelNameToLabelValues *index.LabelNameLabelValuesIndex
indexingQueue chan indexingOp
indexingStopped chan struct{}
indexingFlush chan chan int
indexingQueueLength prometheus.Gauge
indexingQueueCapacity prometheus.Metric
indexingBatchSizes prometheus.Summary
indexingBatchDuration prometheus.Summary
checkpointDuration prometheus.Gauge
dirtyCounter prometheus.Counter
dirtyMtx sync.Mutex // Protects dirty and becameDirty.
dirty bool // true if persistence was started in dirty state.
becameDirty bool // true if an inconsistency came up during runtime.
pedanticChecks bool // true if crash recovery should check each series.
dirtyFileName string // The file used for locking and to mark dirty state.
fLock flock.Releaser // The file lock to protect against concurrent usage.
shouldSync syncStrategy
bufPool sync.Pool
}
// newPersistence returns a newly allocated persistence backed by local disk storage, ready to use.
func newPersistence(basePath string, dirty, pedanticChecks bool, shouldSync syncStrategy) (*persistence, error) {
dirtyPath := filepath.Join(basePath, dirtyFileName)
versionPath := filepath.Join(basePath, versionFileName)
if versionData, err := ioutil.ReadFile(versionPath); err == nil {
if persistedVersion, err := strconv.Atoi(strings.TrimSpace(string(versionData))); err != nil {
return nil, fmt.Errorf("cannot parse content of %s: %s", versionPath, versionData)
} else if persistedVersion != Version {
return nil, fmt.Errorf("found storage version %d on disk, need version %d - please wipe storage or run a version of Prometheus compatible with storage version %d", persistedVersion, Version, persistedVersion)
}
} else if os.IsNotExist(err) {
// No version file found. Let's create the directory (in case
// it's not there yet) and then check if it is actually
// empty. If not, we have found an old storage directory without
// version file, so we have to bail out.
if err := os.MkdirAll(basePath, 0700); err != nil {
return nil, err
}
fis, err := ioutil.ReadDir(basePath)
if err != nil {
return nil, err
}
if len(fis) > 0 {
return nil, fmt.Errorf("could not detect storage version on disk, assuming version 0, need version %d - please wipe storage or run a version of Prometheus compatible with storage version 0", Version)
}
// Finally we can write our own version into a new version file.
file, err := os.Create(versionPath)
if err != nil {
return nil, err
}
defer file.Close()
if _, err := fmt.Fprintf(file, "%d\n", Version); err != nil {
return nil, err
}
} else {
return nil, err
}
fLock, dirtyfileExisted, err := flock.New(dirtyPath)
if err != nil {
log.Errorf("Could not lock %s, Prometheus already running?", dirtyPath)
return nil, err
}
if dirtyfileExisted {
dirty = true
}
archivedFingerprintToMetrics, err := index.NewFingerprintMetricIndex(basePath)
if err != nil {
return nil, err
}
archivedFingerprintToTimeRange, err := index.NewFingerprintTimeRangeIndex(basePath)
if err != nil {
return nil, err
}
p := &persistence{
basePath: basePath,
archivedFingerprintToMetrics: archivedFingerprintToMetrics,
archivedFingerprintToTimeRange: archivedFingerprintToTimeRange,
indexingQueue: make(chan indexingOp, indexingQueueCapacity),
indexingStopped: make(chan struct{}),
indexingFlush: make(chan chan int),
indexingQueueLength: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "indexing_queue_length",
Help: "The number of metrics waiting to be indexed.",
}),
indexingQueueCapacity: prometheus.MustNewConstMetric(
prometheus.NewDesc(
prometheus.BuildFQName(namespace, subsystem, "indexing_queue_capacity"),
"The capacity of the indexing queue.",
nil, nil,
),
prometheus.GaugeValue,
float64(indexingQueueCapacity),
),
indexingBatchSizes: prometheus.NewSummary(
prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "indexing_batch_sizes",
Help: "Quantiles for indexing batch sizes (number of metrics per batch).",
},
),
indexingBatchDuration: prometheus.NewSummary(
prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "indexing_batch_duration_milliseconds",
Help: "Quantiles for batch indexing duration in milliseconds.",
},
),
checkpointDuration: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "checkpoint_duration_milliseconds",
Help: "The duration (in milliseconds) it took to checkpoint in-memory metrics and head chunks.",
}),
dirtyCounter: prometheus.NewCounter(prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "inconsistencies_total",
Help: "A counter incremented each time an inconsistency in the local storage is detected. If this is greater zero, restart the server as soon as possible.",
}),
dirty: dirty,
pedanticChecks: pedanticChecks,
dirtyFileName: dirtyPath,
fLock: fLock,
shouldSync: shouldSync,
// Create buffers of length 3*chunkLenWithHeader by default because that is still reasonably small
// and at the same time enough for many uses. The contract is to never return buffer smaller than
// that to the pool so that callers can rely on a minimum buffer size.
bufPool: sync.Pool{New: func() interface{} { return make([]byte, 0, 3*chunkLenWithHeader) }},
}
if p.dirty {
// Blow away the label indexes. We'll rebuild them later.
if err := index.DeleteLabelPairFingerprintIndex(basePath); err != nil {
return nil, err
}
if err := index.DeleteLabelNameLabelValuesIndex(basePath); err != nil {
return nil, err
}
}
labelPairToFingerprints, err := index.NewLabelPairFingerprintIndex(basePath)
if err != nil {
return nil, err
}
labelNameToLabelValues, err := index.NewLabelNameLabelValuesIndex(basePath)
if err != nil {
return nil, err
}
p.labelPairToFingerprints = labelPairToFingerprints
p.labelNameToLabelValues = labelNameToLabelValues
return p, nil
}
func (p *persistence) run() {
p.processIndexingQueue()
}
// Describe implements prometheus.Collector.
func (p *persistence) Describe(ch chan<- *prometheus.Desc) {
ch <- p.indexingQueueLength.Desc()
ch <- p.indexingQueueCapacity.Desc()
p.indexingBatchSizes.Describe(ch)
p.indexingBatchDuration.Describe(ch)
ch <- p.checkpointDuration.Desc()
ch <- p.dirtyCounter.Desc()
}
// Collect implements prometheus.Collector.
func (p *persistence) Collect(ch chan<- prometheus.Metric) {
p.indexingQueueLength.Set(float64(len(p.indexingQueue)))
ch <- p.indexingQueueLength
ch <- p.indexingQueueCapacity
p.indexingBatchSizes.Collect(ch)
p.indexingBatchDuration.Collect(ch)
ch <- p.checkpointDuration
ch <- p.dirtyCounter
}
// isDirty returns the dirty flag in a goroutine-safe way.
func (p *persistence) isDirty() bool {
p.dirtyMtx.Lock()
defer p.dirtyMtx.Unlock()
return p.dirty
}
// setDirty sets the dirty flag in a goroutine-safe way. Once the dirty flag was
// set to true with this method, it cannot be set to false again. (If we became
// dirty during our runtime, there is no way back. If we were dirty from the
// start, a clean-up might make us clean again.)
func (p *persistence) setDirty(dirty bool) {
if dirty {
p.dirtyCounter.Inc()
}
p.dirtyMtx.Lock()
defer p.dirtyMtx.Unlock()
if p.becameDirty {
return
}
p.dirty = dirty
if dirty {
p.becameDirty = true
log.Error("The storage is now inconsistent. Restart Prometheus ASAP to initiate recovery.")
}
}
// fingerprintsForLabelPair returns the fingerprints for the given label
// pair. This method is goroutine-safe but take into account that metrics queued
// for indexing with IndexMetric might not have made it into the index
// yet. (Same applies correspondingly to UnindexMetric.)
func (p *persistence) fingerprintsForLabelPair(lp model.LabelPair) (model.Fingerprints, error) {
fps, _, err := p.labelPairToFingerprints.Lookup(lp)
if err != nil {
return nil, err
}
return fps, nil
}
// labelValuesForLabelName returns the label values for the given label
// name. This method is goroutine-safe but take into account that metrics queued
// for indexing with IndexMetric might not have made it into the index
// yet. (Same applies correspondingly to UnindexMetric.)
func (p *persistence) labelValuesForLabelName(ln model.LabelName) (model.LabelValues, error) {
lvs, _, err := p.labelNameToLabelValues.Lookup(ln)
if err != nil {
return nil, err
}
return lvs, nil
}
// persistChunks persists a number of consecutive chunks of a series. It is the
// caller's responsibility to not modify the chunks concurrently and to not
// persist or drop anything for the same fingerprint concurrently. It returns
// the (zero-based) index of the first persisted chunk within the series
// file. In case of an error, the returned index is -1 (to avoid the
// misconception that the chunk was written at position 0).
func (p *persistence) persistChunks(fp model.Fingerprint, chunks []chunk) (index int, err error) {
defer func() {
if err != nil {
log.Error("Error persisting chunks: ", err)
p.setDirty(true)
}
}()
f, err := p.openChunkFileForWriting(fp)
if err != nil {
return -1, err
}
defer p.closeChunkFile(f)
if err := writeChunks(f, chunks); err != nil {
return -1, err
}
// Determine index within the file.
offset, err := f.Seek(0, os.SEEK_CUR)
if err != nil {
return -1, err
}
index, err = chunkIndexForOffset(offset)
if err != nil {
return -1, err
}
return index - len(chunks), err
}
// loadChunks loads a group of chunks of a timeseries by their index. The chunk
// with the earliest time will have index 0, the following ones will have
// incrementally larger indexes. The indexOffset denotes the offset to be added to
// each index in indexes. It is the caller's responsibility to not persist or
// drop anything for the same fingerprint concurrently.
func (p *persistence) loadChunks(fp model.Fingerprint, indexes []int, indexOffset int) ([]chunk, error) {
f, err := p.openChunkFileForReading(fp)
if err != nil {
return nil, err
}
defer f.Close()
chunks := make([]chunk, 0, len(indexes))
buf := p.bufPool.Get().([]byte)
defer func() {
// buf may change below, so wrap returning to the pool in a function.
// A simple 'defer p.bufPool.Put(buf)' would only return the original buf.
p.bufPool.Put(buf)
}()
for i := 0; i < len(indexes); i++ {
// This loads chunks in batches. A batch is a streak of
// consecutive chunks, read from disk in one go.
batchSize := 1
if _, err := f.Seek(offsetForChunkIndex(indexes[i]+indexOffset), os.SEEK_SET); err != nil {
return nil, err
}
for ; batchSize < chunkMaxBatchSize &&
i+1 < len(indexes) &&
indexes[i]+1 == indexes[i+1]; i, batchSize = i+1, batchSize+1 {
}
readSize := batchSize * chunkLenWithHeader
if cap(buf) < readSize {
buf = make([]byte, readSize)
}
buf = buf[:readSize]
if _, err := io.ReadFull(f, buf); err != nil {
return nil, err
}
for c := 0; c < batchSize; c++ {
chunk := newChunkForEncoding(chunkEncoding(buf[c*chunkLenWithHeader+chunkHeaderTypeOffset]))
chunk.unmarshalFromBuf(buf[c*chunkLenWithHeader+chunkHeaderLen:])
chunks = append(chunks, chunk)
}
}
chunkOps.WithLabelValues(load).Add(float64(len(chunks)))
atomic.AddInt64(&numMemChunks, int64(len(chunks)))
return chunks, nil
}
// loadChunkDescs loads the chunkDescs for a series from disk. offsetFromEnd is
// the number of chunkDescs to skip from the end of the series file. It is the
// caller's responsibility to not persist or drop anything for the same
// fingerprint concurrently.
func (p *persistence) loadChunkDescs(fp model.Fingerprint, offsetFromEnd int) ([]*chunkDesc, error) {
f, err := p.openChunkFileForReading(fp)
if os.IsNotExist(err) {
return nil, nil
}
if err != nil {
return nil, err
}
defer f.Close()
fi, err := f.Stat()
if err != nil {
return nil, err
}
if fi.Size()%int64(chunkLenWithHeader) != 0 {
p.setDirty(true)
return nil, fmt.Errorf(
"size of series file for fingerprint %v is %d, which is not a multiple of the chunk length %d",
fp, fi.Size(), chunkLenWithHeader,
)
}
numChunks := int(fi.Size())/chunkLenWithHeader - offsetFromEnd
cds := make([]*chunkDesc, numChunks)
chunkTimesBuf := make([]byte, 16)
for i := 0; i < numChunks; i++ {
_, err := f.Seek(offsetForChunkIndex(i)+chunkHeaderFirstTimeOffset, os.SEEK_SET)
if err != nil {
return nil, err
}
_, err = io.ReadAtLeast(f, chunkTimesBuf, 16)
if err != nil {
return nil, err
}
cds[i] = &chunkDesc{
chunkFirstTime: model.Time(binary.LittleEndian.Uint64(chunkTimesBuf)),
chunkLastTime: model.Time(binary.LittleEndian.Uint64(chunkTimesBuf[8:])),
}
}
chunkDescOps.WithLabelValues(load).Add(float64(len(cds)))
numMemChunkDescs.Add(float64(len(cds)))
return cds, nil
}
// checkpointSeriesMapAndHeads persists the fingerprint to memory-series mapping
// and all non persisted chunks. Do not call concurrently with
// loadSeriesMapAndHeads. This method will only write heads format v2, but
// loadSeriesMapAndHeads can also understand v1.
//
// Description of the file format (for both, v1 and v2):
//
// (1) Magic string (const headsMagicString).
//
// (2) Varint-encoded format version (const headsFormatVersion).
//
// (3) Number of series in checkpoint as big-endian uint64.
//
// (4) Repeated once per series:
//
// (4.1) A flag byte, see flag constants above. (Present but unused in v2.)
//
// (4.2) The fingerprint as big-endian uint64.
//
// (4.3) The metric as defined by codable.Metric.
//
// (4.4) The varint-encoded persistWatermark. (Missing in v1.)
//
// (4.5) The modification time of the series file as nanoseconds elapsed since
// January 1, 1970 UTC. -1 if the modification time is unknown or no series file
// exists yet. (Missing in v1.)
//
// (4.6) The varint-encoded chunkDescsOffset.
//
// (4.6) The varint-encoded savedFirstTime.
//
// (4.7) The varint-encoded number of chunk descriptors.
//
// (4.8) Repeated once per chunk descriptor, oldest to most recent, either
// variant 4.8.1 (if index < persistWatermark) or variant 4.8.2 (if index >=
// persistWatermark). In v1, everything is variant 4.8.1 except for a
// non-persisted head-chunk (determined by the flags).
//
// (4.8.1.1) The varint-encoded first time.
// (4.8.1.2) The varint-encoded last time.
//
// (4.8.2.1) A byte defining the chunk type.
// (4.8.2.2) The chunk itself, marshaled with the marshal() method.
//
func (p *persistence) checkpointSeriesMapAndHeads(fingerprintToSeries *seriesMap, fpLocker *fingerprintLocker) (err error) {
log.Info("Checkpointing in-memory metrics and chunks...")
begin := time.Now()
f, err := os.OpenFile(p.headsTempFileName(), os.O_WRONLY|os.O_TRUNC|os.O_CREATE, 0640)
if err != nil {
return err
}
defer func() {
syncErr := f.Sync()
closeErr := f.Close()
if err != nil {
return
}
err = syncErr
if err != nil {
return
}
err = closeErr
if err != nil {
return
}
err = os.Rename(p.headsTempFileName(), p.headsFileName())
duration := time.Since(begin)
p.checkpointDuration.Set(float64(duration) / float64(time.Millisecond))
log.Infof("Done checkpointing in-memory metrics and chunks in %v.", duration)
}()
w := bufio.NewWriterSize(f, fileBufSize)
if _, err = w.WriteString(headsMagicString); err != nil {
return err
}
var numberOfSeriesOffset int
if numberOfSeriesOffset, err = codable.EncodeVarint(w, headsFormatVersion); err != nil {
return err
}
numberOfSeriesOffset += len(headsMagicString)
numberOfSeriesInHeader := uint64(fingerprintToSeries.length())
// We have to write the number of series as uint64 because we might need
// to overwrite it later, and a varint might change byte width then.
if err = codable.EncodeUint64(w, numberOfSeriesInHeader); err != nil {
return err
}
iter := fingerprintToSeries.iter()
defer func() {
// Consume the iterator in any case to not leak goroutines.
for range iter {
}
}()
var realNumberOfSeries uint64
for m := range iter {
func() { // Wrapped in function to use defer for unlocking the fp.
fpLocker.Lock(m.fp)
defer fpLocker.Unlock(m.fp)
if len(m.series.chunkDescs) == 0 {
// This series was completely purged or archived in the meantime. Ignore.
return
}
realNumberOfSeries++
// seriesFlags left empty in v2.
if err = w.WriteByte(0); err != nil {
return
}
if err = codable.EncodeUint64(w, uint64(m.fp)); err != nil {
return
}
var buf []byte
buf, err = codable.Metric(m.series.metric).MarshalBinary()
if err != nil {
return
}
if _, err = w.Write(buf); err != nil {
return
}
if _, err = codable.EncodeVarint(w, int64(m.series.persistWatermark)); err != nil {
return
}
if m.series.modTime.IsZero() {
if _, err = codable.EncodeVarint(w, -1); err != nil {
return
}
} else {
if _, err = codable.EncodeVarint(w, m.series.modTime.UnixNano()); err != nil {
return
}
}
if _, err = codable.EncodeVarint(w, int64(m.series.chunkDescsOffset)); err != nil {
return
}
if _, err = codable.EncodeVarint(w, int64(m.series.savedFirstTime)); err != nil {
return
}
if _, err = codable.EncodeVarint(w, int64(len(m.series.chunkDescs))); err != nil {
return
}
for i, chunkDesc := range m.series.chunkDescs {
if i < m.series.persistWatermark {
if _, err = codable.EncodeVarint(w, int64(chunkDesc.firstTime())); err != nil {
return
}
if _, err = codable.EncodeVarint(w, int64(chunkDesc.lastTime())); err != nil {
return
}
} else {
// This is a non-persisted chunk. Fully marshal it.
if err = w.WriteByte(byte(chunkDesc.c.encoding())); err != nil {
return
}
if err = chunkDesc.c.marshal(w); err != nil {
return
}
}
}
// Series is checkpointed now, so declare it clean. In case the entire
// checkpoint fails later on, this is fine, as the storage's series
// maintenance will mark these series newly dirty again, continuously
// increasing the total number of dirty series as seen by the storage.
// This has the effect of triggering a new checkpoint attempt even
// earlier than if we hadn't incorrectly set "dirty" to "false" here
// already.
m.series.dirty = false
}()
if err != nil {
return err
}
}
if err = w.Flush(); err != nil {
return err
}
if realNumberOfSeries != numberOfSeriesInHeader {
// The number of series has changed in the meantime.
// Rewrite it in the header.
if _, err = f.Seek(int64(numberOfSeriesOffset), os.SEEK_SET); err != nil {
return err
}
if err = codable.EncodeUint64(f, realNumberOfSeries); err != nil {
return err
}
}
return err
}
// loadSeriesMapAndHeads loads the fingerprint to memory-series mapping and all
// the chunks contained in the checkpoint (and thus not yet persisted to series
// files). The method is capable of loading the checkpoint format v1 and v2. If
// recoverable corruption is detected, or if the dirty flag was set from the
// beginning, crash recovery is run, which might take a while. If an
// unrecoverable error is encountered, it is returned. Call this method during
// start-up while nothing else is running in storage land. This method is
// utterly goroutine-unsafe.
func (p *persistence) loadSeriesMapAndHeads() (sm *seriesMap, chunksToPersist int64, err error) {
var chunkDescsTotal int64
fingerprintToSeries := make(map[model.Fingerprint]*memorySeries)
sm = &seriesMap{m: fingerprintToSeries}
defer func() {
if sm != nil && p.dirty {
log.Warn("Persistence layer appears dirty.")
err = p.recoverFromCrash(fingerprintToSeries)
if err != nil {
sm = nil
}
}
if err == nil {
numMemChunkDescs.Add(float64(chunkDescsTotal))
}
}()
f, err := os.Open(p.headsFileName())
if os.IsNotExist(err) {
return sm, 0, nil
}
if err != nil {
log.Warn("Could not open heads file:", err)
p.dirty = true
return
}
defer f.Close()
r := bufio.NewReaderSize(f, fileBufSize)
buf := make([]byte, len(headsMagicString))
if _, err := io.ReadFull(r, buf); err != nil {
log.Warn("Could not read from heads file:", err)
p.dirty = true
return sm, 0, nil
}
magic := string(buf)
if magic != headsMagicString {
log.Warnf(
"unexpected magic string, want %q, got %q",
headsMagicString, magic,
)
p.dirty = true
return
}
version, err := binary.ReadVarint(r)
if (version != headsFormatVersion && version != headsFormatLegacyVersion) || err != nil {
log.Warnf("unknown heads format version, want %d", headsFormatVersion)
p.dirty = true
return sm, 0, nil
}
numSeries, err := codable.DecodeUint64(r)
if err != nil {
log.Warn("Could not decode number of series:", err)
p.dirty = true
return sm, 0, nil
}
for ; numSeries > 0; numSeries-- {
seriesFlags, err := r.ReadByte()
if err != nil {
log.Warn("Could not read series flags:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
headChunkPersisted := seriesFlags&flagHeadChunkPersisted != 0
fp, err := codable.DecodeUint64(r)
if err != nil {
log.Warn("Could not decode fingerprint:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
var metric codable.Metric
if err := metric.UnmarshalFromReader(r); err != nil {
log.Warn("Could not decode metric:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
var persistWatermark int64
var modTime time.Time
if version != headsFormatLegacyVersion {
// persistWatermark only present in v2.
persistWatermark, err = binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode persist watermark:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
modTimeNano, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode modification time:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
if modTimeNano != -1 {
modTime = time.Unix(0, modTimeNano)
}
}
chunkDescsOffset, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode chunk descriptor offset:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
savedFirstTime, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode saved first time:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
numChunkDescs, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode number of chunk descriptors:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
chunkDescs := make([]*chunkDesc, numChunkDescs)
if version == headsFormatLegacyVersion {
if headChunkPersisted {
persistWatermark = numChunkDescs
} else {
persistWatermark = numChunkDescs - 1
}
}
for i := int64(0); i < numChunkDescs; i++ {
if i < persistWatermark {
firstTime, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode first time:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
lastTime, err := binary.ReadVarint(r)
if err != nil {
log.Warn("Could not decode last time:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
chunkDescs[i] = &chunkDesc{
chunkFirstTime: model.Time(firstTime),
chunkLastTime: model.Time(lastTime),
}
chunkDescsTotal++
} else {
// Non-persisted chunk.
encoding, err := r.ReadByte()
if err != nil {
log.Warn("Could not decode chunk type:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
chunk := newChunkForEncoding(chunkEncoding(encoding))
if err := chunk.unmarshal(r); err != nil {
log.Warn("Could not decode chunk:", err)
p.dirty = true
return sm, chunksToPersist, nil
}
chunkDescs[i] = newChunkDesc(chunk)
chunksToPersist++
}
}
fingerprintToSeries[model.Fingerprint(fp)] = &memorySeries{
metric: model.Metric(metric),
chunkDescs: chunkDescs,
persistWatermark: int(persistWatermark),
modTime: modTime,
chunkDescsOffset: int(chunkDescsOffset),
savedFirstTime: model.Time(savedFirstTime),
lastTime: chunkDescs[len(chunkDescs)-1].lastTime(),
headChunkClosed: persistWatermark >= numChunkDescs,
}
}
return sm, chunksToPersist, nil
}
// dropAndPersistChunks deletes all chunks from a series file whose last sample
// time is before beforeTime, and then appends the provided chunks, leaving out
// those whose last sample time is before beforeTime. It returns the timestamp
// of the first sample in the oldest chunk _not_ dropped, the offset within the
// series file of the first chunk persisted (out of the provided chunks), the
// number of deleted chunks, and true if all chunks of the series have been
// deleted (in which case the returned timestamp will be 0 and must be ignored).
// It is the caller's responsibility to make sure nothing is persisted or loaded
// for the same fingerprint concurrently.
func (p *persistence) dropAndPersistChunks(
fp model.Fingerprint, beforeTime model.Time, chunks []chunk,
) (
firstTimeNotDropped model.Time,
offset int,
numDropped int,
allDropped bool,
err error,
) {
// Style note: With the many return values, it was decided to use naked
// returns in this method. They make the method more readable, but
// please handle with care!
defer func() {
if err != nil {
log.Error("Error dropping and/or persisting chunks: ", err)
p.setDirty(true)
}
}()
if len(chunks) > 0 {
// We have chunks to persist. First check if those are already
// too old. If that's the case, the chunks in the series file
// are all too old, too.
i := 0
for ; i < len(chunks) && chunks[i].newIterator().lastTimestamp().Before(beforeTime); i++ {
}
if i < len(chunks) {
firstTimeNotDropped = chunks[i].firstTime()
}
if i > 0 || firstTimeNotDropped.Before(beforeTime) {
// Series file has to go.
if numDropped, err = p.deleteSeriesFile(fp); err != nil {
return
}
numDropped += i
if i == len(chunks) {
allDropped = true
return
}
// Now simply persist what has to be persisted to a new file.
_, err = p.persistChunks(fp, chunks[i:])
return
}
}
// If we are here, we have to check the series file itself.
f, err := p.openChunkFileForReading(fp)
if os.IsNotExist(err) {
// No series file. Only need to create new file with chunks to
// persist, if there are any.
if len(chunks) == 0 {
allDropped = true
err = nil // Do not report not-exist err.
return
}
offset, err = p.persistChunks(fp, chunks)
return
}
if err != nil {
return
}
defer f.Close()
// Find the first chunk in the file that should be kept.
for ; ; numDropped++ {
_, err = f.Seek(offsetForChunkIndex(numDropped), os.SEEK_SET)
if err != nil {
return
}
headerBuf := make([]byte, chunkHeaderLen)
_, err = io.ReadFull(f, headerBuf)
if err == io.EOF {
// We ran into the end of the file without finding any chunks that should
// be kept. Remove the whole file.
if numDropped, err = p.deleteSeriesFile(fp); err != nil {
return
}
if len(chunks) == 0 {
allDropped = true
return
}
offset, err = p.persistChunks(fp, chunks)
return
}
if err != nil {
return
}
lastTime := model.Time(
binary.LittleEndian.Uint64(headerBuf[chunkHeaderLastTimeOffset:]),
)
if !lastTime.Before(beforeTime) {
firstTimeNotDropped = model.Time(
binary.LittleEndian.Uint64(headerBuf[chunkHeaderFirstTimeOffset:]),
)
chunkOps.WithLabelValues(drop).Add(float64(numDropped))
break
}
}
// We've found the first chunk that should be kept. If it is the first
// one, just append the chunks.
if numDropped == 0 {
if len(chunks) > 0 {
offset, err = p.persistChunks(fp, chunks)
}
return
}
// Otherwise, seek backwards to the beginning of its header and start
// copying everything from there into a new file. Then append the chunks
// to the new file.
_, err = f.Seek(-chunkHeaderLen, os.SEEK_CUR)
if err != nil {
return
}
temp, err := os.OpenFile(p.tempFileNameForFingerprint(fp), os.O_WRONLY|os.O_CREATE, 0640)
if err != nil {
return
}
defer func() {
p.closeChunkFile(temp)
if err == nil {
err = os.Rename(p.tempFileNameForFingerprint(fp), p.fileNameForFingerprint(fp))
}
}()
written, err := io.Copy(temp, f)
if err != nil {
return
}
offset = int(written / chunkLenWithHeader)
if len(chunks) > 0 {
if err = writeChunks(temp, chunks); err != nil {
return
}
}
return
}
// deleteSeriesFile deletes a series file belonging to the provided
// fingerprint. It returns the number of chunks that were contained in the
// deleted file.
func (p *persistence) deleteSeriesFile(fp model.Fingerprint) (int, error) {
fname := p.fileNameForFingerprint(fp)
fi, err := os.Stat(fname)
if os.IsNotExist(err) {
// Great. The file is already gone.
return 0, nil
}
if err != nil {
return -1, err
}
numChunks := int(fi.Size() / chunkLenWithHeader)
if err := os.Remove(fname); err != nil {
return -1, err
}
chunkOps.WithLabelValues(drop).Add(float64(numChunks))
return numChunks, nil
}
// seriesFileModTime returns the modification time of the series file belonging
// to the provided fingerprint. In case of an error, the zero value of time.Time
// is returned.
func (p *persistence) seriesFileModTime(fp model.Fingerprint) time.Time {
var modTime time.Time
if fi, err := os.Stat(p.fileNameForFingerprint(fp)); err == nil {
return fi.ModTime()
}
return modTime
}
// indexMetric queues the given metric for addition to the indexes needed by
// fingerprintsForLabelPair, labelValuesForLabelName, and
// fingerprintsModifiedBefore. If the queue is full, this method blocks until
// the metric can be queued. This method is goroutine-safe.
func (p *persistence) indexMetric(fp model.Fingerprint, m model.Metric) {
p.indexingQueue <- indexingOp{fp, m, add}
}
// unindexMetric queues references to the given metric for removal from the
// indexes used for fingerprintsForLabelPair, labelValuesForLabelName, and
// fingerprintsModifiedBefore. The index of fingerprints to archived metrics is
// not affected by this removal. (In fact, never call this method for an
// archived metric. To purge an archived metric, call purgeArchivedMetric.)
// If the queue is full, this method blocks until the metric can be queued. This
// method is goroutine-safe.
func (p *persistence) unindexMetric(fp model.Fingerprint, m model.Metric) {
p.indexingQueue <- indexingOp{fp, m, remove}
}
// waitForIndexing waits until all items in the indexing queue are processed. If
// queue processing is currently on hold (to gather more ops for batching), this
// method will trigger an immediate start of processing. This method is
// goroutine-safe.
func (p *persistence) waitForIndexing() {
wait := make(chan int)
for {
p.indexingFlush <- wait
if <-wait == 0 {
break
}
}
}
// archiveMetric persists the mapping of the given fingerprint to the given
// metric, together with the first and last timestamp of the series belonging to
// the metric. The caller must have locked the fingerprint.
func (p *persistence) archiveMetric(
fp model.Fingerprint, m model.Metric, first, last model.Time,
) error {
if err := p.archivedFingerprintToMetrics.Put(codable.Fingerprint(fp), codable.Metric(m)); err != nil {
p.setDirty(true)
return err
}
if err := p.archivedFingerprintToTimeRange.Put(codable.Fingerprint(fp), codable.TimeRange{First: first, Last: last}); err != nil {
p.setDirty(true)
return err
}
return nil
}
// hasArchivedMetric returns whether the archived metric for the given
// fingerprint exists and if yes, what the first and last timestamp in the
// corresponding series is. This method is goroutine-safe.
func (p *persistence) hasArchivedMetric(fp model.Fingerprint) (
hasMetric bool, firstTime, lastTime model.Time, err error,
) {
firstTime, lastTime, hasMetric, err = p.archivedFingerprintToTimeRange.Lookup(fp)
return
}
// updateArchivedTimeRange updates an archived time range. The caller must make
// sure that the fingerprint is currently archived (the time range will
// otherwise be added without the corresponding metric in the archive).
func (p *persistence) updateArchivedTimeRange(
fp model.Fingerprint, first, last model.Time,
) error {
return p.archivedFingerprintToTimeRange.Put(codable.Fingerprint(fp), codable.TimeRange{First: first, Last: last})
}
// fingerprintsModifiedBefore returns the fingerprints of archived timeseries
// that have live samples before the provided timestamp. This method is
// goroutine-safe.
func (p *persistence) fingerprintsModifiedBefore(beforeTime model.Time) ([]model.Fingerprint, error) {
var fp codable.Fingerprint
var tr codable.TimeRange
fps := []model.Fingerprint{}
err := p.archivedFingerprintToTimeRange.ForEach(func(kv index.KeyValueAccessor) error {
if err := kv.Value(&tr); err != nil {
return err
}
if tr.First.Before(beforeTime) {
if err := kv.Key(&fp); err != nil {
return err
}
fps = append(fps, model.Fingerprint(fp))
}
return nil
})
return fps, err
}
// archivedMetric retrieves the archived metric with the given fingerprint. This
// method is goroutine-safe.
func (p *persistence) archivedMetric(fp model.Fingerprint) (model.Metric, error) {
metric, _, err := p.archivedFingerprintToMetrics.Lookup(fp)
return metric, err
}
// purgeArchivedMetric deletes an archived fingerprint and its corresponding
// metric entirely. It also queues the metric for un-indexing (no need to call
// unindexMetric for the deleted metric.) It does not touch the series file,
// though. The caller must have locked the fingerprint.
func (p *persistence) purgeArchivedMetric(fp model.Fingerprint) (err error) {
defer func() {
if err != nil {
p.setDirty(true)
}
}()
metric, err := p.archivedMetric(fp)
if err != nil || metric == nil {
return err
}
deleted, err := p.archivedFingerprintToMetrics.Delete(codable.Fingerprint(fp))
if err != nil {
return err
}
if !deleted {
log.Errorf("Tried to delete non-archived fingerprint %s from archivedFingerprintToMetrics index. This should never happen.", fp)
}
deleted, err = p.archivedFingerprintToTimeRange.Delete(codable.Fingerprint(fp))
if err != nil {
return err
}
if !deleted {
log.Errorf("Tried to delete non-archived fingerprint %s from archivedFingerprintToTimeRange index. This should never happen.", fp)
}
p.unindexMetric(fp, metric)
return nil
}
// unarchiveMetric deletes an archived fingerprint and its metric, but (in
// contrast to purgeArchivedMetric) does not un-index the metric. If a metric
// was actually deleted, the method returns true and the first time and last
// time of the deleted metric. The caller must have locked the fingerprint.
func (p *persistence) unarchiveMetric(fp model.Fingerprint) (deletedAnything bool, err error) {
defer func() {
if err != nil {
p.setDirty(true)
}
}()
deleted, err := p.archivedFingerprintToMetrics.Delete(codable.Fingerprint(fp))
if err != nil || !deleted {
return false, err
}
deleted, err = p.archivedFingerprintToTimeRange.Delete(codable.Fingerprint(fp))
if err != nil {
return false, err
}
if !deleted {
log.Errorf("Tried to delete non-archived fingerprint %s from archivedFingerprintToTimeRange index. This should never happen.", fp)
}
return true, nil
}
// close flushes the indexing queue and other buffered data and releases any
// held resources. It also removes the dirty marker file if successful and if
// the persistence is currently not marked as dirty.
func (p *persistence) close() error {
close(p.indexingQueue)
<-p.indexingStopped
var lastError, dirtyFileRemoveError error
if err := p.archivedFingerprintToMetrics.Close(); err != nil {
lastError = err
log.Error("Error closing archivedFingerprintToMetric index DB: ", err)
}
if err := p.archivedFingerprintToTimeRange.Close(); err != nil {
lastError = err
log.Error("Error closing archivedFingerprintToTimeRange index DB: ", err)
}
if err := p.labelPairToFingerprints.Close(); err != nil {
lastError = err
log.Error("Error closing labelPairToFingerprints index DB: ", err)
}
if err := p.labelNameToLabelValues.Close(); err != nil {
lastError = err
log.Error("Error closing labelNameToLabelValues index DB: ", err)
}
if lastError == nil && !p.isDirty() {
dirtyFileRemoveError = os.Remove(p.dirtyFileName)
}
if err := p.fLock.Release(); err != nil {
lastError = err
log.Error("Error releasing file lock: ", err)
}
if dirtyFileRemoveError != nil {
// On Windows, removing the dirty file before unlocking is not
// possible. So remove it here if it failed above.
lastError = os.Remove(p.dirtyFileName)
}
return lastError
}
func (p *persistence) dirNameForFingerprint(fp model.Fingerprint) string {
fpStr := fp.String()
return path.Join(p.basePath, fpStr[0:seriesDirNameLen])
}
func (p *persistence) fileNameForFingerprint(fp model.Fingerprint) string {
fpStr := fp.String()
return path.Join(p.basePath, fpStr[0:seriesDirNameLen], fpStr[seriesDirNameLen:]+seriesFileSuffix)
}
func (p *persistence) tempFileNameForFingerprint(fp model.Fingerprint) string {
fpStr := fp.String()
return path.Join(p.basePath, fpStr[0:seriesDirNameLen], fpStr[seriesDirNameLen:]+seriesTempFileSuffix)
}
func (p *persistence) openChunkFileForWriting(fp model.Fingerprint) (*os.File, error) {
if err := os.MkdirAll(p.dirNameForFingerprint(fp), 0700); err != nil {
return nil, err
}
return os.OpenFile(p.fileNameForFingerprint(fp), os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0640)
// NOTE: Although the file was opened for append,
// f.Seek(0, os.SEEK_CUR)
// would now return '0, nil', so we cannot check for a consistent file length right now.
// However, the chunkIndexForOffset function is doing that check, so a wrong file length
// would still be detected.
}
// closeChunkFile first syncs the provided file if mandated so by the sync
// strategy. Then it closes the file. Errors are logged.
func (p *persistence) closeChunkFile(f *os.File) {
if p.shouldSync() {
if err := f.Sync(); err != nil {
log.Error("Error syncing file:", err)
}
}
if err := f.Close(); err != nil {
log.Error("Error closing chunk file:", err)
}
}
func (p *persistence) openChunkFileForReading(fp model.Fingerprint) (*os.File, error) {
return os.Open(p.fileNameForFingerprint(fp))
}
func (p *persistence) headsFileName() string {
return path.Join(p.basePath, headsFileName)
}
func (p *persistence) headsTempFileName() string {
return path.Join(p.basePath, headsTempFileName)
}
func (p *persistence) mappingsFileName() string {
return path.Join(p.basePath, mappingsFileName)
}
func (p *persistence) mappingsTempFileName() string {
return path.Join(p.basePath, mappingsTempFileName)
}
func (p *persistence) processIndexingQueue() {
batchSize := 0
nameToValues := index.LabelNameLabelValuesMapping{}
pairToFPs := index.LabelPairFingerprintsMapping{}
batchTimeout := time.NewTimer(indexingBatchTimeout)
defer batchTimeout.Stop()
commitBatch := func() {
p.indexingBatchSizes.Observe(float64(batchSize))
defer func(begin time.Time) {
p.indexingBatchDuration.Observe(
float64(time.Since(begin)) / float64(time.Millisecond),
)
}(time.Now())
if err := p.labelPairToFingerprints.IndexBatch(pairToFPs); err != nil {
log.Error("Error indexing label pair to fingerprints batch: ", err)
}
if err := p.labelNameToLabelValues.IndexBatch(nameToValues); err != nil {
log.Error("Error indexing label name to label values batch: ", err)
}
batchSize = 0
nameToValues = index.LabelNameLabelValuesMapping{}
pairToFPs = index.LabelPairFingerprintsMapping{}
batchTimeout.Reset(indexingBatchTimeout)
}
var flush chan chan int
loop:
for {
// Only process flush requests if the queue is currently empty.
if len(p.indexingQueue) == 0 {
flush = p.indexingFlush
} else {
flush = nil
}
select {
case <-batchTimeout.C:
// Only commit if we have something to commit _and_
// nothing is waiting in the queue to be picked up. That
// prevents a death spiral if the LookupSet calls below
// are slow for some reason.
if batchSize > 0 && len(p.indexingQueue) == 0 {
commitBatch()
} else {
batchTimeout.Reset(indexingBatchTimeout)
}
case r := <-flush:
if batchSize > 0 {
commitBatch()
}
r <- len(p.indexingQueue)
case op, ok := <-p.indexingQueue:
if !ok {
if batchSize > 0 {
commitBatch()
}
break loop
}
batchSize++
for ln, lv := range op.metric {
lp := model.LabelPair{Name: ln, Value: lv}
baseFPs, ok := pairToFPs[lp]
if !ok {
var err error
baseFPs, _, err = p.labelPairToFingerprints.LookupSet(lp)
if err != nil {
log.Errorf("Error looking up label pair %v: %s", lp, err)
continue
}
pairToFPs[lp] = baseFPs
}
baseValues, ok := nameToValues[ln]
if !ok {
var err error
baseValues, _, err = p.labelNameToLabelValues.LookupSet(ln)
if err != nil {
log.Errorf("Error looking up label name %v: %s", ln, err)
continue
}
nameToValues[ln] = baseValues
}
switch op.opType {
case add:
baseFPs[op.fingerprint] = struct{}{}
baseValues[lv] = struct{}{}
case remove:
delete(baseFPs, op.fingerprint)
if len(baseFPs) == 0 {
delete(baseValues, lv)
}
default:
panic("unknown op type")
}
}
if batchSize >= indexingMaxBatchSize {
commitBatch()
}
}
}
close(p.indexingStopped)
}
// checkpointFPMappings persists the fingerprint mappings. This method is not
// goroutine-safe.
//
// Description of the file format, v1:
//
// (1) Magic string (const mappingsMagicString).
//
// (2) Uvarint-encoded format version (const mappingsFormatVersion).
//
// (3) Uvarint-encoded number of mappings in fpMappings.
//
// (4) Repeated once per mapping:
//
// (4.1) The raw fingerprint as big-endian uint64.
//
// (4.2) The uvarint-encoded number of sub-mappings for the raw fingerprint.
//
// (4.3) Repeated once per sub-mapping:
//
// (4.3.1) The uvarint-encoded length of the unique metric string.
// (4.3.2) The unique metric string.
// (4.3.3) The mapped fingerprint as big-endian uint64.
func (p *persistence) checkpointFPMappings(fpm fpMappings) (err error) {
log.Info("Checkpointing fingerprint mappings...")
begin := time.Now()
f, err := os.OpenFile(p.mappingsTempFileName(), os.O_WRONLY|os.O_TRUNC|os.O_CREATE, 0640)
if err != nil {
return
}
defer func() {
syncErr := f.Sync()
closeErr := f.Close()
if err != nil {
return
}
err = syncErr
if err != nil {
return
}
err = closeErr
if err != nil {
return
}
err = os.Rename(p.mappingsTempFileName(), p.mappingsFileName())
duration := time.Since(begin)
log.Infof("Done checkpointing fingerprint mappings in %v.", duration)
}()
w := bufio.NewWriterSize(f, fileBufSize)
if _, err = w.WriteString(mappingsMagicString); err != nil {
return
}
if _, err = codable.EncodeUvarint(w, mappingsFormatVersion); err != nil {
return
}
if _, err = codable.EncodeUvarint(w, uint64(len(fpm))); err != nil {
return
}
for fp, mappings := range fpm {
if err = codable.EncodeUint64(w, uint64(fp)); err != nil {
return
}
if _, err = codable.EncodeUvarint(w, uint64(len(mappings))); err != nil {
return
}
for ms, mappedFP := range mappings {
if _, err = codable.EncodeUvarint(w, uint64(len(ms))); err != nil {
return
}
if _, err = w.WriteString(ms); err != nil {
return
}
if err = codable.EncodeUint64(w, uint64(mappedFP)); err != nil {
return
}
}
}
err = w.Flush()
return
}
// loadFPMappings loads the fingerprint mappings. It also returns the highest
// mapped fingerprint and any error encountered. If p.mappingsFileName is not
// found, the method returns (fpMappings{}, 0, nil). Do not call concurrently
// with checkpointFPMappings.
func (p *persistence) loadFPMappings() (fpMappings, model.Fingerprint, error) {
fpm := fpMappings{}
var highestMappedFP model.Fingerprint
f, err := os.Open(p.mappingsFileName())
if os.IsNotExist(err) {
return fpm, 0, nil
}
if err != nil {
return nil, 0, err
}
defer f.Close()
r := bufio.NewReaderSize(f, fileBufSize)
buf := make([]byte, len(mappingsMagicString))
if _, err := io.ReadFull(r, buf); err != nil {
return nil, 0, err
}
magic := string(buf)
if magic != mappingsMagicString {
return nil, 0, fmt.Errorf(
"unexpected magic string, want %q, got %q",
mappingsMagicString, magic,
)
}
version, err := binary.ReadUvarint(r)
if version != mappingsFormatVersion || err != nil {
return nil, 0, fmt.Errorf("unknown fingerprint mappings format version, want %d", mappingsFormatVersion)
}
numRawFPs, err := binary.ReadUvarint(r)
if err != nil {
return nil, 0, err
}
for ; numRawFPs > 0; numRawFPs-- {
rawFP, err := codable.DecodeUint64(r)
if err != nil {
return nil, 0, err
}
numMappings, err := binary.ReadUvarint(r)
if err != nil {
return nil, 0, err
}
mappings := make(map[string]model.Fingerprint, numMappings)
for ; numMappings > 0; numMappings-- {
lenMS, err := binary.ReadUvarint(r)
if err != nil {
return nil, 0, err
}
buf := make([]byte, lenMS)
if _, err := io.ReadFull(r, buf); err != nil {
return nil, 0, err
}
fp, err := codable.DecodeUint64(r)
if err != nil {
return nil, 0, err
}
mappedFP := model.Fingerprint(fp)
if mappedFP > highestMappedFP {
highestMappedFP = mappedFP
}
mappings[string(buf)] = mappedFP
}
fpm[model.Fingerprint(rawFP)] = mappings
}
return fpm, highestMappedFP, nil
}
func offsetForChunkIndex(i int) int64 {
return int64(i * chunkLenWithHeader)
}
func chunkIndexForOffset(offset int64) (int, error) {
if int(offset)%chunkLenWithHeader != 0 {
return -1, fmt.Errorf(
"offset %d is not a multiple of on-disk chunk length %d",
offset, chunkLenWithHeader,
)
}
return int(offset) / chunkLenWithHeader, nil
}
func writeChunkHeader(w io.Writer, c chunk) error {
header := make([]byte, chunkHeaderLen)
header[chunkHeaderTypeOffset] = byte(c.encoding())
binary.LittleEndian.PutUint64(
header[chunkHeaderFirstTimeOffset:],
uint64(c.firstTime()),
)
binary.LittleEndian.PutUint64(
header[chunkHeaderLastTimeOffset:],
uint64(c.newIterator().lastTimestamp()),
)
_, err := w.Write(header)
return err
}
func writeChunks(w io.Writer, chunks []chunk) error {
b := bufio.NewWriterSize(w, len(chunks)*chunkLenWithHeader)
for _, chunk := range chunks {
if err := writeChunkHeader(b, chunk); err != nil {
return err
}
if err := chunk.marshal(b); err != nil {
return err
}
}
return b.Flush()
}