mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-14 01:24:04 -08:00
a7c519930e
And use the new method to call to compact Histograms during parsing. This happens for both `Histogram` and `FloatHistogram`. In this way, if targets decide to optimize the exposition size by merging spans with empty buckets in between, we still get a normalized results. It will also normalize away any valid but weird representations like empty spans, spans with offset zero, and empty buckets at the start or end of a span. The implementation seemed easy at first as it just turns the `compactBuckets` helper into a generic function (which now got its own file). However, the integer Histograms have delta buckets instead of absolute buckets, which had to be treated specially in the generic `compactBuckets` function. To make sure it works, I have added plenty of explicit tests for `Histogram` in addition to the `FloatHistogram` tests. I have also updated the doc comment for the `Compact` method. Based on the insights now expressed in the doc comment, compacting with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit also sets the value to 0 in the two cases we were using 3 so far. We might still want to reconsider, so I don't want to remove the maxEmptyBuckets parameter right now. Signed-off-by: beorn7 <beorn@grafana.com>
519 lines
16 KiB
Go
519 lines
16 KiB
Go
// Copyright 2021 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package textparse
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
"sort"
|
|
"strings"
|
|
"unicode/utf8"
|
|
|
|
"github.com/gogo/protobuf/proto"
|
|
"github.com/pkg/errors"
|
|
"github.com/prometheus/common/model"
|
|
|
|
"github.com/prometheus/prometheus/model/exemplar"
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
"github.com/prometheus/prometheus/model/labels"
|
|
|
|
dto "github.com/prometheus/prometheus/prompb/io/prometheus/client"
|
|
)
|
|
|
|
// ProtobufParser is a very inefficient way of unmarshaling the old Prometheus
|
|
// protobuf format and then present it as it if were parsed by a
|
|
// Prometheus-2-style text parser. This is only done so that we can easily plug
|
|
// in the protobuf format into Prometheus 2. For future use (with the final
|
|
// format that will be used for native histograms), we have to revisit the
|
|
// parsing. A lot of the efficiency tricks of the Prometheus-2-style parsing
|
|
// could be used in a similar fashion (byte-slice pointers into the raw
|
|
// payload), which requires some hand-coded protobuf handling. But the current
|
|
// parsers all expect the full series name (metric name plus label pairs) as one
|
|
// string, which is not how things are represented in the protobuf format. If
|
|
// the re-arrangement work is actually causing problems (which has to be seen),
|
|
// that expectation needs to be changed.
|
|
type ProtobufParser struct {
|
|
in []byte // The intput to parse.
|
|
inPos int // Position within the input.
|
|
metricPos int // Position within Metric slice.
|
|
// fieldPos is the position within a Summary or (legacy) Histogram. -2
|
|
// is the count. -1 is the sum. Otherwise it is the index within
|
|
// quantiles/buckets.
|
|
fieldPos int
|
|
fieldsDone bool // true if no more fields of a Summary or (legacy) Histogram to be processed.
|
|
// state is marked by the entry we are processing. EntryInvalid implies
|
|
// that we have to decode the next MetricFamily.
|
|
state Entry
|
|
|
|
mf *dto.MetricFamily
|
|
|
|
// The following are just shenanigans to satisfy the Parser interface.
|
|
metricBytes *bytes.Buffer // A somewhat fluid representation of the current metric.
|
|
}
|
|
|
|
// NewProtobufParser returns a parser for the payload in the byte slice.
|
|
func NewProtobufParser(b []byte) Parser {
|
|
return &ProtobufParser{
|
|
in: b,
|
|
state: EntryInvalid,
|
|
mf: &dto.MetricFamily{},
|
|
metricBytes: &bytes.Buffer{},
|
|
}
|
|
}
|
|
|
|
// Series returns the bytes of a series with a simple float64 as a
|
|
// value, the timestamp if set, and the value of the current sample.
|
|
func (p *ProtobufParser) Series() ([]byte, *int64, float64) {
|
|
var (
|
|
m = p.mf.GetMetric()[p.metricPos]
|
|
ts = m.GetTimestampMs()
|
|
v float64
|
|
)
|
|
switch p.mf.GetType() {
|
|
case dto.MetricType_COUNTER:
|
|
v = m.GetCounter().GetValue()
|
|
case dto.MetricType_GAUGE:
|
|
v = m.GetGauge().GetValue()
|
|
case dto.MetricType_UNTYPED:
|
|
v = m.GetUntyped().GetValue()
|
|
case dto.MetricType_SUMMARY:
|
|
s := m.GetSummary()
|
|
switch p.fieldPos {
|
|
case -2:
|
|
v = float64(s.GetSampleCount())
|
|
case -1:
|
|
v = s.GetSampleSum()
|
|
// Need to detect a summaries without quantile here.
|
|
if len(s.GetQuantile()) == 0 {
|
|
p.fieldsDone = true
|
|
}
|
|
default:
|
|
v = s.GetQuantile()[p.fieldPos].GetValue()
|
|
}
|
|
case dto.MetricType_HISTOGRAM:
|
|
// This should only happen for a legacy histogram.
|
|
h := m.GetHistogram()
|
|
switch p.fieldPos {
|
|
case -2:
|
|
v = float64(h.GetSampleCount())
|
|
case -1:
|
|
v = h.GetSampleSum()
|
|
default:
|
|
bb := h.GetBucket()
|
|
if p.fieldPos >= len(bb) {
|
|
v = float64(h.GetSampleCount())
|
|
} else {
|
|
v = float64(bb[p.fieldPos].GetCumulativeCount())
|
|
}
|
|
}
|
|
default:
|
|
panic("encountered unexpected metric type, this is a bug")
|
|
}
|
|
if ts != 0 {
|
|
return p.metricBytes.Bytes(), &ts, v
|
|
}
|
|
// Nasty hack: Assume that ts==0 means no timestamp. That's not true in
|
|
// general, but proto3 has no distinction between unset and
|
|
// default. Need to avoid in the final format.
|
|
return p.metricBytes.Bytes(), nil, v
|
|
}
|
|
|
|
// Histogram returns the bytes of a series with a native histogram as a value,
|
|
// the timestamp if set, and the native histogram in the current sample.
|
|
//
|
|
// The Compact method is called before returning the Histogram (or FloatHistogram).
|
|
//
|
|
// If the SampleCountFloat or the ZeroCountFloat in the proto message is > 0,
|
|
// the histogram is parsed and returned as a FloatHistogram and nil is returned
|
|
// as the (integer) Histogram return value. Otherwise, it is parsed and returned
|
|
// as an (integer) Histogram and nil is returned as the FloatHistogram return
|
|
// value.
|
|
func (p *ProtobufParser) Histogram() ([]byte, *int64, *histogram.Histogram, *histogram.FloatHistogram) {
|
|
var (
|
|
m = p.mf.GetMetric()[p.metricPos]
|
|
ts = m.GetTimestampMs()
|
|
h = m.GetHistogram()
|
|
)
|
|
if h.GetSampleCountFloat() > 0 || h.GetZeroCountFloat() > 0 {
|
|
// It is a float histogram.
|
|
fh := histogram.FloatHistogram{
|
|
Count: h.GetSampleCountFloat(),
|
|
Sum: h.GetSampleSum(),
|
|
ZeroThreshold: h.GetZeroThreshold(),
|
|
ZeroCount: h.GetZeroCountFloat(),
|
|
Schema: h.GetSchema(),
|
|
PositiveSpans: make([]histogram.Span, len(h.GetPositiveSpan())),
|
|
PositiveBuckets: h.GetPositiveCount(),
|
|
NegativeSpans: make([]histogram.Span, len(h.GetNegativeSpan())),
|
|
NegativeBuckets: h.GetNegativeCount(),
|
|
}
|
|
for i, span := range h.GetPositiveSpan() {
|
|
fh.PositiveSpans[i].Offset = span.GetOffset()
|
|
fh.PositiveSpans[i].Length = span.GetLength()
|
|
}
|
|
for i, span := range h.GetNegativeSpan() {
|
|
fh.NegativeSpans[i].Offset = span.GetOffset()
|
|
fh.NegativeSpans[i].Length = span.GetLength()
|
|
}
|
|
fh.Compact(0)
|
|
if ts != 0 {
|
|
return p.metricBytes.Bytes(), &ts, nil, &fh
|
|
}
|
|
// Nasty hack: Assume that ts==0 means no timestamp. That's not true in
|
|
// general, but proto3 has no distinction between unset and
|
|
// default. Need to avoid in the final format.
|
|
return p.metricBytes.Bytes(), nil, nil, &fh
|
|
}
|
|
|
|
sh := histogram.Histogram{
|
|
Count: h.GetSampleCount(),
|
|
Sum: h.GetSampleSum(),
|
|
ZeroThreshold: h.GetZeroThreshold(),
|
|
ZeroCount: h.GetZeroCount(),
|
|
Schema: h.GetSchema(),
|
|
PositiveSpans: make([]histogram.Span, len(h.GetPositiveSpan())),
|
|
PositiveBuckets: h.GetPositiveDelta(),
|
|
NegativeSpans: make([]histogram.Span, len(h.GetNegativeSpan())),
|
|
NegativeBuckets: h.GetNegativeDelta(),
|
|
}
|
|
for i, span := range h.GetPositiveSpan() {
|
|
sh.PositiveSpans[i].Offset = span.GetOffset()
|
|
sh.PositiveSpans[i].Length = span.GetLength()
|
|
}
|
|
for i, span := range h.GetNegativeSpan() {
|
|
sh.NegativeSpans[i].Offset = span.GetOffset()
|
|
sh.NegativeSpans[i].Length = span.GetLength()
|
|
}
|
|
sh.Compact(0)
|
|
if ts != 0 {
|
|
return p.metricBytes.Bytes(), &ts, &sh, nil
|
|
}
|
|
return p.metricBytes.Bytes(), nil, &sh, nil
|
|
}
|
|
|
|
// Help returns the metric name and help text in the current entry.
|
|
// Must only be called after Next returned a help entry.
|
|
// The returned byte slices become invalid after the next call to Next.
|
|
func (p *ProtobufParser) Help() ([]byte, []byte) {
|
|
return p.metricBytes.Bytes(), []byte(p.mf.GetHelp())
|
|
}
|
|
|
|
// Type returns the metric name and type in the current entry.
|
|
// Must only be called after Next returned a type entry.
|
|
// The returned byte slices become invalid after the next call to Next.
|
|
func (p *ProtobufParser) Type() ([]byte, MetricType) {
|
|
n := p.metricBytes.Bytes()
|
|
switch p.mf.GetType() {
|
|
case dto.MetricType_COUNTER:
|
|
return n, MetricTypeCounter
|
|
case dto.MetricType_GAUGE:
|
|
return n, MetricTypeGauge
|
|
case dto.MetricType_HISTOGRAM:
|
|
return n, MetricTypeHistogram
|
|
case dto.MetricType_SUMMARY:
|
|
return n, MetricTypeSummary
|
|
}
|
|
return n, MetricTypeUnknown
|
|
}
|
|
|
|
// Unit always returns (nil, nil) because units aren't supported by the protobuf
|
|
// format.
|
|
func (p *ProtobufParser) Unit() ([]byte, []byte) {
|
|
return nil, nil
|
|
}
|
|
|
|
// Comment always returns nil because comments aren't supported by the protobuf
|
|
// format.
|
|
func (p *ProtobufParser) Comment() []byte {
|
|
return nil
|
|
}
|
|
|
|
// Metric writes the labels of the current sample into the passed labels.
|
|
// It returns the string from which the metric was parsed.
|
|
func (p *ProtobufParser) Metric(l *labels.Labels) string {
|
|
*l = append(*l, labels.Label{
|
|
Name: labels.MetricName,
|
|
Value: p.getMagicName(),
|
|
})
|
|
|
|
for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() {
|
|
*l = append(*l, labels.Label{
|
|
Name: lp.GetName(),
|
|
Value: lp.GetValue(),
|
|
})
|
|
}
|
|
if needed, name, value := p.getMagicLabel(); needed {
|
|
*l = append(*l, labels.Label{Name: name, Value: value})
|
|
}
|
|
|
|
// Sort labels to maintain the sorted labels invariant.
|
|
sort.Sort(*l)
|
|
|
|
return p.metricBytes.String()
|
|
}
|
|
|
|
// Exemplar writes the exemplar of the current sample into the passed
|
|
// exemplar. It returns if an exemplar exists or not. In case of a native
|
|
// histogram, the legacy bucket section is still used for exemplars. To ingest
|
|
// all examplars, call the Exemplar method repeatedly until it returns false.
|
|
func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool {
|
|
m := p.mf.GetMetric()[p.metricPos]
|
|
var exProto *dto.Exemplar
|
|
switch p.mf.GetType() {
|
|
case dto.MetricType_COUNTER:
|
|
exProto = m.GetCounter().GetExemplar()
|
|
case dto.MetricType_HISTOGRAM:
|
|
bb := m.GetHistogram().GetBucket()
|
|
if p.fieldPos < 0 {
|
|
if p.state == EntrySeries {
|
|
return false // At _count or _sum.
|
|
}
|
|
p.fieldPos = 0 // Start at 1st bucket for native histograms.
|
|
}
|
|
for p.fieldPos < len(bb) {
|
|
exProto = bb[p.fieldPos].GetExemplar()
|
|
if p.state == EntrySeries {
|
|
break
|
|
}
|
|
p.fieldPos++
|
|
if exProto != nil {
|
|
break
|
|
}
|
|
}
|
|
default:
|
|
return false
|
|
}
|
|
if exProto == nil {
|
|
return false
|
|
}
|
|
ex.Value = exProto.GetValue()
|
|
if ts := exProto.GetTimestamp(); ts != nil {
|
|
ex.HasTs = true
|
|
ex.Ts = ts.GetSeconds()*1000 + int64(ts.GetNanos()/1_000_000)
|
|
}
|
|
for _, lp := range exProto.GetLabel() {
|
|
ex.Labels = append(ex.Labels, labels.Label{
|
|
Name: lp.GetName(),
|
|
Value: lp.GetValue(),
|
|
})
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Next advances the parser to the next "sample" (emulating the behavior of a
|
|
// text format parser). It returns (EntryInvalid, io.EOF) if no samples were
|
|
// read.
|
|
func (p *ProtobufParser) Next() (Entry, error) {
|
|
switch p.state {
|
|
case EntryInvalid:
|
|
p.metricPos = 0
|
|
p.fieldPos = -2
|
|
n, err := readDelimited(p.in[p.inPos:], p.mf)
|
|
p.inPos += n
|
|
if err != nil {
|
|
return p.state, err
|
|
}
|
|
|
|
// Skip empty metric families.
|
|
if len(p.mf.GetMetric()) == 0 {
|
|
return p.Next()
|
|
}
|
|
|
|
// We are at the beginning of a metric family. Put only the name
|
|
// into metricBytes and validate only name and help for now.
|
|
name := p.mf.GetName()
|
|
if !model.IsValidMetricName(model.LabelValue(name)) {
|
|
return EntryInvalid, errors.Errorf("invalid metric name: %s", name)
|
|
}
|
|
if help := p.mf.GetHelp(); !utf8.ValidString(help) {
|
|
return EntryInvalid, errors.Errorf("invalid help for metric %q: %s", name, help)
|
|
}
|
|
p.metricBytes.Reset()
|
|
p.metricBytes.WriteString(name)
|
|
|
|
p.state = EntryHelp
|
|
case EntryHelp:
|
|
p.state = EntryType
|
|
case EntryType:
|
|
if p.mf.GetType() == dto.MetricType_HISTOGRAM &&
|
|
isNativeHistogram(p.mf.GetMetric()[0].GetHistogram()) {
|
|
p.state = EntryHistogram
|
|
} else {
|
|
p.state = EntrySeries
|
|
}
|
|
if err := p.updateMetricBytes(); err != nil {
|
|
return EntryInvalid, err
|
|
}
|
|
case EntryHistogram, EntrySeries:
|
|
if p.state == EntrySeries && !p.fieldsDone &&
|
|
(p.mf.GetType() == dto.MetricType_SUMMARY || p.mf.GetType() == dto.MetricType_HISTOGRAM) {
|
|
p.fieldPos++
|
|
} else {
|
|
p.metricPos++
|
|
p.fieldPos = -2
|
|
p.fieldsDone = false
|
|
}
|
|
if p.metricPos >= len(p.mf.GetMetric()) {
|
|
p.state = EntryInvalid
|
|
return p.Next()
|
|
}
|
|
if err := p.updateMetricBytes(); err != nil {
|
|
return EntryInvalid, err
|
|
}
|
|
default:
|
|
return EntryInvalid, errors.Errorf("invalid protobuf parsing state: %d", p.state)
|
|
}
|
|
return p.state, nil
|
|
}
|
|
|
|
func (p *ProtobufParser) updateMetricBytes() error {
|
|
b := p.metricBytes
|
|
b.Reset()
|
|
b.WriteString(p.getMagicName())
|
|
for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() {
|
|
b.WriteByte(model.SeparatorByte)
|
|
n := lp.GetName()
|
|
if !model.LabelName(n).IsValid() {
|
|
return errors.Errorf("invalid label name: %s", n)
|
|
}
|
|
b.WriteString(n)
|
|
b.WriteByte(model.SeparatorByte)
|
|
v := lp.GetValue()
|
|
if !utf8.ValidString(v) {
|
|
return errors.Errorf("invalid label value: %s", v)
|
|
}
|
|
b.WriteString(v)
|
|
}
|
|
if needed, n, v := p.getMagicLabel(); needed {
|
|
b.WriteByte(model.SeparatorByte)
|
|
b.WriteString(n)
|
|
b.WriteByte(model.SeparatorByte)
|
|
b.WriteString(v)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// getMagicName usually just returns p.mf.GetType() but adds a magic suffix
|
|
// ("_count", "_sum", "_bucket") if needed according to the current parser
|
|
// state.
|
|
func (p *ProtobufParser) getMagicName() string {
|
|
t := p.mf.GetType()
|
|
if p.state == EntryHistogram || (t != dto.MetricType_HISTOGRAM && t != dto.MetricType_SUMMARY) {
|
|
return p.mf.GetName()
|
|
}
|
|
if p.fieldPos == -2 {
|
|
return p.mf.GetName() + "_count"
|
|
}
|
|
if p.fieldPos == -1 {
|
|
return p.mf.GetName() + "_sum"
|
|
}
|
|
if t == dto.MetricType_HISTOGRAM {
|
|
return p.mf.GetName() + "_bucket"
|
|
}
|
|
return p.mf.GetName()
|
|
}
|
|
|
|
// getMagicLabel returns if a magic label ("quantile" or "le") is needed and, if
|
|
// so, its name and value. It also sets p.fieldsDone if applicable.
|
|
func (p *ProtobufParser) getMagicLabel() (bool, string, string) {
|
|
if p.state == EntryHistogram || p.fieldPos < 0 {
|
|
return false, "", ""
|
|
}
|
|
switch p.mf.GetType() {
|
|
case dto.MetricType_SUMMARY:
|
|
qq := p.mf.GetMetric()[p.metricPos].GetSummary().GetQuantile()
|
|
q := qq[p.fieldPos]
|
|
p.fieldsDone = p.fieldPos == len(qq)-1
|
|
return true, model.QuantileLabel, formatOpenMetricsFloat(q.GetQuantile())
|
|
case dto.MetricType_HISTOGRAM:
|
|
bb := p.mf.GetMetric()[p.metricPos].GetHistogram().GetBucket()
|
|
if p.fieldPos >= len(bb) {
|
|
p.fieldsDone = true
|
|
return true, model.BucketLabel, "+Inf"
|
|
}
|
|
b := bb[p.fieldPos]
|
|
p.fieldsDone = math.IsInf(b.GetUpperBound(), +1)
|
|
return true, model.BucketLabel, formatOpenMetricsFloat(b.GetUpperBound())
|
|
}
|
|
return false, "", ""
|
|
}
|
|
|
|
var errInvalidVarint = errors.New("protobufparse: invalid varint encountered")
|
|
|
|
// readDelimited is essentially doing what the function of the same name in
|
|
// github.com/matttproud/golang_protobuf_extensions/pbutil is doing, but it is
|
|
// specific to a MetricFamily, utilizes the more efficient gogo-protobuf
|
|
// unmarshaling, and acts on a byte slice directly without any additional
|
|
// staging buffers.
|
|
func readDelimited(b []byte, mf *dto.MetricFamily) (n int, err error) {
|
|
if len(b) == 0 {
|
|
return 0, io.EOF
|
|
}
|
|
messageLength, varIntLength := proto.DecodeVarint(b)
|
|
if varIntLength == 0 || varIntLength > binary.MaxVarintLen32 {
|
|
return 0, errInvalidVarint
|
|
}
|
|
totalLength := varIntLength + int(messageLength)
|
|
if totalLength > len(b) {
|
|
return 0, errors.Errorf("protobufparse: insufficient length of buffer, expected at least %d bytes, got %d bytes", totalLength, len(b))
|
|
}
|
|
mf.Reset()
|
|
return totalLength, mf.Unmarshal(b[varIntLength:totalLength])
|
|
}
|
|
|
|
// formatOpenMetricsFloat works like the usual Go string formatting of a fleat
|
|
// but appends ".0" if the resulting number would otherwise contain neither a
|
|
// "." nor an "e".
|
|
func formatOpenMetricsFloat(f float64) string {
|
|
// A few common cases hardcoded.
|
|
switch {
|
|
case f == 1:
|
|
return "1.0"
|
|
case f == 0:
|
|
return "0.0"
|
|
case f == -1:
|
|
return "-1.0"
|
|
case math.IsNaN(f):
|
|
return "NaN"
|
|
case math.IsInf(f, +1):
|
|
return "+Inf"
|
|
case math.IsInf(f, -1):
|
|
return "-Inf"
|
|
}
|
|
s := fmt.Sprint(f)
|
|
if strings.ContainsAny(s, "e.") {
|
|
return s
|
|
}
|
|
return s + ".0"
|
|
}
|
|
|
|
// isNativeHistogram returns false iff the provided histograms has no sparse
|
|
// buckets and a zero threshold of 0 and a zero count of 0. In principle, this
|
|
// could still be meant to be a native histogram (with a zero threshold of 0 and
|
|
// no observations yet), but for now, we'll treat this case as a conventional
|
|
// histogram.
|
|
//
|
|
// TODO(beorn7): In the final format, there should be an unambiguous way of
|
|
// deciding if a histogram should be ingested as a conventional one or a native
|
|
// one.
|
|
func isNativeHistogram(h *dto.Histogram) bool {
|
|
return len(h.GetNegativeDelta()) > 0 ||
|
|
len(h.GetPositiveDelta()) > 0 ||
|
|
h.GetZeroCount() > 0 ||
|
|
h.GetZeroThreshold() > 0
|
|
}
|