prometheus/promql/promqltest/testdata/functions.test
Neeraj Gartia 7fd3b13bd2
[TEST] PromQL: Adds tests with histograms for simple functions (#15488)
adds tests with histograms for simple functions

Signed-off-by: Neeraj Gartia <neerajgartia211002@gmail.com>

---------

Signed-off-by: Neeraj Gartia <neerajgartia211002@gmail.com>
2024-12-04 13:11:05 +01:00

1375 lines
43 KiB
Plaintext

# Testdata for resets() and changes().
load 5m
http_requests{path="/foo"} 1 2 3 0 1 0 0 1 2 0
http_requests{path="/bar"} 1 2 3 4 5 1 2 3 4 5
http_requests{path="/biz"} 0 0 0 0 0 1 1 1 1 1
http_requests_histogram{path="/foo"} {{schema:0 sum:1 count:1}}x9
http_requests_histogram{path="/bar"} 0 0 0 0 0 0 0 0 {{schema:0 sum:1 count:1}} {{schema:0 sum:1 count:1}}
http_requests_histogram{path="/biz"} 0 1 0 2 0 3 0 {{schema:0 sum:1 count:1 z_bucket_w:0.001 z_bucket:2}} {{schema:0 sum:2 count:2 z_bucket_w:0.001 z_bucket:1}} {{schema:0 sum:1 count:1 z_bucket_w:0.001 z_bucket:2}}
# Tests for resets().
eval instant at 50m resets(http_requests[5m])
eval instant at 50m resets(http_requests[10m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[600])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[20m])
{path="/foo"} 1
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[30m])
{path="/foo"} 1
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests[32m])
{path="/foo"} 2
{path="/bar"} 1
{path="/biz"} 0
eval instant at 50m resets(http_requests[50m])
{path="/foo"} 3
{path="/bar"} 1
{path="/biz"} 0
eval instant at 50m resets(nonexistent_metric[50m])
# Test for mix of floats and histograms.
eval instant at 50m resets(http_requests_histogram[6m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m resets(http_requests_histogram[60m])
{path="/foo"} 0
{path="/bar"} 1
{path="/biz"} 6
# Tests for changes().
eval instant at 50m changes(http_requests[5m])
eval instant at 50m changes(http_requests[6m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m changes(http_requests[20m])
{path="/foo"} 2
{path="/bar"} 2
{path="/biz"} 0
eval instant at 50m changes(http_requests[30m])
{path="/foo"} 3
{path="/bar"} 4
{path="/biz"} 0
eval instant at 50m changes(http_requests[50m])
{path="/foo"} 7
{path="/bar"} 8
{path="/biz"} 1
eval instant at 50m changes((http_requests[50m]))
{path="/foo"} 7
{path="/bar"} 8
{path="/biz"} 1
eval instant at 50m changes(nonexistent_metric[50m])
# Test for mix of floats and histograms.
# Because of bug #14172 we are not able to test more complex cases like below:
# 0 1 2 {{schema:0 sum:1 count:1}} 3 {{schema:0 sum:2 count:2}} 4 {{schema:0 sum:3 count:3}}.
eval instant at 50m changes(http_requests_histogram[5m])
eval instant at 50m changes(http_requests_histogram[6m])
{path="/foo"} 0
{path="/bar"} 0
{path="/biz"} 0
eval instant at 50m changes(http_requests_histogram[60m])
{path="/foo"} 0
{path="/bar"} 1
{path="/biz"} 9
clear
load 5m
x{a="b"} NaN NaN NaN
x{a="c"} 0 NaN 0
eval instant at 15m changes(x[20m])
{a="b"} 0
{a="c"} 2
clear
# Tests for increase().
load 5m
http_requests_total{path="/foo"} 0+10x10
http_requests_total{path="/bar"} 0+18x5 0+18x5
http_requests_total{path="/dings"} 10+10x10
http_requests_total{path="/bumms"} 1+10x10
# Tests for increase().
eval instant at 50m increase(http_requests_total[50m])
{path="/foo"} 100
{path="/bar"} 160
{path="/dings"} 100
{path="/bumms"} 100
# "foo" and "bar" are already at value 0 at t=0, so no extrapolation
# happens. "dings" has value 10 at t=0 and would reach 0 at t=-5m. The
# normal extrapolation by half a sample interval only goes to
# t=-2m30s, so that's not yet reaching a negative value and therefore
# chosen. However, "bumms" has value 1 at t=0 and would reach 0 at
# t=-30s. Here the extrapolation to t=-2m30s would reach a negative
# value, and therefore the extrapolation happens only by 30s.
eval instant at 50m increase(http_requests_total[100m])
{path="/foo"} 100
{path="/bar"} 162
{path="/dings"} 105
{path="/bumms"} 101
clear
# Test for increase() with counter reset.
# When the counter is reset, it always starts at 0.
# So the sequence 3 2 (decreasing counter = reset) is interpreted the same as 3 0 1 2.
# Prometheus assumes it missed the intermediate values 0 and 1.
load 5m
http_requests_total{path="/foo"} 0 1 2 3 2 3 4
eval instant at 30m increase(http_requests_total[30m])
{path="/foo"} 7
clear
# Tests for rate().
load 5m
testcounter_reset_middle_total 0+27x4 0+27x5
testcounter_reset_end_total 0+10x9 0 10
# Counter resets at in the middle of range are handled correctly by rate().
eval instant at 50m rate(testcounter_reset_middle_total[50m])
{} 0.08
# Counter resets at end of range are ignored by rate().
eval instant at 50m rate(testcounter_reset_end_total[5m])
eval instant at 50m rate(testcounter_reset_end_total[6m])
{} 0
clear
load 5m
calculate_rate_offset_total{x="a"} 0+10x10
calculate_rate_offset_total{x="b"} 0+20x10
calculate_rate_window_total 0+80x10
# Rates should calculate per-second rates.
eval instant at 50m rate(calculate_rate_window_total[50m])
{} 0.26666666666666666
eval instant at 50m rate(calculate_rate_offset_total[10m] offset 5m)
{x="a"} 0.03333333333333333
{x="b"} 0.06666666666666667
clear
load 4m
testcounter_zero_cutoff_total{start="0m"} 0+240x10
testcounter_zero_cutoff_total{start="1m"} 60+240x10
testcounter_zero_cutoff_total{start="2m"} 120+240x10
testcounter_zero_cutoff_total{start="3m"} 180+240x10
testcounter_zero_cutoff_total{start="4m"} 240+240x10
testcounter_zero_cutoff_total{start="5m"} 300+240x10
# Zero cutoff for left-side extrapolation happens until we
# reach half a sampling interval (2m). Beyond that, we only
# extrapolate by half a sampling interval.
eval instant at 10m rate(testcounter_zero_cutoff_total[20m])
{start="0m"} 0.5
{start="1m"} 0.55
{start="2m"} 0.6
{start="3m"} 0.6
{start="4m"} 0.6
{start="5m"} 0.6
# Normal half-interval cutoff for left-side extrapolation.
eval instant at 50m rate(testcounter_zero_cutoff_total[20m])
{start="0m"} 0.6
{start="1m"} 0.6
{start="2m"} 0.6
{start="3m"} 0.6
{start="4m"} 0.6
{start="5m"} 0.6
clear
# Tests for irate().
load 5m
http_requests_total{path="/foo"} 0+10x10
http_requests_total{path="/bar"} 0+10x5 0+10x5
eval instant at 50m irate(http_requests_total[50m])
{path="/foo"} .03333333333333333333
{path="/bar"} .03333333333333333333
# Counter reset.
eval instant at 30m irate(http_requests_total[50m])
{path="/foo"} .03333333333333333333
{path="/bar"} 0
clear
# Tests for delta().
load 5m
http_requests{path="/foo"} 0 50 100 150 200
http_requests{path="/bar"} 200 150 100 50 0
eval instant at 20m delta(http_requests[20m])
{path="/foo"} 200
{path="/bar"} -200
clear
# Tests for idelta().
load 5m
http_requests{path="/foo"} 0 50 100 150
http_requests{path="/bar"} 0 50 100 50
eval instant at 20m idelta(http_requests[20m])
{path="/foo"} 50
{path="/bar"} -50
clear
# Tests for deriv() and predict_linear().
load 5m
testcounter_reset_middle_total 0+10x4 0+10x5
http_requests_total{job="app-server", instance="1", group="canary"} 0+80x10
# deriv should return the same as rate in simple cases.
eval instant at 50m rate(http_requests_total{group="canary", instance="1", job="app-server"}[50m])
{group="canary", instance="1", job="app-server"} 0.26666666666666666
eval instant at 50m deriv(http_requests_total{group="canary", instance="1", job="app-server"}[50m])
{group="canary", instance="1", job="app-server"} 0.26666666666666666
# deriv should return correct result.
eval instant at 50m deriv(testcounter_reset_middle_total[100m])
{} 0.010606060606060607
# predict_linear should return correct result.
# X/s = [ 0, 300, 600, 900,1200,1500,1800,2100,2400,2700,3000]
# Y = [ 0, 10, 20, 30, 40, 0, 10, 20, 30, 40, 50]
# sumX = 16500
# sumY = 250
# sumXY = 480000
# sumX2 = 34650000
# n = 11
# covXY = 105000
# varX = 9900000
# slope = 0.010606060606060607
# intercept at t=0: 6.818181818181818
# intercept at t=3000: 38.63636363636364
# intercept at t=3000+3600: 76.81818181818181
eval instant at 50m predict_linear(testcounter_reset_middle_total[50m], 3600)
{} 70
eval instant at 50m predict_linear(testcounter_reset_middle_total[50m], 1h)
{} 70
# intercept at t = 3000+3600 = 6600
eval instant at 50m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 76.81818181818181
eval instant at 50m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 1h)
{} 76.81818181818181
# intercept at t = 600+3600 = 4200
eval instant at 10m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 51.36363636363637
# intercept at t = 4200+3600 = 7800
eval instant at 70m predict_linear(testcounter_reset_middle_total[55m] @ 3000, 3600)
{} 89.54545454545455
# With http_requests_total, there is a sample value exactly at the end of
# the range, and it has exactly the predicted value, so predict_linear
# can be emulated with deriv.
eval instant at 50m predict_linear(http_requests_total[50m], 3600) - (http_requests_total + deriv(http_requests_total[50m]) * 3600)
{group="canary", instance="1", job="app-server"} 0
clear
# Tests for label_replace.
load 5m
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace does a full-string match and replace.
eval instant at 0m label_replace(testmetric, "dst", "destination-value-$1", "src", "source-value-(.*)")
testmetric{src="source-value-10",dst="destination-value-10"} 0
testmetric{src="source-value-20",dst="destination-value-20"} 1
# label_replace does not do a sub-string match.
eval instant at 0m label_replace(testmetric, "dst", "destination-value-$1", "src", "value-(.*)")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace works with multiple capture groups.
eval instant at 0m label_replace(testmetric, "dst", "$1-value-$2", "src", "(.*)-value-(.*)")
testmetric{src="source-value-10",dst="source-value-10"} 0
testmetric{src="source-value-20",dst="source-value-20"} 1
# label_replace does not overwrite the destination label if the source label
# does not exist.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "nonexistent-src", "source-value-(.*)")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace overwrites the destination label if the source label is empty,
# but matched.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "nonexistent-src", "(.*)")
testmetric{src="source-value-10",dst="value-"} 0
testmetric{src="source-value-20",dst="value-"} 1
# label_replace does not overwrite the destination label if the source label
# is not matched.
eval instant at 0m label_replace(testmetric, "dst", "value-$1", "src", "non-matching-regex")
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
eval instant at 0m label_replace((((testmetric))), (("dst")), (("value-$1")), (("src")), (("non-matching-regex")))
testmetric{src="source-value-10",dst="original-destination-value"} 0
testmetric{src="source-value-20",dst="original-destination-value"} 1
# label_replace drops labels that are set to empty values.
eval instant at 0m label_replace(testmetric, "dst", "", "dst", ".*")
testmetric{src="source-value-10"} 0
testmetric{src="source-value-20"} 1
# label_replace fails when the regex is invalid.
eval_fail instant at 0m label_replace(testmetric, "dst", "value-$1", "src", "(.*")
# label_replace fails when the destination label name is not a valid Prometheus label name.
eval_fail instant at 0m label_replace(testmetric, "invalid-label-name", "", "src", "(.*)")
# label_replace fails when there would be duplicated identical output label sets.
eval_fail instant at 0m label_replace(testmetric, "src", "", "", "")
clear
# Tests for vector, time and timestamp.
load 10s
metric 1 1
eval instant at 0s timestamp(metric)
{} 0
eval instant at 5s timestamp(metric)
{} 0
eval instant at 5s timestamp(((metric)))
{} 0
eval instant at 10s timestamp(metric)
{} 10
eval instant at 10s timestamp(((metric)))
{} 10
# Tests for label_join.
load 5m
testmetric{src="a",src1="b",src2="c",dst="original-destination-value"} 0
testmetric{src="d",src1="e",src2="f",dst="original-destination-value"} 1
# label_join joins all src values in order.
eval instant at 0m label_join(testmetric, "dst", "-", "src", "src1", "src2")
testmetric{src="a",src1="b",src2="c",dst="a-b-c"} 0
testmetric{src="d",src1="e",src2="f",dst="d-e-f"} 1
# label_join treats non existent src labels as empty strings.
eval instant at 0m label_join(testmetric, "dst", "-", "src", "src3", "src1")
testmetric{src="a",src1="b",src2="c",dst="a--b"} 0
testmetric{src="d",src1="e",src2="f",dst="d--e"} 1
# label_join overwrites the destination label even if the resulting dst label is empty string
eval instant at 0m label_join(testmetric, "dst", "", "emptysrc", "emptysrc1", "emptysrc2")
testmetric{src="a",src1="b",src2="c"} 0
testmetric{src="d",src1="e",src2="f"} 1
# test without src label for label_join
eval instant at 0m label_join(testmetric, "dst", ", ")
testmetric{src="a",src1="b",src2="c"} 0
testmetric{src="d",src1="e",src2="f"} 1
# test without dst label for label_join
load 5m
testmetric1{src="foo",src1="bar",src2="foobar"} 0
testmetric1{src="fizz",src1="buzz",src2="fizzbuzz"} 1
# label_join creates dst label if not present.
eval instant at 0m label_join(testmetric1, "dst", ", ", "src", "src1", "src2")
testmetric1{src="foo",src1="bar",src2="foobar",dst="foo, bar, foobar"} 0
testmetric1{src="fizz",src1="buzz",src2="fizzbuzz",dst="fizz, buzz, fizzbuzz"} 1
clear
# Tests for vector.
eval instant at 0m vector(1)
{} 1
eval instant at 0s vector(time())
{} 0
eval instant at 5s vector(time())
{} 5
eval instant at 60m vector(time())
{} 3600
# Tests for clamp_max, clamp_min(), and clamp().
load 5m
test_clamp{src="clamp-a"} -50
test_clamp{src="clamp-b"} 0
test_clamp{src="clamp-c"} 100
eval instant at 0m clamp_max(test_clamp, 75)
{src="clamp-a"} -50
{src="clamp-b"} 0
{src="clamp-c"} 75
eval instant at 0m clamp_min(test_clamp, -25)
{src="clamp-a"} -25
{src="clamp-b"} 0
{src="clamp-c"} 100
eval instant at 0m clamp(test_clamp, -25, 75)
{src="clamp-a"} -25
{src="clamp-b"} 0
{src="clamp-c"} 75
eval instant at 0m clamp_max(clamp_min(test_clamp, -20), 70)
{src="clamp-a"} -20
{src="clamp-b"} 0
{src="clamp-c"} 70
eval instant at 0m clamp_max((clamp_min(test_clamp, (-20))), (70))
{src="clamp-a"} -20
{src="clamp-b"} 0
{src="clamp-c"} 70
eval instant at 0m clamp(test_clamp, 0, NaN)
{src="clamp-a"} NaN
{src="clamp-b"} NaN
{src="clamp-c"} NaN
eval instant at 0m clamp(test_clamp, NaN, 0)
{src="clamp-a"} NaN
{src="clamp-b"} NaN
{src="clamp-c"} NaN
eval instant at 0m clamp(test_clamp, 5, -5)
clear
load 1m
mixed_metric {{schema:0 sum:5 count:4 buckets:[1 2 1]}} 1 2 3 {{schema:0 sum:5 count:4 buckets:[1 2 1]}} {{schema:0 sum:8 count:6 buckets:[1 4 1]}}
# clamp ignores any histograms
eval range from 0 to 5m step 1m clamp(mixed_metric, 2, 5)
{} _ 2 2 3
eval range from 0 to 5m step 1m clamp_min(mixed_metric, 2)
{} _ 2 2 3
eval range from 0 to 5m step 1m clamp_max(mixed_metric, 2)
{} _ 1 2 2
# Test cases for sgn.
clear
load 5m
test_sgn{src="sgn-a"} -Inf
test_sgn{src="sgn-b"} Inf
test_sgn{src="sgn-c"} NaN
test_sgn{src="sgn-d"} -50
test_sgn{src="sgn-e"} 0
test_sgn{src="sgn-f"} 100
test_sgn{src="sgn-histogram"} {{schema:1 sum:1 count:1}}
eval instant at 0m sgn(test_sgn)
{src="sgn-a"} -1
{src="sgn-b"} 1
{src="sgn-c"} NaN
{src="sgn-d"} -1
{src="sgn-e"} 0
{src="sgn-f"} 1
# Tests for sort/sort_desc.
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
eval_ordered instant at 50m sort(http_requests)
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="2", job="api-server"} NaN
eval_ordered instant at 50m sort_desc(http_requests)
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
# Tests for sort_by_label/sort_by_label_desc.
clear
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
http_requests{job="api-server", instance="1", group="production"} 0+20x10
http_requests{job="api-server", instance="0", group="canary"} 0+30x10
http_requests{job="api-server", instance="1", group="canary"} 0+40x10
http_requests{job="api-server", instance="2", group="canary"} NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
http_requests{job="app-server", instance="0", group="production"} 0+50x10
http_requests{job="app-server", instance="1", group="production"} 0+60x10
http_requests{job="app-server", instance="0", group="canary"} 0+70x10
http_requests{job="app-server", instance="1", group="canary"} 0+80x10
http_requests{job="api-server", instance="2", group="production"} 0+10x10
cpu_time_total{job="cpu", cpu="0"} 0+10x10
cpu_time_total{job="cpu", cpu="1"} 0+10x10
cpu_time_total{job="cpu", cpu="2"} 0+10x10
cpu_time_total{job="cpu", cpu="3"} 0+10x10
cpu_time_total{job="cpu", cpu="10"} 0+10x10
cpu_time_total{job="cpu", cpu="11"} 0+10x10
cpu_time_total{job="cpu", cpu="12"} 0+10x10
cpu_time_total{job="cpu", cpu="20"} 0+10x10
cpu_time_total{job="cpu", cpu="21"} 0+10x10
cpu_time_total{job="cpu", cpu="100"} 0+10x10
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 0+10x10
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 0+10x10
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 0+10x10
eval_ordered instant at 50m sort_by_label(http_requests, "instance")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "group", "instance", "job")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="2", job="api-server"} 100
eval_ordered instant at 50m sort_by_label(http_requests, "job", "instance", "group")
http_requests{group="canary", instance="0", job="api-server"} 300
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="production", instance="1", job="app-server"} 600
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance", "group")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label_desc(http_requests, "instance", "group", "job")
http_requests{group="production", instance="2", job="api-server"} 100
http_requests{group="canary", instance="2", job="api-server"} NaN
http_requests{group="production", instance="1", job="app-server"} 600
http_requests{group="production", instance="1", job="api-server"} 200
http_requests{group="canary", instance="1", job="app-server"} 800
http_requests{group="canary", instance="1", job="api-server"} 400
http_requests{group="production", instance="0", job="app-server"} 500
http_requests{group="production", instance="0", job="api-server"} 100
http_requests{group="canary", instance="0", job="app-server"} 700
http_requests{group="canary", instance="0", job="api-server"} 300
eval_ordered instant at 50m sort_by_label(cpu_time_total, "cpu")
cpu_time_total{job="cpu", cpu="0"} 100
cpu_time_total{job="cpu", cpu="1"} 100
cpu_time_total{job="cpu", cpu="2"} 100
cpu_time_total{job="cpu", cpu="3"} 100
cpu_time_total{job="cpu", cpu="10"} 100
cpu_time_total{job="cpu", cpu="11"} 100
cpu_time_total{job="cpu", cpu="12"} 100
cpu_time_total{job="cpu", cpu="20"} 100
cpu_time_total{job="cpu", cpu="21"} 100
cpu_time_total{job="cpu", cpu="100"} 100
eval_ordered instant at 50m sort_by_label(node_uname_info, "instance")
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 100
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 100
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 100
eval_ordered instant at 50m sort_by_label(node_uname_info, "release")
node_uname_info{job="node_exporter", instance="4m600", release="1.2.3"} 100
node_uname_info{job="node_exporter", instance="4m5", release="1.11.3"} 100
node_uname_info{job="node_exporter", instance="4m1000", release="1.111.3"} 100
# Tests for double_exponential_smoothing
clear
# positive trends
load 10s
http_requests{job="api-server", instance="0", group="production"} 0+10x1000 100+30x1000
http_requests{job="api-server", instance="1", group="production"} 0+20x1000 200+30x1000
http_requests{job="api-server", instance="0", group="canary"} 0+30x1000 300+80x1000
http_requests{job="api-server", instance="1", group="canary"} 0+40x2000
eval instant at 8000s double_exponential_smoothing(http_requests[1m], 0.01, 0.1)
{job="api-server", instance="0", group="production"} 8000
{job="api-server", instance="1", group="production"} 16000
{job="api-server", instance="0", group="canary"} 24000
{job="api-server", instance="1", group="canary"} 32000
# negative trends
clear
load 10s
http_requests{job="api-server", instance="0", group="production"} 8000-10x1000
http_requests{job="api-server", instance="1", group="production"} 0-20x1000
http_requests{job="api-server", instance="0", group="canary"} 0+30x1000 300-80x1000
http_requests{job="api-server", instance="1", group="canary"} 0-40x1000 0+40x1000
eval instant at 8000s double_exponential_smoothing(http_requests[1m], 0.01, 0.1)
{job="api-server", instance="0", group="production"} 0
{job="api-server", instance="1", group="production"} -16000
{job="api-server", instance="0", group="canary"} 24000
{job="api-server", instance="1", group="canary"} -32000
# Tests for avg_over_time
clear
load 10s
metric 1 2 3 4 5
metric2 1 2 3 4 Inf
metric3 1 2 3 4 -Inf
metric4 1 2 3 Inf -Inf
metric5 Inf 0 Inf
metric5b Inf 0 Inf
metric5c Inf Inf Inf -Inf
metric6 1 2 3 -Inf -Inf
metric6b -Inf 0 -Inf
metric6c -Inf -Inf -Inf Inf
metric7 1 2 -Inf -Inf Inf
metric8 9.988465674311579e+307 9.988465674311579e+307
metric9 -9.988465674311579e+307 -9.988465674311579e+307 -9.988465674311579e+307
metric10 -9.988465674311579e+307 9.988465674311579e+307
metric11 1 2 3 NaN NaN
eval instant at 55s avg_over_time(metric[1m])
{} 3
eval instant at 55s sum_over_time(metric[1m])/count_over_time(metric[1m])
{} 3
eval instant at 1m avg_over_time(metric2[1m])
{} Inf
eval instant at 1m sum_over_time(metric2[1m])/count_over_time(metric2[1m])
{} Inf
eval instant at 1m avg_over_time(metric3[1m])
{} -Inf
eval instant at 1m sum_over_time(metric3[1m])/count_over_time(metric3[1m])
{} -Inf
eval instant at 1m avg_over_time(metric4[1m])
{} NaN
eval instant at 1m sum_over_time(metric4[1m])/count_over_time(metric4[1m])
{} NaN
eval instant at 1m avg_over_time(metric5[1m])
{} Inf
eval instant at 1m sum_over_time(metric5[1m])/count_over_time(metric5[1m])
{} Inf
eval instant at 1m avg_over_time(metric5b[1m])
{} Inf
eval instant at 1m sum_over_time(metric5b[1m])/count_over_time(metric5b[1m])
{} Inf
eval instant at 1m avg_over_time(metric5c[1m])
{} NaN
eval instant at 1m sum_over_time(metric5c[1m])/count_over_time(metric5c[1m])
{} NaN
eval instant at 1m avg_over_time(metric6[1m])
{} -Inf
eval instant at 1m sum_over_time(metric6[1m])/count_over_time(metric6[1m])
{} -Inf
eval instant at 1m avg_over_time(metric6b[1m])
{} -Inf
eval instant at 1m sum_over_time(metric6b[1m])/count_over_time(metric6b[1m])
{} -Inf
eval instant at 1m avg_over_time(metric6c[1m])
{} NaN
eval instant at 1m sum_over_time(metric6c[1m])/count_over_time(metric6c[1m])
{} NaN
eval instant at 1m avg_over_time(metric7[1m])
{} NaN
eval instant at 1m sum_over_time(metric7[1m])/count_over_time(metric7[1m])
{} NaN
eval instant at 1m avg_over_time(metric8[1m])
{} 9.988465674311579e+307
# This overflows float64.
eval instant at 1m sum_over_time(metric8[2m])/count_over_time(metric8[2m])
{} +Inf
eval instant at 1m avg_over_time(metric9[1m])
{} -9.988465674311579e+307
# This overflows float64.
eval instant at 1m sum_over_time(metric9[1m])/count_over_time(metric9[1m])
{} -Inf
eval instant at 45s avg_over_time(metric10[1m])
{} 0
eval instant at 1m avg_over_time(metric10[2m])
{} 0
eval instant at 45s sum_over_time(metric10[1m])/count_over_time(metric10[1m])
{} 0
eval instant at 1m sum_over_time(metric10[2m])/count_over_time(metric10[2m])
{} 0
# NaN behavior.
eval instant at 20s avg_over_time(metric11[1m])
{} 2
eval instant at 30s avg_over_time(metric11[1m])
{} NaN
eval instant at 1m avg_over_time(metric11[1m])
{} NaN
eval instant at 1m sum_over_time(metric11[1m])/count_over_time(metric11[1m])
{} NaN
# Test if very big intermediate values cause loss of detail.
clear
load 10s
metric 1 1e100 1 -1e100
eval instant at 1m sum_over_time(metric[2m])
{} 2
eval instant at 1m avg_over_time(metric[2m])
{} 0.5
# Tests for stddev_over_time and stdvar_over_time.
clear
load 10s
metric 0 8 8 2 3
eval instant at 1m stdvar_over_time(metric[2m])
{} 10.56
eval instant at 1m stddev_over_time(metric[2m])
{} 3.249615
eval instant at 1m stddev_over_time((metric[2m]))
{} 3.249615
# Tests for stddev_over_time and stdvar_over_time #4927.
clear
load 10s
metric 1.5990505637277868 1.5990505637277868 1.5990505637277868
eval instant at 1m stdvar_over_time(metric[1m])
{} 0
eval instant at 1m stddev_over_time(metric[1m])
{} 0
# Tests for mad_over_time.
clear
load 10s
metric 4 6 2 1 999 1 2
eval instant at 70s mad_over_time(metric[70s])
{} 1
# Tests for quantile_over_time
clear
load 10s
data{test="two samples"} 0 1
data{test="three samples"} 0 1 2
data{test="uneven samples"} 0 1 4
eval instant at 1m quantile_over_time(0, data[2m])
{test="two samples"} 0
{test="three samples"} 0
{test="uneven samples"} 0
eval instant at 1m quantile_over_time(0.5, data[2m])
{test="two samples"} 0.5
{test="three samples"} 1
{test="uneven samples"} 1
eval instant at 1m quantile_over_time(0.75, data[2m])
{test="two samples"} 0.75
{test="three samples"} 1.5
{test="uneven samples"} 2.5
eval instant at 1m quantile_over_time(0.8, data[2m])
{test="two samples"} 0.8
{test="three samples"} 1.6
{test="uneven samples"} 2.8
eval instant at 1m quantile_over_time(1, data[2m])
{test="two samples"} 1
{test="three samples"} 2
{test="uneven samples"} 4
eval_warn instant at 1m quantile_over_time(-1, data[2m])
{test="two samples"} -Inf
{test="three samples"} -Inf
{test="uneven samples"} -Inf
eval_warn instant at 1m quantile_over_time(2, data[2m])
{test="two samples"} +Inf
{test="three samples"} +Inf
{test="uneven samples"} +Inf
eval_warn instant at 1m (quantile_over_time(2, (data[2m])))
{test="two samples"} +Inf
{test="three samples"} +Inf
{test="uneven samples"} +Inf
clear
# Test time-related functions.
load 5m
histogram_sample {{schema:0 sum:1 count:1}}
eval instant at 0m year()
{} 1970
eval instant at 1ms time()
0.001
eval instant at 50m time()
3000
eval instant at 0m year(vector(1136239445))
{} 2006
eval instant at 0m month()
{} 1
eval instant at 0m month(vector(1136239445))
{} 1
eval instant at 0m day_of_month()
{} 1
eval instant at 0m day_of_month(vector(1136239445))
{} 2
eval instant at 0m day_of_year()
{} 1
eval instant at 0m day_of_year(vector(1136239445))
{} 2
# Thursday.
eval instant at 0m day_of_week()
{} 4
eval instant at 0m day_of_week(vector(1136239445))
{} 1
eval instant at 0m hour()
{} 0
eval instant at 0m hour(vector(1136239445))
{} 22
eval instant at 0m minute()
{} 0
eval instant at 0m minute(vector(1136239445))
{} 4
# 2008-12-31 23:59:59 just before leap second.
eval instant at 0m year(vector(1230767999))
{} 2008
# 2009-01-01 00:00:00 just after leap second.
eval instant at 0m year(vector(1230768000))
{} 2009
# 2016-02-29 23:59:59 February 29th in leap year.
eval instant at 0m month(vector(1456790399)) + day_of_month(vector(1456790399)) / 100
{} 2.29
# 2016-03-01 00:00:00 March 1st in leap year.
eval instant at 0m month(vector(1456790400)) + day_of_month(vector(1456790400)) / 100
{} 3.01
# 2016-12-31 13:37:00 366th day in leap year.
eval instant at 0m day_of_year(vector(1483191420))
{} 366
# 2022-12-31 13:37:00 365th day in non-leap year.
eval instant at 0m day_of_year(vector(1672493820))
{} 365
# February 1st 2016 in leap year.
eval instant at 0m days_in_month(vector(1454284800))
{} 29
# February 1st 2017 not in leap year.
eval instant at 0m days_in_month(vector(1485907200))
{} 28
# Test for histograms.
eval instant at 0m day_of_month(histogram_sample)
eval instant at 0m day_of_week(histogram_sample)
eval instant at 0m day_of_year(histogram_sample)
eval instant at 0m days_in_month(histogram_sample)
eval instant at 0m hour(histogram_sample)
eval instant at 0m minute(histogram_sample)
eval instant at 0m month(histogram_sample)
eval instant at 0m year(histogram_sample)
clear
# Test duplicate labelset in promql output.
load 5m
testmetric1{src="a",dst="b"} 0
testmetric2{src="a",dst="b"} 1
eval_fail instant at 0m changes({__name__=~'testmetric1|testmetric2'}[5m])
# Tests for *_over_time
clear
load 10s
data{type="numbers"} 2 0 3
data{type="some_nan"} 2 0 NaN
data{type="some_nan2"} 2 NaN 1
data{type="some_nan3"} NaN 0 1
data{type="only_nan"} NaN NaN NaN
eval instant at 1m min_over_time(data[2m])
{type="numbers"} 0
{type="some_nan"} 0
{type="some_nan2"} 1
{type="some_nan3"} 0
{type="only_nan"} NaN
eval instant at 1m max_over_time(data[2m])
{type="numbers"} 3
{type="some_nan"} 2
{type="some_nan2"} 2
{type="some_nan3"} 1
{type="only_nan"} NaN
eval instant at 1m last_over_time(data[2m])
data{type="numbers"} 3
data{type="some_nan"} NaN
data{type="some_nan2"} 1
data{type="some_nan3"} 1
data{type="only_nan"} NaN
clear
# Test for absent()
eval instant at 50m absent(nonexistent)
{} 1
eval instant at 50m absent(nonexistent{job="testjob", instance="testinstance", method=~".x"})
{instance="testinstance", job="testjob"} 1
eval instant at 50m absent(nonexistent{job="testjob",job="testjob2",foo="bar"})
{foo="bar"} 1
eval instant at 50m absent(nonexistent{job="testjob",job="testjob2",job="three",foo="bar"})
{foo="bar"} 1
eval instant at 50m absent(nonexistent{job="testjob",job=~"testjob2",foo="bar"})
{foo="bar"} 1
clear
# Don't return anything when there's something there.
load 5m
http_requests{job="api-server", instance="0", group="production"} 0+10x10
eval instant at 50m absent(http_requests)
eval instant at 50m absent(sum(http_requests))
clear
eval instant at 50m absent(sum(nonexistent{job="testjob", instance="testinstance"}))
{} 1
eval instant at 50m absent(max(nonexistant))
{} 1
eval instant at 50m absent(nonexistant > 1)
{} 1
eval instant at 50m absent(a + b)
{} 1
eval instant at 50m absent(a and b)
{} 1
eval instant at 50m absent(rate(nonexistant[5m]))
{} 1
clear
# Testdata for absent_over_time()
eval instant at 1m absent_over_time(http_requests_total[5m])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo"}[5m])
{handler="/foo"} 1
eval instant at 1m absent_over_time(http_requests_total{handler!="/foo"}[5m])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo", handler="/bar", handler="/foobar"}[5m])
{} 1
eval instant at 1m absent_over_time(rate(nonexistant[5m])[5m:])
{} 1
eval instant at 1m absent_over_time(http_requests_total{handler="/foo", handler="/bar", instance="127.0.0.1"}[5m])
{instance="127.0.0.1"} 1
load 1m
http_requests_total{path="/foo",instance="127.0.0.1",job="httpd"} 1+1x10
http_requests_total{path="/bar",instance="127.0.0.1",job="httpd"} 1+1x10
httpd_handshake_failures_total{instance="127.0.0.1",job="node"} 1+1x15
httpd_log_lines_total{instance="127.0.0.1",job="node"} 1
ssl_certificate_expiry_seconds{job="ingress"} NaN NaN NaN NaN NaN
eval instant at 5m absent_over_time(http_requests_total[5m])
eval instant at 5m absent_over_time(rate(http_requests_total[5m])[5m:1m])
eval instant at 0m absent_over_time(httpd_log_lines_total[30s])
eval instant at 1m absent_over_time(httpd_log_lines_total[30s])
{} 1
eval instant at 15m absent_over_time(http_requests_total[5m])
{} 1
eval instant at 15m absent_over_time(http_requests_total[10m])
eval instant at 16m absent_over_time(http_requests_total[6m])
{} 1
eval instant at 16m absent_over_time(http_requests_total[16m])
eval instant at 16m absent_over_time(httpd_handshake_failures_total[1m])
{} 1
eval instant at 16m absent_over_time(httpd_handshake_failures_total[2m])
eval instant at 16m absent_over_time({instance="127.0.0.1"}[5m])
eval instant at 21m absent_over_time({instance="127.0.0.1"}[5m])
{instance="127.0.0.1"} 1
eval instant at 21m absent_over_time({instance="127.0.0.1"}[20m])
eval instant at 21m absent_over_time({job="grok"}[20m])
{job="grok"} 1
eval instant at 30m absent_over_time({instance="127.0.0.1"}[5m:5s])
{} 1
eval instant at 5m absent_over_time({job="ingress"}[4m])
eval instant at 10m absent_over_time({job="ingress"}[4m])
{job="ingress"} 1
clear
# Testdata for present_over_time()
eval instant at 1m present_over_time(http_requests_total[5m])
eval instant at 1m present_over_time(http_requests_total{handler="/foo"}[5m])
eval instant at 1m present_over_time(http_requests_total{handler!="/foo"}[5m])
eval instant at 1m present_over_time(http_requests_total{handler="/foo", handler="/bar", handler="/foobar"}[5m])
eval instant at 1m present_over_time(rate(nonexistant[5m])[5m:])
eval instant at 1m present_over_time(http_requests_total{handler="/foo", handler="/bar", instance="127.0.0.1"}[5m])
load 1m
http_requests_total{path="/foo",instance="127.0.0.1",job="httpd"} 1+1x10
http_requests_total{path="/bar",instance="127.0.0.1",job="httpd"} 1+1x10
httpd_handshake_failures_total{instance="127.0.0.1",job="node"} 1+1x15
httpd_log_lines_total{instance="127.0.0.1",job="node"} 1
ssl_certificate_expiry_seconds{job="ingress"} NaN NaN NaN NaN NaN
eval instant at 5m present_over_time(http_requests_total[5m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 5m present_over_time(rate(http_requests_total[5m])[5m:1m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 0m present_over_time(httpd_log_lines_total[30s])
{instance="127.0.0.1",job="node"} 1
eval instant at 1m present_over_time(httpd_log_lines_total[30s])
eval instant at 15m present_over_time(http_requests_total[5m])
eval instant at 15m present_over_time(http_requests_total[10m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 16m present_over_time(http_requests_total[6m])
eval instant at 16m present_over_time(http_requests_total[16m])
{instance="127.0.0.1", job="httpd", path="/bar"} 1
{instance="127.0.0.1", job="httpd", path="/foo"} 1
eval instant at 16m present_over_time(httpd_handshake_failures_total[1m])
eval instant at 16m present_over_time({instance="127.0.0.1"}[5m])
{instance="127.0.0.1",job="node"} 1
eval instant at 21m present_over_time({job="grok"}[20m])
eval instant at 30m present_over_time({instance="127.0.0.1"}[5m:5s])
eval instant at 5m present_over_time({job="ingress"}[4m])
{job="ingress"} 1
eval instant at 10m present_over_time({job="ingress"}[4m])
clear
# Testing exp() sqrt() log2() log10() ln()
load 5m
exp_root_log{l="x"} 10
exp_root_log{l="y"} 20
exp_root_log_h{l="z"} {{schema:1 sum:1 count:1}}
eval instant at 1m exp(exp_root_log)
{l="x"} 22026.465794806718
{l="y"} 485165195.4097903
eval instant at 1m exp({__name__=~"exp_root_log(_h)?"})
{l="x"} 22026.465794806718
{l="y"} 485165195.4097903
eval instant at 1m exp(exp_root_log - 10)
{l="y"} 22026.465794806718
{l="x"} 1
eval instant at 1m exp(exp_root_log - 20)
{l="x"} 4.5399929762484854e-05
{l="y"} 1
eval instant at 1m ln(exp_root_log)
{l="x"} 2.302585092994046
{l="y"} 2.995732273553991
eval instant at 1m ln({__name__=~"exp_root_log(_h)?"})
{l="x"} 2.302585092994046
{l="y"} 2.995732273553991
eval instant at 1m ln(exp_root_log - 10)
{l="y"} 2.302585092994046
{l="x"} -Inf
eval instant at 1m ln(exp_root_log - 20)
{l="y"} -Inf
{l="x"} NaN
eval instant at 1m exp(ln(exp_root_log))
{l="y"} 20
{l="x"} 10
eval instant at 1m exp(ln({__name__=~"exp_root_log(_h)?"}))
{l="y"} 20
{l="x"} 10
eval instant at 1m sqrt(exp_root_log)
{l="x"} 3.1622776601683795
{l="y"} 4.47213595499958
eval instant at 1m sqrt({__name__=~"exp_root_log(_h)?"})
{l="x"} 3.1622776601683795
{l="y"} 4.47213595499958
eval instant at 1m log2(exp_root_log)
{l="x"} 3.3219280948873626
{l="y"} 4.321928094887363
eval instant at 1m log2({__name__=~"exp_root_log(_h)?"})
{l="x"} 3.3219280948873626
{l="y"} 4.321928094887363
eval instant at 1m log2(exp_root_log - 10)
{l="y"} 3.3219280948873626
{l="x"} -Inf
eval instant at 1m log2(exp_root_log - 20)
{l="x"} NaN
{l="y"} -Inf
eval instant at 1m log10(exp_root_log)
{l="x"} 1
{l="y"} 1.301029995663981
eval instant at 1m log10({__name__=~"exp_root_log(_h)?"})
{l="x"} 1
{l="y"} 1.301029995663981
eval instant at 1m log10(exp_root_log - 10)
{l="y"} 1
{l="x"} -Inf
eval instant at 1m log10(exp_root_log - 20)
{l="x"} NaN
{l="y"} -Inf
clear
# Test that timestamp() handles the scenario where there are more steps than samples.
load 1m
metric 0+1x1000
# We expect the value to be 0 for t=0s to t=59s (inclusive), then 60 for t=60s and t=61s.
eval range from 0 to 61s step 1s timestamp(metric)
{} 0x59 60 60
clear
# Check round with mixed data types
load 1m
mixed_metric {{schema:0 sum:5 count:4 buckets:[1 2 1]}} 1 2 3 {{schema:0 sum:5 count:4 buckets:[1 2 1]}} {{schema:0 sum:8 count:6 buckets:[1 4 1]}}
eval range from 0 to 5m step 1m round(mixed_metric)
{} _ 1 2 3