prometheus/tsdb/db.go
Ganesh Vernekar 4df2f2432b Additionally wrap WBL replay error (#12406)
* Additionally wrap WBL replay error

Although WBL replay is already wrapped with errLoadWbl,
there are other errors that can happen during a WBL replay.
We should not try to repair WAL in those cases.

This commit additionally wraps the final error in Head.Init again
with errLoadWbl so that WBL replay errors can be identified properly.

Signed-off-by: Ganesh Vernekar <ganeshvern@gmail.com>
Signed-off-by: Jesus Vazquez <jesusvzpg@gmail.com>
Co-authored-by: Jesus Vazquez <jesusvzpg@gmail.com>
Signed-off-by: Levi Harrison <git@leviharrison.dev>
2023-10-15 13:47:42 -04:00

2181 lines
65 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tsdb implements a time series storage for float64 sample data.
package tsdb
import (
"context"
"fmt"
"io"
"io/fs"
"math"
"os"
"path/filepath"
"strconv"
"strings"
"sync"
"time"
"github.com/go-kit/log"
"github.com/go-kit/log/level"
"github.com/oklog/ulid"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"go.uber.org/atomic"
"golang.org/x/exp/slices"
"golang.org/x/sync/errgroup"
"github.com/prometheus/prometheus/config"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
tsdb_errors "github.com/prometheus/prometheus/tsdb/errors"
"github.com/prometheus/prometheus/tsdb/fileutil"
_ "github.com/prometheus/prometheus/tsdb/goversion" // Load the package into main to make sure minium Go version is met.
"github.com/prometheus/prometheus/tsdb/tsdbutil"
"github.com/prometheus/prometheus/tsdb/wlog"
)
const (
// Default duration of a block in milliseconds.
DefaultBlockDuration = int64(2 * time.Hour / time.Millisecond)
// Block dir suffixes to make deletion and creation operations atomic.
// We decided to do suffixes instead of creating meta.json as last (or delete as first) one,
// because in error case you still can recover meta.json from the block content within local TSDB dir.
// TODO(bwplotka): TSDB can end up with various .tmp files (e.g meta.json.tmp, WAL or segment tmp file. Think
// about removing those too on start to save space. Currently only blocks tmp dirs are removed.
tmpForDeletionBlockDirSuffix = ".tmp-for-deletion"
tmpForCreationBlockDirSuffix = ".tmp-for-creation"
// Pre-2.21 tmp dir suffix, used in clean-up functions.
tmpLegacy = ".tmp"
)
// ErrNotReady is returned if the underlying storage is not ready yet.
var ErrNotReady = errors.New("TSDB not ready")
// DefaultOptions used for the DB. They are reasonable for setups using
// millisecond precision timestamps.
func DefaultOptions() *Options {
return &Options{
WALSegmentSize: wlog.DefaultSegmentSize,
MaxBlockChunkSegmentSize: chunks.DefaultChunkSegmentSize,
RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond),
MinBlockDuration: DefaultBlockDuration,
MaxBlockDuration: DefaultBlockDuration,
NoLockfile: false,
AllowOverlappingCompaction: true,
SamplesPerChunk: DefaultSamplesPerChunk,
WALCompression: wlog.CompressionNone,
StripeSize: DefaultStripeSize,
HeadChunksWriteBufferSize: chunks.DefaultWriteBufferSize,
IsolationDisabled: defaultIsolationDisabled,
HeadChunksWriteQueueSize: chunks.DefaultWriteQueueSize,
OutOfOrderCapMax: DefaultOutOfOrderCapMax,
}
}
// Options of the DB storage.
type Options struct {
// Segments (wal files) max size.
// WALSegmentSize = 0, segment size is default size.
// WALSegmentSize > 0, segment size is WALSegmentSize.
// WALSegmentSize < 0, wal is disabled.
WALSegmentSize int
// MaxBlockChunkSegmentSize is the max size of block chunk segment files.
// MaxBlockChunkSegmentSize = 0, chunk segment size is default size.
// MaxBlockChunkSegmentSize > 0, chunk segment size is MaxBlockChunkSegmentSize.
MaxBlockChunkSegmentSize int64
// Duration of persisted data to keep.
// Unit agnostic as long as unit is consistent with MinBlockDuration and MaxBlockDuration.
// Typically it is in milliseconds.
RetentionDuration int64
// Maximum number of bytes in blocks to be retained.
// 0 or less means disabled.
// NOTE: For proper storage calculations need to consider
// the size of the WAL folder which is not added when calculating
// the current size of the database.
MaxBytes int64
// NoLockfile disables creation and consideration of a lock file.
NoLockfile bool
// Compaction of overlapping blocks are allowed if AllowOverlappingCompaction is true.
// This is an optional flag for overlapping blocks.
// The reason why this flag exists is because there are various users of the TSDB
// that do not want vertical compaction happening on ingest time. Instead,
// they'd rather keep overlapping blocks and let another component do the overlapping compaction later.
// For Prometheus, this will always be true.
AllowOverlappingCompaction bool
// WALCompression configures the compression type to use on records in the WAL.
WALCompression wlog.CompressionType
// Maximum number of CPUs that can simultaneously processes WAL replay.
// If it is <=0, then GOMAXPROCS is used.
WALReplayConcurrency int
// StripeSize is the size in entries of the series hash map. Reducing the size will save memory but impact performance.
StripeSize int
// The timestamp range of head blocks after which they get persisted.
// It's the minimum duration of any persisted block.
// Unit agnostic as long as unit is consistent with RetentionDuration and MaxBlockDuration.
// Typically it is in milliseconds.
MinBlockDuration int64
// The maximum timestamp range of compacted blocks.
// Unit agnostic as long as unit is consistent with MinBlockDuration and RetentionDuration.
// Typically it is in milliseconds.
MaxBlockDuration int64
// HeadChunksWriteBufferSize configures the write buffer size used by the head chunks mapper.
HeadChunksWriteBufferSize int
// HeadChunksWriteQueueSize configures the size of the chunk write queue used in the head chunks mapper.
HeadChunksWriteQueueSize int
// SamplesPerChunk configures the target number of samples per chunk.
SamplesPerChunk int
// SeriesLifecycleCallback specifies a list of callbacks that will be called during a lifecycle of a series.
// It is always a no-op in Prometheus and mainly meant for external users who import TSDB.
SeriesLifecycleCallback SeriesLifecycleCallback
// BlocksToDelete is a function which returns the blocks which can be deleted.
// It is always the default time and size based retention in Prometheus and
// mainly meant for external users who import TSDB.
BlocksToDelete BlocksToDeleteFunc
// Enables the in memory exemplar storage.
EnableExemplarStorage bool
// Enables the snapshot of in-memory chunks on shutdown. This makes restarts faster.
EnableMemorySnapshotOnShutdown bool
// MaxExemplars sets the size, in # of exemplars stored, of the single circular buffer used to store exemplars in memory.
// See tsdb/exemplar.go, specifically the CircularExemplarStorage struct and it's constructor NewCircularExemplarStorage.
MaxExemplars int64
// Disables isolation between reads and in-flight appends.
IsolationDisabled bool
// EnableNativeHistograms enables the ingestion of native histograms.
EnableNativeHistograms bool
// OutOfOrderTimeWindow specifies how much out of order is allowed, if any.
// This can change during run-time, so this value from here should only be used
// while initialising.
OutOfOrderTimeWindow int64
// OutOfOrderCapMax is maximum capacity for OOO chunks (in samples).
// If it is <=0, the default value is assumed.
OutOfOrderCapMax int64
}
type BlocksToDeleteFunc func(blocks []*Block) map[ulid.ULID]struct{}
// DB handles reads and writes of time series falling into
// a hashed partition of a seriedb.
type DB struct {
dir string
locker *tsdbutil.DirLocker
logger log.Logger
metrics *dbMetrics
opts *Options
chunkPool chunkenc.Pool
compactor Compactor
blocksToDelete BlocksToDeleteFunc
// Mutex for that must be held when modifying the general block layout.
mtx sync.RWMutex
blocks []*Block
head *Head
compactc chan struct{}
donec chan struct{}
stopc chan struct{}
// cmtx ensures that compactions and deletions don't run simultaneously.
cmtx sync.Mutex
// autoCompactMtx ensures that no compaction gets triggered while
// changing the autoCompact var.
autoCompactMtx sync.Mutex
autoCompact bool
// Cancel a running compaction when a shutdown is initiated.
compactCancel context.CancelFunc
// oooWasEnabled is true if out of order support was enabled at least one time
// during the time TSDB was up. In which case we need to keep supporting
// out-of-order compaction and vertical queries.
oooWasEnabled atomic.Bool
writeNotified wlog.WriteNotified
registerer prometheus.Registerer
}
type dbMetrics struct {
loadedBlocks prometheus.GaugeFunc
symbolTableSize prometheus.GaugeFunc
reloads prometheus.Counter
reloadsFailed prometheus.Counter
compactionsFailed prometheus.Counter
compactionsTriggered prometheus.Counter
compactionsSkipped prometheus.Counter
sizeRetentionCount prometheus.Counter
timeRetentionCount prometheus.Counter
startTime prometheus.GaugeFunc
tombCleanTimer prometheus.Histogram
blocksBytes prometheus.Gauge
maxBytes prometheus.Gauge
}
func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics {
m := &dbMetrics{}
m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_blocks_loaded",
Help: "Number of currently loaded data blocks",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
return float64(len(db.blocks))
})
m.symbolTableSize = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_symbol_table_size_bytes",
Help: "Size of symbol table in memory for loaded blocks",
}, func() float64 {
db.mtx.RLock()
blocks := db.blocks
db.mtx.RUnlock()
symTblSize := uint64(0)
for _, b := range blocks {
symTblSize += b.GetSymbolTableSize()
}
return float64(symTblSize)
})
m.reloads = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_total",
Help: "Number of times the database reloaded block data from disk.",
})
m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_reloads_failures_total",
Help: "Number of times the database failed to reloadBlocks block data from disk.",
})
m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_triggered_total",
Help: "Total number of triggered compactions for the partition.",
})
m.compactionsFailed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_failed_total",
Help: "Total number of compactions that failed for the partition.",
})
m.timeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_time_retentions_total",
Help: "The number of times that blocks were deleted because the maximum time limit was exceeded.",
})
m.compactionsSkipped = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_compactions_skipped_total",
Help: "Total number of skipped compactions due to disabled auto compaction.",
})
m.startTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{
Name: "prometheus_tsdb_lowest_timestamp",
Help: "Lowest timestamp value stored in the database. The unit is decided by the library consumer.",
}, func() float64 {
db.mtx.RLock()
defer db.mtx.RUnlock()
if len(db.blocks) == 0 {
return float64(db.head.MinTime())
}
return float64(db.blocks[0].meta.MinTime)
})
m.tombCleanTimer = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "prometheus_tsdb_tombstone_cleanup_seconds",
Help: "The time taken to recompact blocks to remove tombstones.",
})
m.blocksBytes = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_storage_blocks_bytes",
Help: "The number of bytes that are currently used for local storage by all blocks.",
})
m.maxBytes = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "prometheus_tsdb_retention_limit_bytes",
Help: "Max number of bytes to be retained in the tsdb blocks, configured 0 means disabled",
})
m.sizeRetentionCount = prometheus.NewCounter(prometheus.CounterOpts{
Name: "prometheus_tsdb_size_retentions_total",
Help: "The number of times that blocks were deleted because the maximum number of bytes was exceeded.",
})
if r != nil {
r.MustRegister(
m.loadedBlocks,
m.symbolTableSize,
m.reloads,
m.reloadsFailed,
m.compactionsFailed,
m.compactionsTriggered,
m.compactionsSkipped,
m.sizeRetentionCount,
m.timeRetentionCount,
m.startTime,
m.tombCleanTimer,
m.blocksBytes,
m.maxBytes,
)
}
return m
}
// DBStats contains statistics about the DB separated by component (eg. head).
// They are available before the DB has finished initializing.
type DBStats struct {
Head *HeadStats
}
// NewDBStats returns a new DBStats object initialized using the
// new function from each component.
func NewDBStats() *DBStats {
return &DBStats{
Head: NewHeadStats(),
}
}
// ErrClosed is returned when the db is closed.
var ErrClosed = errors.New("db already closed")
// DBReadOnly provides APIs for read only operations on a database.
// Current implementation doesn't support concurrency so
// all API calls should happen in the same go routine.
type DBReadOnly struct {
logger log.Logger
dir string
closers []io.Closer
closed chan struct{}
}
// OpenDBReadOnly opens DB in the given directory for read only operations.
func OpenDBReadOnly(dir string, l log.Logger) (*DBReadOnly, error) {
if _, err := os.Stat(dir); err != nil {
return nil, errors.Wrap(err, "opening the db dir")
}
if l == nil {
l = log.NewNopLogger()
}
return &DBReadOnly{
logger: l,
dir: dir,
closed: make(chan struct{}),
}, nil
}
// FlushWAL creates a new block containing all data that's currently in the memory buffer/WAL.
// Samples that are in existing blocks will not be written to the new block.
// Note that if the read only database is running concurrently with a
// writable database then writing the WAL to the database directory can race.
func (db *DBReadOnly) FlushWAL(dir string) (returnErr error) {
blockReaders, err := db.Blocks()
if err != nil {
return errors.Wrap(err, "read blocks")
}
maxBlockTime := int64(math.MinInt64)
if len(blockReaders) > 0 {
maxBlockTime = blockReaders[len(blockReaders)-1].Meta().MaxTime
}
w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal"))
if err != nil {
return err
}
var wbl *wlog.WL
wblDir := filepath.Join(db.dir, wlog.WblDirName)
if _, err := os.Stat(wblDir); !os.IsNotExist(err) {
wbl, err = wlog.Open(db.logger, wblDir)
if err != nil {
return err
}
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err := NewHead(nil, db.logger, w, wbl, opts, NewHeadStats())
if err != nil {
return err
}
defer func() {
returnErr = tsdb_errors.NewMulti(
returnErr,
errors.Wrap(head.Close(), "closing Head"),
).Err()
}()
// Set the min valid time for the ingested wal samples
// to be no lower than the maxt of the last block.
if err := head.Init(maxBlockTime); err != nil {
return errors.Wrap(err, "read WAL")
}
mint := head.MinTime()
maxt := head.MaxTime()
rh := NewRangeHead(head, mint, maxt)
compactor, err := NewLeveledCompactor(
context.Background(),
nil,
db.logger,
ExponentialBlockRanges(DefaultOptions().MinBlockDuration, 3, 5),
chunkenc.NewPool(),
nil,
)
if err != nil {
return errors.Wrap(err, "create leveled compactor")
}
// Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime).
// Because of this block intervals are always +1 than the total samples it includes.
_, err = compactor.Write(dir, rh, mint, maxt+1, nil)
return errors.Wrap(err, "writing WAL")
}
func (db *DBReadOnly) loadDataAsQueryable(maxt int64) (storage.SampleAndChunkQueryable, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
blockReaders, err := db.Blocks()
if err != nil {
return nil, err
}
blocks := make([]*Block, len(blockReaders))
for i, b := range blockReaders {
b, ok := b.(*Block)
if !ok {
return nil, errors.New("unable to convert a read only block to a normal block")
}
blocks[i] = b
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err := NewHead(nil, db.logger, nil, nil, opts, NewHeadStats())
if err != nil {
return nil, err
}
maxBlockTime := int64(math.MinInt64)
if len(blocks) > 0 {
maxBlockTime = blocks[len(blocks)-1].Meta().MaxTime
}
// Also add the WAL if the current blocks don't cover the requests time range.
if maxBlockTime <= maxt {
if err := head.Close(); err != nil {
return nil, err
}
w, err := wlog.Open(db.logger, filepath.Join(db.dir, "wal"))
if err != nil {
return nil, err
}
var wbl *wlog.WL
wblDir := filepath.Join(db.dir, wlog.WblDirName)
if _, err := os.Stat(wblDir); !os.IsNotExist(err) {
wbl, err = wlog.Open(db.logger, wblDir)
if err != nil {
return nil, err
}
}
opts := DefaultHeadOptions()
opts.ChunkDirRoot = db.dir
head, err = NewHead(nil, db.logger, w, wbl, opts, NewHeadStats())
if err != nil {
return nil, err
}
// Set the min valid time for the ingested wal samples
// to be no lower than the maxt of the last block.
if err := head.Init(maxBlockTime); err != nil {
return nil, errors.Wrap(err, "read WAL")
}
// Set the wal to nil to disable all wal operations.
// This is mainly to avoid blocking when closing the head.
head.wal = nil
}
db.closers = append(db.closers, head)
return &DB{
dir: db.dir,
logger: db.logger,
blocks: blocks,
head: head,
}, nil
}
// Querier loads the blocks and wal and returns a new querier over the data partition for the given time range.
// Current implementation doesn't support multiple Queriers.
func (db *DBReadOnly) Querier(mint, maxt int64) (storage.Querier, error) {
q, err := db.loadDataAsQueryable(maxt)
if err != nil {
return nil, err
}
return q.Querier(mint, maxt)
}
// ChunkQuerier loads blocks and the wal and returns a new chunk querier over the data partition for the given time range.
// Current implementation doesn't support multiple ChunkQueriers.
func (db *DBReadOnly) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) {
q, err := db.loadDataAsQueryable(maxt)
if err != nil {
return nil, err
}
return q.ChunkQuerier(mint, maxt)
}
// Blocks returns a slice of block readers for persisted blocks.
func (db *DBReadOnly) Blocks() ([]BlockReader, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
loadable, corrupted, err := openBlocks(db.logger, db.dir, nil, nil)
if err != nil {
return nil, err
}
// Corrupted blocks that have been superseded by a loadable block can be safely ignored.
for _, block := range loadable {
for _, b := range block.Meta().Compaction.Parents {
delete(corrupted, b.ULID)
}
}
if len(corrupted) > 0 {
for _, b := range loadable {
if err := b.Close(); err != nil {
level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", b)
}
}
errs := tsdb_errors.NewMulti()
for ulid, err := range corrupted {
errs.Add(errors.Wrapf(err, "corrupted block %s", ulid.String()))
}
return nil, errs.Err()
}
if len(loadable) == 0 {
return nil, nil
}
slices.SortFunc(loadable, func(a, b *Block) int {
return int(a.Meta().MinTime - b.Meta().MinTime)
})
blockMetas := make([]BlockMeta, 0, len(loadable))
for _, b := range loadable {
blockMetas = append(blockMetas, b.Meta())
}
if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 {
level.Warn(db.logger).Log("msg", "Overlapping blocks found during opening", "detail", overlaps.String())
}
// Close all previously open readers and add the new ones to the cache.
for _, closer := range db.closers {
closer.Close()
}
blockClosers := make([]io.Closer, len(loadable))
blockReaders := make([]BlockReader, len(loadable))
for i, b := range loadable {
blockClosers[i] = b
blockReaders[i] = b
}
db.closers = blockClosers
return blockReaders, nil
}
// LastBlockID returns the BlockID of latest block.
func (db *DBReadOnly) LastBlockID() (string, error) {
entries, err := os.ReadDir(db.dir)
if err != nil {
return "", err
}
max := uint64(0)
lastBlockID := ""
for _, e := range entries {
// Check if dir is a block dir or not.
dirName := e.Name()
ulidObj, err := ulid.ParseStrict(dirName)
if err != nil {
continue // Not a block dir.
}
timestamp := ulidObj.Time()
if timestamp > max {
max = timestamp
lastBlockID = dirName
}
}
if lastBlockID == "" {
return "", errors.New("no blocks found")
}
return lastBlockID, nil
}
// Block returns a block reader by given block id.
func (db *DBReadOnly) Block(blockID string) (BlockReader, error) {
select {
case <-db.closed:
return nil, ErrClosed
default:
}
_, err := os.Stat(filepath.Join(db.dir, blockID))
if os.IsNotExist(err) {
return nil, errors.Errorf("invalid block ID %s", blockID)
}
block, err := OpenBlock(db.logger, filepath.Join(db.dir, blockID), nil)
if err != nil {
return nil, err
}
db.closers = append(db.closers, block)
return block, nil
}
// Close all block readers.
func (db *DBReadOnly) Close() error {
select {
case <-db.closed:
return ErrClosed
default:
}
close(db.closed)
return tsdb_errors.CloseAll(db.closers)
}
// Open returns a new DB in the given directory. If options are empty, DefaultOptions will be used.
func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, stats *DBStats) (db *DB, err error) {
var rngs []int64
opts, rngs = validateOpts(opts, nil)
return open(dir, l, r, opts, rngs, stats)
}
func validateOpts(opts *Options, rngs []int64) (*Options, []int64) {
if opts == nil {
opts = DefaultOptions()
}
if opts.StripeSize <= 0 {
opts.StripeSize = DefaultStripeSize
}
if opts.HeadChunksWriteBufferSize <= 0 {
opts.HeadChunksWriteBufferSize = chunks.DefaultWriteBufferSize
}
if opts.HeadChunksWriteQueueSize < 0 {
opts.HeadChunksWriteQueueSize = chunks.DefaultWriteQueueSize
}
if opts.SamplesPerChunk <= 0 {
opts.SamplesPerChunk = DefaultSamplesPerChunk
}
if opts.MaxBlockChunkSegmentSize <= 0 {
opts.MaxBlockChunkSegmentSize = chunks.DefaultChunkSegmentSize
}
if opts.MinBlockDuration <= 0 {
opts.MinBlockDuration = DefaultBlockDuration
}
if opts.MinBlockDuration > opts.MaxBlockDuration {
opts.MaxBlockDuration = opts.MinBlockDuration
}
if opts.OutOfOrderCapMax <= 0 {
opts.OutOfOrderCapMax = DefaultOutOfOrderCapMax
}
if opts.OutOfOrderTimeWindow < 0 {
opts.OutOfOrderTimeWindow = 0
}
if len(rngs) == 0 {
// Start with smallest block duration and create exponential buckets until the exceed the
// configured maximum block duration.
rngs = ExponentialBlockRanges(opts.MinBlockDuration, 10, 3)
}
return opts, rngs
}
// open returns a new DB in the given directory.
// It initializes the lockfile, WAL, compactor, and Head (by replaying the WAL), and runs the database.
// It is not safe to open more than one DB in the same directory.
func open(dir string, l log.Logger, r prometheus.Registerer, opts *Options, rngs []int64, stats *DBStats) (_ *DB, returnedErr error) {
if err := os.MkdirAll(dir, 0o777); err != nil {
return nil, err
}
if l == nil {
l = log.NewNopLogger()
}
if stats == nil {
stats = NewDBStats()
}
for i, v := range rngs {
if v > opts.MaxBlockDuration {
rngs = rngs[:i]
break
}
}
// Fixup bad format written by Prometheus 2.1.
if err := repairBadIndexVersion(l, dir); err != nil {
return nil, errors.Wrap(err, "repair bad index version")
}
walDir := filepath.Join(dir, "wal")
wblDir := filepath.Join(dir, wlog.WblDirName)
// Migrate old WAL if one exists.
if err := MigrateWAL(l, walDir); err != nil {
return nil, errors.Wrap(err, "migrate WAL")
}
for _, tmpDir := range []string{walDir, dir} {
// Remove tmp dirs.
if err := removeBestEffortTmpDirs(l, tmpDir); err != nil {
return nil, errors.Wrap(err, "remove tmp dirs")
}
}
db := &DB{
dir: dir,
logger: l,
opts: opts,
compactc: make(chan struct{}, 1),
donec: make(chan struct{}),
stopc: make(chan struct{}),
autoCompact: true,
chunkPool: chunkenc.NewPool(),
blocksToDelete: opts.BlocksToDelete,
registerer: r,
}
defer func() {
// Close files if startup fails somewhere.
if returnedErr == nil {
return
}
close(db.donec) // DB is never run if it was an error, so close this channel here.
returnedErr = tsdb_errors.NewMulti(
returnedErr,
errors.Wrap(db.Close(), "close DB after failed startup"),
).Err()
}()
if db.blocksToDelete == nil {
db.blocksToDelete = DefaultBlocksToDelete(db)
}
var err error
db.locker, err = tsdbutil.NewDirLocker(dir, "tsdb", db.logger, r)
if err != nil {
return nil, err
}
if !opts.NoLockfile {
if err := db.locker.Lock(); err != nil {
return nil, err
}
}
ctx, cancel := context.WithCancel(context.Background())
db.compactor, err = NewLeveledCompactorWithChunkSize(ctx, r, l, rngs, db.chunkPool, opts.MaxBlockChunkSegmentSize, nil)
if err != nil {
cancel()
return nil, errors.Wrap(err, "create leveled compactor")
}
db.compactCancel = cancel
var wal, wbl *wlog.WL
segmentSize := wlog.DefaultSegmentSize
// Wal is enabled.
if opts.WALSegmentSize >= 0 {
// Wal is set to a custom size.
if opts.WALSegmentSize > 0 {
segmentSize = opts.WALSegmentSize
}
wal, err = wlog.NewSize(l, r, walDir, segmentSize, opts.WALCompression)
if err != nil {
return nil, err
}
// Check if there is a WBL on disk, in which case we should replay that data.
wblSize, err := fileutil.DirSize(wblDir)
if err != nil && !os.IsNotExist(err) {
return nil, err
}
if opts.OutOfOrderTimeWindow > 0 || wblSize > 0 {
wbl, err = wlog.NewSize(l, r, wblDir, segmentSize, opts.WALCompression)
if err != nil {
return nil, err
}
}
}
db.oooWasEnabled.Store(opts.OutOfOrderTimeWindow > 0)
headOpts := DefaultHeadOptions()
headOpts.ChunkRange = rngs[0]
headOpts.ChunkDirRoot = dir
headOpts.ChunkPool = db.chunkPool
headOpts.ChunkWriteBufferSize = opts.HeadChunksWriteBufferSize
headOpts.ChunkWriteQueueSize = opts.HeadChunksWriteQueueSize
headOpts.SamplesPerChunk = opts.SamplesPerChunk
headOpts.StripeSize = opts.StripeSize
headOpts.SeriesCallback = opts.SeriesLifecycleCallback
headOpts.EnableExemplarStorage = opts.EnableExemplarStorage
headOpts.MaxExemplars.Store(opts.MaxExemplars)
headOpts.EnableMemorySnapshotOnShutdown = opts.EnableMemorySnapshotOnShutdown
headOpts.EnableNativeHistograms.Store(opts.EnableNativeHistograms)
headOpts.OutOfOrderTimeWindow.Store(opts.OutOfOrderTimeWindow)
headOpts.OutOfOrderCapMax.Store(opts.OutOfOrderCapMax)
if opts.WALReplayConcurrency > 0 {
headOpts.WALReplayConcurrency = opts.WALReplayConcurrency
}
if opts.IsolationDisabled {
// We only override this flag if isolation is disabled at DB level. We use the default otherwise.
headOpts.IsolationDisabled = opts.IsolationDisabled
}
db.head, err = NewHead(r, l, wal, wbl, headOpts, stats.Head)
if err != nil {
return nil, err
}
db.head.writeNotified = db.writeNotified
// Register metrics after assigning the head block.
db.metrics = newDBMetrics(db, r)
maxBytes := opts.MaxBytes
if maxBytes < 0 {
maxBytes = 0
}
db.metrics.maxBytes.Set(float64(maxBytes))
if err := db.reload(); err != nil {
return nil, err
}
// Set the min valid time for the ingested samples
// to be no lower than the maxt of the last block.
minValidTime := int64(math.MinInt64)
// We do not consider blocks created from out-of-order samples for Head's minValidTime
// since minValidTime is only for the in-order data and we do not want to discard unnecessary
// samples from the Head.
inOrderMaxTime, ok := db.inOrderBlocksMaxTime()
if ok {
minValidTime = inOrderMaxTime
}
if initErr := db.head.Init(minValidTime); initErr != nil {
db.head.metrics.walCorruptionsTotal.Inc()
e, ok := initErr.(*errLoadWbl)
if ok {
level.Warn(db.logger).Log("msg", "Encountered WBL read error, attempting repair", "err", initErr)
if err := wbl.Repair(e.err); err != nil {
return nil, errors.Wrap(err, "repair corrupted WBL")
}
level.Info(db.logger).Log("msg", "Successfully repaired WBL")
} else {
level.Warn(db.logger).Log("msg", "Encountered WAL read error, attempting repair", "err", initErr)
if err := wal.Repair(initErr); err != nil {
return nil, errors.Wrap(err, "repair corrupted WAL")
}
level.Info(db.logger).Log("msg", "Successfully repaired WAL")
}
}
if db.head.MinOOOTime() != int64(math.MaxInt64) {
// Some OOO data was replayed from the disk that needs compaction and cleanup.
db.oooWasEnabled.Store(true)
}
go db.run(ctx)
return db, nil
}
func removeBestEffortTmpDirs(l log.Logger, dir string) error {
files, err := os.ReadDir(dir)
if os.IsNotExist(err) {
return nil
}
if err != nil {
return err
}
for _, f := range files {
if isTmpDir(f) {
if err := os.RemoveAll(filepath.Join(dir, f.Name())); err != nil {
level.Error(l).Log("msg", "failed to delete tmp block dir", "dir", filepath.Join(dir, f.Name()), "err", err)
continue
}
level.Info(l).Log("msg", "Found and deleted tmp block dir", "dir", filepath.Join(dir, f.Name()))
}
}
return nil
}
// StartTime implements the Storage interface.
func (db *DB) StartTime() (int64, error) {
db.mtx.RLock()
defer db.mtx.RUnlock()
if len(db.blocks) > 0 {
return db.blocks[0].Meta().MinTime, nil
}
return db.head.MinTime(), nil
}
// Dir returns the directory of the database.
func (db *DB) Dir() string {
return db.dir
}
func (db *DB) run(ctx context.Context) {
defer close(db.donec)
backoff := time.Duration(0)
for {
select {
case <-db.stopc:
return
case <-time.After(backoff):
}
select {
case <-time.After(1 * time.Minute):
db.cmtx.Lock()
if err := db.reloadBlocks(); err != nil {
level.Error(db.logger).Log("msg", "reloadBlocks", "err", err)
}
db.cmtx.Unlock()
select {
case db.compactc <- struct{}{}:
default:
}
// We attempt mmapping of head chunks regularly.
db.head.mmapHeadChunks()
case <-db.compactc:
db.metrics.compactionsTriggered.Inc()
db.autoCompactMtx.Lock()
if db.autoCompact {
if err := db.Compact(ctx); err != nil {
level.Error(db.logger).Log("msg", "compaction failed", "err", err)
backoff = exponential(backoff, 1*time.Second, 1*time.Minute)
} else {
backoff = 0
}
} else {
db.metrics.compactionsSkipped.Inc()
}
db.autoCompactMtx.Unlock()
case <-db.stopc:
return
}
}
}
// Appender opens a new appender against the database.
func (db *DB) Appender(ctx context.Context) storage.Appender {
return dbAppender{db: db, Appender: db.head.Appender(ctx)}
}
// ApplyConfig applies a new config to the DB.
// Behaviour of 'OutOfOrderTimeWindow' is as follows:
// OOO enabled = oooTimeWindow > 0. OOO disabled = oooTimeWindow is 0.
// 1) Before: OOO disabled, Now: OOO enabled =>
// - A new WBL is created for the head block.
// - OOO compaction is enabled.
// - Overlapping queries are enabled.
//
// 2) Before: OOO enabled, Now: OOO enabled =>
// - Only the time window is updated.
//
// 3) Before: OOO enabled, Now: OOO disabled =>
// - Time Window set to 0. So no new OOO samples will be allowed.
// - OOO WBL will stay and will be eventually cleaned up.
// - OOO Compaction and overlapping queries will remain enabled until a restart or until all OOO samples are compacted.
//
// 4) Before: OOO disabled, Now: OOO disabled => no-op.
func (db *DB) ApplyConfig(conf *config.Config) error {
oooTimeWindow := int64(0)
if conf.StorageConfig.TSDBConfig != nil {
oooTimeWindow = conf.StorageConfig.TSDBConfig.OutOfOrderTimeWindow
}
if oooTimeWindow < 0 {
oooTimeWindow = 0
}
// Create WBL if it was not present and if OOO is enabled with WAL enabled.
var wblog *wlog.WL
var err error
switch {
case db.head.wbl != nil:
// The existing WBL from the disk might have been replayed while OOO was disabled.
wblog = db.head.wbl
case !db.oooWasEnabled.Load() && oooTimeWindow > 0 && db.opts.WALSegmentSize >= 0:
segmentSize := wlog.DefaultSegmentSize
// Wal is set to a custom size.
if db.opts.WALSegmentSize > 0 {
segmentSize = db.opts.WALSegmentSize
}
oooWalDir := filepath.Join(db.dir, wlog.WblDirName)
wblog, err = wlog.NewSize(db.logger, db.registerer, oooWalDir, segmentSize, db.opts.WALCompression)
if err != nil {
return err
}
}
db.opts.OutOfOrderTimeWindow = oooTimeWindow
db.head.ApplyConfig(conf, wblog)
if !db.oooWasEnabled.Load() {
db.oooWasEnabled.Store(oooTimeWindow > 0)
}
return nil
}
// EnableNativeHistograms enables the native histogram feature.
func (db *DB) EnableNativeHistograms() {
db.head.EnableNativeHistograms()
}
// DisableNativeHistograms disables the native histogram feature.
func (db *DB) DisableNativeHistograms() {
db.head.DisableNativeHistograms()
}
// dbAppender wraps the DB's head appender and triggers compactions on commit
// if necessary.
type dbAppender struct {
storage.Appender
db *DB
}
var _ storage.GetRef = dbAppender{}
func (a dbAppender) GetRef(lset labels.Labels, hash uint64) (storage.SeriesRef, labels.Labels) {
if g, ok := a.Appender.(storage.GetRef); ok {
return g.GetRef(lset, hash)
}
return 0, labels.EmptyLabels()
}
func (a dbAppender) Commit() error {
err := a.Appender.Commit()
// We could just run this check every few minutes practically. But for benchmarks
// and high frequency use cases this is the safer way.
if a.db.head.compactable() {
select {
case a.db.compactc <- struct{}{}:
default:
}
}
return err
}
// Compact data if possible. After successful compaction blocks are reloaded
// which will also delete the blocks that fall out of the retention window.
// Old blocks are only deleted on reloadBlocks based on the new block's parent information.
// See DB.reloadBlocks documentation for further information.
func (db *DB) Compact(ctx context.Context) (returnErr error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
defer func() {
if returnErr != nil && !errors.Is(returnErr, context.Canceled) {
// If we got an error because context was canceled then we're most likely
// shutting down TSDB and we don't need to report this on metrics
db.metrics.compactionsFailed.Inc()
}
}()
lastBlockMaxt := int64(math.MinInt64)
defer func() {
returnErr = tsdb_errors.NewMulti(
returnErr,
errors.Wrap(db.head.truncateWAL(lastBlockMaxt), "WAL truncation in Compact defer"),
).Err()
}()
start := time.Now()
// Check whether we have pending head blocks that are ready to be persisted.
// They have the highest priority.
for {
select {
case <-db.stopc:
return nil
default:
}
if !db.head.compactable() {
break
}
mint := db.head.MinTime()
maxt := rangeForTimestamp(mint, db.head.chunkRange.Load())
// Wrap head into a range that bounds all reads to it.
// We remove 1 millisecond from maxt because block
// intervals are half-open: [b.MinTime, b.MaxTime). But
// chunk intervals are closed: [c.MinTime, c.MaxTime];
// so in order to make sure that overlaps are evaluated
// consistently, we explicitly remove the last value
// from the block interval here.
rh := NewRangeHeadWithIsolationDisabled(db.head, mint, maxt-1)
// Compaction runs with isolation disabled, because head.compactable()
// ensures that maxt is more than chunkRange/2 back from now, and
// head.appendableMinValidTime() ensures that no new appends can start within the compaction range.
// We do need to wait for any overlapping appenders that started previously to finish.
db.head.WaitForAppendersOverlapping(rh.MaxTime())
if err := db.compactHead(rh); err != nil {
return errors.Wrap(err, "compact head")
}
// Consider only successful compactions for WAL truncation.
lastBlockMaxt = maxt
}
// Clear some disk space before compacting blocks, especially important
// when Head compaction happened over a long time range.
if err := db.head.truncateWAL(lastBlockMaxt); err != nil {
return errors.Wrap(err, "WAL truncation in Compact")
}
compactionDuration := time.Since(start)
if compactionDuration.Milliseconds() > db.head.chunkRange.Load() {
level.Warn(db.logger).Log(
"msg", "Head compaction took longer than the block time range, compactions are falling behind and won't be able to catch up",
"duration", compactionDuration.String(),
"block_range", db.head.chunkRange.Load(),
)
}
if lastBlockMaxt != math.MinInt64 {
// The head was compacted, so we compact OOO head as well.
if err := db.compactOOOHead(ctx); err != nil {
return errors.Wrap(err, "compact ooo head")
}
}
return db.compactBlocks()
}
// CompactHead compacts the given RangeHead.
func (db *DB) CompactHead(head *RangeHead) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
if err := db.compactHead(head); err != nil {
return errors.Wrap(err, "compact head")
}
if err := db.head.truncateWAL(head.BlockMaxTime()); err != nil {
return errors.Wrap(err, "WAL truncation")
}
return nil
}
// CompactOOOHead compacts the OOO Head.
func (db *DB) CompactOOOHead(ctx context.Context) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
return db.compactOOOHead(ctx)
}
func (db *DB) compactOOOHead(ctx context.Context) error {
if !db.oooWasEnabled.Load() {
return nil
}
oooHead, err := NewOOOCompactionHead(ctx, db.head)
if err != nil {
return errors.Wrap(err, "get ooo compaction head")
}
ulids, err := db.compactOOO(db.dir, oooHead)
if err != nil {
return errors.Wrap(err, "compact ooo head")
}
if err := db.reloadBlocks(); err != nil {
errs := tsdb_errors.NewMulti(err)
for _, uid := range ulids {
if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil {
errs.Add(errRemoveAll)
}
}
return errors.Wrap(errs.Err(), "reloadBlocks blocks after failed compact ooo head")
}
lastWBLFile, minOOOMmapRef := oooHead.LastWBLFile(), oooHead.LastMmapRef()
if lastWBLFile != 0 || minOOOMmapRef != 0 {
if err := db.head.truncateOOO(lastWBLFile, minOOOMmapRef); err != nil {
return errors.Wrap(err, "truncate ooo wbl")
}
}
return nil
}
// compactOOO creates a new block per possible block range in the compactor's directory from the OOO Head given.
// Each ULID in the result corresponds to a block in a unique time range.
func (db *DB) compactOOO(dest string, oooHead *OOOCompactionHead) (_ []ulid.ULID, err error) {
start := time.Now()
blockSize := oooHead.ChunkRange()
oooHeadMint, oooHeadMaxt := oooHead.MinTime(), oooHead.MaxTime()
ulids := make([]ulid.ULID, 0)
defer func() {
if err != nil {
// Best effort removal of created block on any error.
for _, uid := range ulids {
_ = os.RemoveAll(filepath.Join(db.dir, uid.String()))
}
}
}()
for t := blockSize * (oooHeadMint / blockSize); t <= oooHeadMaxt; t += blockSize {
mint, maxt := t, t+blockSize
// Block intervals are half-open: [b.MinTime, b.MaxTime). Block intervals are always +1 than the total samples it includes.
uid, err := db.compactor.Write(dest, oooHead.CloneForTimeRange(mint, maxt-1), mint, maxt, nil)
if err != nil {
return nil, err
}
if uid.Compare(ulid.ULID{}) != 0 {
ulids = append(ulids, uid)
blockDir := filepath.Join(dest, uid.String())
meta, _, err := readMetaFile(blockDir)
if err != nil {
return ulids, errors.Wrap(err, "read meta")
}
meta.Compaction.SetOutOfOrder()
_, err = writeMetaFile(db.logger, blockDir, meta)
if err != nil {
return ulids, errors.Wrap(err, "write meta")
}
}
}
if len(ulids) == 0 {
level.Info(db.logger).Log(
"msg", "compact ooo head resulted in no blocks",
"duration", time.Since(start),
)
return nil, nil
}
level.Info(db.logger).Log(
"msg", "out-of-order compaction completed",
"duration", time.Since(start),
"ulids", fmt.Sprintf("%v", ulids),
)
return ulids, nil
}
// compactHead compacts the given RangeHead.
// The compaction mutex should be held before calling this method.
func (db *DB) compactHead(head *RangeHead) error {
uid, err := db.compactor.Write(db.dir, head, head.MinTime(), head.BlockMaxTime(), nil)
if err != nil {
return errors.Wrap(err, "persist head block")
}
if err := db.reloadBlocks(); err != nil {
if errRemoveAll := os.RemoveAll(filepath.Join(db.dir, uid.String())); errRemoveAll != nil {
return tsdb_errors.NewMulti(
errors.Wrap(err, "reloadBlocks blocks"),
errors.Wrapf(errRemoveAll, "delete persisted head block after failed db reloadBlocks:%s", uid),
).Err()
}
return errors.Wrap(err, "reloadBlocks blocks")
}
if err = db.head.truncateMemory(head.BlockMaxTime()); err != nil {
return errors.Wrap(err, "head memory truncate")
}
return nil
}
// compactBlocks compacts all the eligible on-disk blocks.
// The compaction mutex should be held before calling this method.
func (db *DB) compactBlocks() (err error) {
// Check for compactions of multiple blocks.
for {
plan, err := db.compactor.Plan(db.dir)
if err != nil {
return errors.Wrap(err, "plan compaction")
}
if len(plan) == 0 {
break
}
select {
case <-db.stopc:
return nil
default:
}
uid, err := db.compactor.Compact(db.dir, plan, db.blocks)
if err != nil {
return errors.Wrapf(err, "compact %s", plan)
}
if err := db.reloadBlocks(); err != nil {
if err := os.RemoveAll(filepath.Join(db.dir, uid.String())); err != nil {
return errors.Wrapf(err, "delete compacted block after failed db reloadBlocks:%s", uid)
}
return errors.Wrap(err, "reloadBlocks blocks")
}
}
return nil
}
// getBlock iterates a given block range to find a block by a given id.
// If found it returns the block itself and a boolean to indicate that it was found.
func getBlock(allBlocks []*Block, id ulid.ULID) (*Block, bool) {
for _, b := range allBlocks {
if b.Meta().ULID == id {
return b, true
}
}
return nil, false
}
// reload reloads blocks and truncates the head and its WAL.
func (db *DB) reload() error {
if err := db.reloadBlocks(); err != nil {
return errors.Wrap(err, "reloadBlocks")
}
maxt, ok := db.inOrderBlocksMaxTime()
if !ok {
return nil
}
if err := db.head.Truncate(maxt); err != nil {
return errors.Wrap(err, "head truncate")
}
return nil
}
// reloadBlocks reloads blocks without touching head.
// Blocks that are obsolete due to replacement or retention will be deleted.
func (db *DB) reloadBlocks() (err error) {
defer func() {
if err != nil {
db.metrics.reloadsFailed.Inc()
}
db.metrics.reloads.Inc()
}()
// Now that we reload TSDB every minute, there is high chance for race condition with a reload
// triggered by CleanTombstones(). We need to lock the reload to avoid the situation where
// a normal reload and CleanTombstones try to delete the same block.
db.mtx.Lock()
defer db.mtx.Unlock()
loadable, corrupted, err := openBlocks(db.logger, db.dir, db.blocks, db.chunkPool)
if err != nil {
return err
}
deletableULIDs := db.blocksToDelete(loadable)
deletable := make(map[ulid.ULID]*Block, len(deletableULIDs))
// Mark all parents of loaded blocks as deletable (no matter if they exists). This makes it resilient against the process
// crashing towards the end of a compaction but before deletions. By doing that, we can pick up the deletion where it left off during a crash.
for _, block := range loadable {
if _, ok := deletableULIDs[block.meta.ULID]; ok {
deletable[block.meta.ULID] = block
}
for _, b := range block.Meta().Compaction.Parents {
if _, ok := corrupted[b.ULID]; ok {
delete(corrupted, b.ULID)
level.Warn(db.logger).Log("msg", "Found corrupted block, but replaced by compacted one so it's safe to delete. This should not happen with atomic deletes.", "block", b.ULID)
}
deletable[b.ULID] = nil
}
}
if len(corrupted) > 0 {
// Corrupted but no child loaded for it.
// Close all new blocks to release the lock for windows.
for _, block := range loadable {
if _, open := getBlock(db.blocks, block.Meta().ULID); !open {
block.Close()
}
}
errs := tsdb_errors.NewMulti()
for ulid, err := range corrupted {
errs.Add(errors.Wrapf(err, "corrupted block %s", ulid.String()))
}
return errs.Err()
}
var (
toLoad []*Block
blocksSize int64
)
// All deletable blocks should be unloaded.
// NOTE: We need to loop through loadable one more time as there might be loadable ready to be removed (replaced by compacted block).
for _, block := range loadable {
if _, ok := deletable[block.Meta().ULID]; ok {
deletable[block.Meta().ULID] = block
continue
}
toLoad = append(toLoad, block)
blocksSize += block.Size()
}
db.metrics.blocksBytes.Set(float64(blocksSize))
slices.SortFunc(toLoad, func(a, b *Block) int {
return int(a.Meta().MinTime - b.Meta().MinTime)
})
// Swap new blocks first for subsequently created readers to be seen.
oldBlocks := db.blocks
db.blocks = toLoad
blockMetas := make([]BlockMeta, 0, len(toLoad))
for _, b := range toLoad {
blockMetas = append(blockMetas, b.Meta())
}
if overlaps := OverlappingBlocks(blockMetas); len(overlaps) > 0 {
level.Warn(db.logger).Log("msg", "Overlapping blocks found during reloadBlocks", "detail", overlaps.String())
}
// Append blocks to old, deletable blocks, so we can close them.
for _, b := range oldBlocks {
if _, ok := deletable[b.Meta().ULID]; ok {
deletable[b.Meta().ULID] = b
}
}
if err := db.deleteBlocks(deletable); err != nil {
return errors.Wrapf(err, "delete %v blocks", len(deletable))
}
return nil
}
func openBlocks(l log.Logger, dir string, loaded []*Block, chunkPool chunkenc.Pool) (blocks []*Block, corrupted map[ulid.ULID]error, err error) {
bDirs, err := blockDirs(dir)
if err != nil {
return nil, nil, errors.Wrap(err, "find blocks")
}
corrupted = make(map[ulid.ULID]error)
for _, bDir := range bDirs {
meta, _, err := readMetaFile(bDir)
if err != nil {
level.Error(l).Log("msg", "Failed to read meta.json for a block during reloadBlocks. Skipping", "dir", bDir, "err", err)
continue
}
// See if we already have the block in memory or open it otherwise.
block, open := getBlock(loaded, meta.ULID)
if !open {
block, err = OpenBlock(l, bDir, chunkPool)
if err != nil {
corrupted[meta.ULID] = err
continue
}
}
blocks = append(blocks, block)
}
return blocks, corrupted, nil
}
// DefaultBlocksToDelete returns a filter which decides time based and size based
// retention from the options of the db.
func DefaultBlocksToDelete(db *DB) BlocksToDeleteFunc {
return func(blocks []*Block) map[ulid.ULID]struct{} {
return deletableBlocks(db, blocks)
}
}
// deletableBlocks returns all currently loaded blocks past retention policy or already compacted into a new block.
func deletableBlocks(db *DB, blocks []*Block) map[ulid.ULID]struct{} {
deletable := make(map[ulid.ULID]struct{})
// Sort the blocks by time - newest to oldest (largest to smallest timestamp).
// This ensures that the retentions will remove the oldest blocks.
slices.SortFunc(blocks, func(a, b *Block) int {
return int(b.Meta().MaxTime - a.Meta().MaxTime)
})
for _, block := range blocks {
if block.Meta().Compaction.Deletable {
deletable[block.Meta().ULID] = struct{}{}
}
}
for ulid := range BeyondTimeRetention(db, blocks) {
deletable[ulid] = struct{}{}
}
for ulid := range BeyondSizeRetention(db, blocks) {
deletable[ulid] = struct{}{}
}
return deletable
}
// BeyondTimeRetention returns those blocks which are beyond the time retention
// set in the db options.
func BeyondTimeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) {
// Time retention is disabled or no blocks to work with.
if len(blocks) == 0 || db.opts.RetentionDuration == 0 {
return
}
deletable = make(map[ulid.ULID]struct{})
for i, block := range blocks {
// The difference between the first block and this block is larger than
// the retention period so any blocks after that are added as deletable.
if i > 0 && blocks[0].Meta().MaxTime-block.Meta().MaxTime > db.opts.RetentionDuration {
for _, b := range blocks[i:] {
deletable[b.meta.ULID] = struct{}{}
}
db.metrics.timeRetentionCount.Inc()
break
}
}
return deletable
}
// BeyondSizeRetention returns those blocks which are beyond the size retention
// set in the db options.
func BeyondSizeRetention(db *DB, blocks []*Block) (deletable map[ulid.ULID]struct{}) {
// Size retention is disabled or no blocks to work with.
if len(blocks) == 0 || db.opts.MaxBytes <= 0 {
return
}
deletable = make(map[ulid.ULID]struct{})
// Initializing size counter with WAL size and Head chunks
// written to disk, as that is part of the retention strategy.
blocksSize := db.Head().Size()
for i, block := range blocks {
blocksSize += block.Size()
if blocksSize > db.opts.MaxBytes {
// Add this and all following blocks for deletion.
for _, b := range blocks[i:] {
deletable[b.meta.ULID] = struct{}{}
}
db.metrics.sizeRetentionCount.Inc()
break
}
}
return deletable
}
// deleteBlocks closes the block if loaded and deletes blocks from the disk if exists.
// When the map contains a non nil block object it means it is loaded in memory
// so needs to be closed first as it might need to wait for pending readers to complete.
func (db *DB) deleteBlocks(blocks map[ulid.ULID]*Block) error {
for ulid, block := range blocks {
if block != nil {
if err := block.Close(); err != nil {
level.Warn(db.logger).Log("msg", "Closing block failed", "err", err, "block", ulid)
}
}
toDelete := filepath.Join(db.dir, ulid.String())
switch _, err := os.Stat(toDelete); {
case os.IsNotExist(err):
// Noop.
continue
case err != nil:
return errors.Wrapf(err, "stat dir %v", toDelete)
}
// Replace atomically to avoid partial block when process would crash during deletion.
tmpToDelete := filepath.Join(db.dir, fmt.Sprintf("%s%s", ulid, tmpForDeletionBlockDirSuffix))
if err := fileutil.Replace(toDelete, tmpToDelete); err != nil {
return errors.Wrapf(err, "replace of obsolete block for deletion %s", ulid)
}
if err := os.RemoveAll(tmpToDelete); err != nil {
return errors.Wrapf(err, "delete obsolete block %s", ulid)
}
level.Info(db.logger).Log("msg", "Deleting obsolete block", "block", ulid)
}
return nil
}
// TimeRange specifies minTime and maxTime range.
type TimeRange struct {
Min, Max int64
}
// Overlaps contains overlapping blocks aggregated by overlapping range.
type Overlaps map[TimeRange][]BlockMeta
// String returns human readable string form of overlapped blocks.
func (o Overlaps) String() string {
var res []string
for r, overlaps := range o {
var groups []string
for _, m := range overlaps {
groups = append(groups, fmt.Sprintf(
"<ulid: %s, mint: %d, maxt: %d, range: %s>",
m.ULID.String(),
m.MinTime,
m.MaxTime,
(time.Duration((m.MaxTime-m.MinTime)/1000)*time.Second).String(),
))
}
res = append(res, fmt.Sprintf(
"[mint: %d, maxt: %d, range: %s, blocks: %d]: %s",
r.Min, r.Max,
(time.Duration((r.Max-r.Min)/1000)*time.Second).String(),
len(overlaps),
strings.Join(groups, ", ")),
)
}
return strings.Join(res, "\n")
}
// OverlappingBlocks returns all overlapping blocks from given meta files.
func OverlappingBlocks(bm []BlockMeta) Overlaps {
if len(bm) <= 1 {
return nil
}
var (
overlaps [][]BlockMeta
// pending contains not ended blocks in regards to "current" timestamp.
pending = []BlockMeta{bm[0]}
// continuousPending helps to aggregate same overlaps to single group.
continuousPending = true
)
// We have here blocks sorted by minTime. We iterate over each block and treat its minTime as our "current" timestamp.
// We check if any of the pending block finished (blocks that we have seen before, but their maxTime was still ahead current
// timestamp). If not, it means they overlap with our current block. In the same time current block is assumed pending.
for _, b := range bm[1:] {
var newPending []BlockMeta
for _, p := range pending {
// "b.MinTime" is our current time.
if b.MinTime >= p.MaxTime {
continuousPending = false
continue
}
// "p" overlaps with "b" and "p" is still pending.
newPending = append(newPending, p)
}
// Our block "b" is now pending.
pending = append(newPending, b)
if len(newPending) == 0 {
// No overlaps.
continue
}
if continuousPending && len(overlaps) > 0 {
overlaps[len(overlaps)-1] = append(overlaps[len(overlaps)-1], b)
continue
}
overlaps = append(overlaps, append(newPending, b))
// Start new pendings.
continuousPending = true
}
// Fetch the critical overlapped time range foreach overlap groups.
overlapGroups := Overlaps{}
for _, overlap := range overlaps {
minRange := TimeRange{Min: 0, Max: math.MaxInt64}
for _, b := range overlap {
if minRange.Max > b.MaxTime {
minRange.Max = b.MaxTime
}
if minRange.Min < b.MinTime {
minRange.Min = b.MinTime
}
}
overlapGroups[minRange] = overlap
}
return overlapGroups
}
func (db *DB) String() string {
return "HEAD"
}
// Blocks returns the databases persisted blocks.
func (db *DB) Blocks() []*Block {
db.mtx.RLock()
defer db.mtx.RUnlock()
return db.blocks
}
// inOrderBlocksMaxTime returns the max time among the blocks that were not totally created
// out of out-of-order data. If the returned boolean is true, it means there is at least
// one such block.
func (db *DB) inOrderBlocksMaxTime() (maxt int64, ok bool) {
maxt, ok = int64(math.MinInt64), false
// If blocks are overlapping, last block might not have the max time. So check all blocks.
for _, b := range db.Blocks() {
if !b.meta.Compaction.FromOutOfOrder() && b.meta.MaxTime > maxt {
ok = true
maxt = b.meta.MaxTime
}
}
return maxt, ok
}
// Head returns the databases's head.
func (db *DB) Head() *Head {
return db.head
}
// Close the partition.
func (db *DB) Close() error {
close(db.stopc)
if db.compactCancel != nil {
db.compactCancel()
}
<-db.donec
db.mtx.Lock()
defer db.mtx.Unlock()
var g errgroup.Group
// blocks also contains all head blocks.
for _, pb := range db.blocks {
g.Go(pb.Close)
}
errs := tsdb_errors.NewMulti(g.Wait(), db.locker.Release())
if db.head != nil {
errs.Add(db.head.Close())
}
return errs.Err()
}
// DisableCompactions disables auto compactions.
func (db *DB) DisableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = false
level.Info(db.logger).Log("msg", "Compactions disabled")
}
// EnableCompactions enables auto compactions.
func (db *DB) EnableCompactions() {
db.autoCompactMtx.Lock()
defer db.autoCompactMtx.Unlock()
db.autoCompact = true
level.Info(db.logger).Log("msg", "Compactions enabled")
}
// ForceHeadMMap is intended for use only in tests and benchmarks.
func (db *DB) ForceHeadMMap() {
db.head.mmapHeadChunks()
}
// Snapshot writes the current data to the directory. If withHead is set to true it
// will create a new block containing all data that's currently in the memory buffer/WAL.
func (db *DB) Snapshot(dir string, withHead bool) error {
if dir == db.dir {
return errors.Errorf("cannot snapshot into base directory")
}
if _, err := ulid.ParseStrict(dir); err == nil {
return errors.Errorf("dir must not be a valid ULID")
}
db.cmtx.Lock()
defer db.cmtx.Unlock()
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
level.Info(db.logger).Log("msg", "Snapshotting block", "block", b)
if err := b.Snapshot(dir); err != nil {
return errors.Wrapf(err, "error snapshotting block: %s", b.Dir())
}
}
if !withHead {
return nil
}
mint := db.head.MinTime()
maxt := db.head.MaxTime()
head := NewRangeHead(db.head, mint, maxt)
// Add +1 millisecond to block maxt because block intervals are half-open: [b.MinTime, b.MaxTime).
// Because of this block intervals are always +1 than the total samples it includes.
if _, err := db.compactor.Write(dir, head, mint, maxt+1, nil); err != nil {
return errors.Wrap(err, "snapshot head block")
}
return nil
}
// Querier returns a new querier over the data partition for the given time range.
func (db *DB) Querier(mint, maxt int64) (storage.Querier, error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
blocks = append(blocks, b)
}
}
var inOrderHeadQuerier storage.Querier
if maxt >= db.head.MinTime() {
rh := NewRangeHead(db.head, mint, maxt)
var err error
inOrderHeadQuerier, err = NewBlockQuerier(rh, mint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open block querier for head %s", rh)
}
// Getting the querier above registers itself in the queue that the truncation waits on.
// So if the querier is currently not colliding with any truncation, we can continue to use it and still
// won't run into a race later since any truncation that comes after will wait on this querier if it overlaps.
shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt)
if shouldClose {
if err := inOrderHeadQuerier.Close(); err != nil {
return nil, errors.Wrapf(err, "closing head block querier %s", rh)
}
inOrderHeadQuerier = nil
}
if getNew {
rh := NewRangeHead(db.head, newMint, maxt)
inOrderHeadQuerier, err = NewBlockQuerier(rh, newMint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open block querier for head while getting new querier %s", rh)
}
}
}
var outOfOrderHeadQuerier storage.Querier
if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) {
rh := NewOOORangeHead(db.head, mint, maxt)
var err error
outOfOrderHeadQuerier, err = NewBlockQuerier(rh, mint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open block querier for ooo head %s", rh)
}
}
blockQueriers := make([]storage.Querier, 0, len(blocks))
for _, b := range blocks {
q, err := NewBlockQuerier(b, mint, maxt)
if err == nil {
blockQueriers = append(blockQueriers, q)
continue
}
// If we fail, all previously opened queriers must be closed.
for _, q := range blockQueriers {
// TODO(bwplotka): Handle error.
_ = q.Close()
}
return nil, errors.Wrapf(err, "open querier for block %s", b)
}
if inOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, inOrderHeadQuerier)
}
if outOfOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, outOfOrderHeadQuerier)
}
return storage.NewMergeQuerier(blockQueriers, nil, storage.ChainedSeriesMerge), nil
}
// blockChunkQuerierForRange returns individual block chunk queriers from the persistent blocks, in-order head block, and the
// out-of-order head block, overlapping with the given time range.
func (db *DB) blockChunkQuerierForRange(mint, maxt int64) ([]storage.ChunkQuerier, error) {
var blocks []BlockReader
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
blocks = append(blocks, b)
}
}
var inOrderHeadQuerier storage.ChunkQuerier
if maxt >= db.head.MinTime() {
rh := NewRangeHead(db.head, mint, maxt)
var err error
inOrderHeadQuerier, err = NewBlockChunkQuerier(rh, mint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open querier for head %s", rh)
}
// Getting the querier above registers itself in the queue that the truncation waits on.
// So if the querier is currently not colliding with any truncation, we can continue to use it and still
// won't run into a race later since any truncation that comes after will wait on this querier if it overlaps.
shouldClose, getNew, newMint := db.head.IsQuerierCollidingWithTruncation(mint, maxt)
if shouldClose {
if err := inOrderHeadQuerier.Close(); err != nil {
return nil, errors.Wrapf(err, "closing head querier %s", rh)
}
inOrderHeadQuerier = nil
}
if getNew {
rh := NewRangeHead(db.head, newMint, maxt)
inOrderHeadQuerier, err = NewBlockChunkQuerier(rh, newMint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open querier for head while getting new querier %s", rh)
}
}
}
var outOfOrderHeadQuerier storage.ChunkQuerier
if overlapsClosedInterval(mint, maxt, db.head.MinOOOTime(), db.head.MaxOOOTime()) {
rh := NewOOORangeHead(db.head, mint, maxt)
var err error
outOfOrderHeadQuerier, err = NewBlockChunkQuerier(rh, mint, maxt)
if err != nil {
return nil, errors.Wrapf(err, "open block chunk querier for ooo head %s", rh)
}
}
blockQueriers := make([]storage.ChunkQuerier, 0, len(blocks))
for _, b := range blocks {
q, err := NewBlockChunkQuerier(b, mint, maxt)
if err == nil {
blockQueriers = append(blockQueriers, q)
continue
}
// If we fail, all previously opened queriers must be closed.
for _, q := range blockQueriers {
// TODO(bwplotka): Handle error.
_ = q.Close()
}
return nil, errors.Wrapf(err, "open querier for block %s", b)
}
if inOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, inOrderHeadQuerier)
}
if outOfOrderHeadQuerier != nil {
blockQueriers = append(blockQueriers, outOfOrderHeadQuerier)
}
return blockQueriers, nil
}
// ChunkQuerier returns a new chunk querier over the data partition for the given time range.
func (db *DB) ChunkQuerier(mint, maxt int64) (storage.ChunkQuerier, error) {
blockQueriers, err := db.blockChunkQuerierForRange(mint, maxt)
if err != nil {
return nil, err
}
return storage.NewMergeChunkQuerier(blockQueriers, nil, storage.NewCompactingChunkSeriesMerger(storage.ChainedSeriesMerge)), nil
}
func (db *DB) ExemplarQuerier(ctx context.Context) (storage.ExemplarQuerier, error) {
return db.head.exemplars.ExemplarQuerier(ctx)
}
func rangeForTimestamp(t, width int64) (maxt int64) {
return (t/width)*width + width
}
// Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis.
func (db *DB) Delete(ctx context.Context, mint, maxt int64, ms ...*labels.Matcher) error {
db.cmtx.Lock()
defer db.cmtx.Unlock()
var g errgroup.Group
db.mtx.RLock()
defer db.mtx.RUnlock()
for _, b := range db.blocks {
if b.OverlapsClosedInterval(mint, maxt) {
g.Go(func(b *Block) func() error {
return func() error { return b.Delete(ctx, mint, maxt, ms...) }
}(b))
}
}
if db.head.OverlapsClosedInterval(mint, maxt) {
g.Go(func() error {
return db.head.Delete(ctx, mint, maxt, ms...)
})
}
return g.Wait()
}
// CleanTombstones re-writes any blocks with tombstones.
func (db *DB) CleanTombstones() (err error) {
db.cmtx.Lock()
defer db.cmtx.Unlock()
start := time.Now()
defer func() {
db.metrics.tombCleanTimer.Observe(time.Since(start).Seconds())
}()
cleanUpCompleted := false
// Repeat cleanup until there is no tombstones left.
for !cleanUpCompleted {
cleanUpCompleted = true
for _, pb := range db.Blocks() {
uid, safeToDelete, cleanErr := pb.CleanTombstones(db.Dir(), db.compactor)
if cleanErr != nil {
return errors.Wrapf(cleanErr, "clean tombstones: %s", pb.Dir())
}
if !safeToDelete {
// There was nothing to clean.
continue
}
// In case tombstones of the old block covers the whole block,
// then there would be no resultant block to tell the parent.
// The lock protects against race conditions when deleting blocks
// during an already running reload.
db.mtx.Lock()
pb.meta.Compaction.Deletable = safeToDelete
db.mtx.Unlock()
cleanUpCompleted = false
if err = db.reloadBlocks(); err == nil { // Will try to delete old block.
// Successful reload will change the existing blocks.
// We need to loop over the new set of blocks.
break
}
// Delete new block if it was created.
if uid != nil && *uid != (ulid.ULID{}) {
dir := filepath.Join(db.Dir(), uid.String())
if err := os.RemoveAll(dir); err != nil {
level.Error(db.logger).Log("msg", "failed to delete block after failed `CleanTombstones`", "dir", dir, "err", err)
}
}
return errors.Wrap(err, "reload blocks")
}
}
return nil
}
func (db *DB) SetWriteNotified(wn wlog.WriteNotified) {
db.writeNotified = wn
// It's possible we already created the head struct, so we should also set the WN for that.
db.head.writeNotified = wn
}
func isBlockDir(fi fs.DirEntry) bool {
if !fi.IsDir() {
return false
}
_, err := ulid.ParseStrict(fi.Name())
return err == nil
}
// isTmpDir returns true if the given file-info contains a block ULID, a checkpoint prefix,
// or a chunk snapshot prefix and a tmp extension.
func isTmpDir(fi fs.DirEntry) bool {
if !fi.IsDir() {
return false
}
fn := fi.Name()
ext := filepath.Ext(fn)
if ext == tmpForDeletionBlockDirSuffix || ext == tmpForCreationBlockDirSuffix || ext == tmpLegacy {
if strings.HasPrefix(fn, "checkpoint.") {
return true
}
if strings.HasPrefix(fn, chunkSnapshotPrefix) {
return true
}
if _, err := ulid.ParseStrict(fn[:len(fn)-len(ext)]); err == nil {
return true
}
}
return false
}
func blockDirs(dir string) ([]string, error) {
files, err := os.ReadDir(dir)
if err != nil {
return nil, err
}
var dirs []string
for _, f := range files {
if isBlockDir(f) {
dirs = append(dirs, filepath.Join(dir, f.Name()))
}
}
return dirs, nil
}
func sequenceFiles(dir string) ([]string, error) {
files, err := os.ReadDir(dir)
if err != nil {
return nil, err
}
var res []string
for _, fi := range files {
if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil {
continue
}
res = append(res, filepath.Join(dir, fi.Name()))
}
return res, nil
}
func nextSequenceFile(dir string) (string, int, error) {
files, err := os.ReadDir(dir)
if err != nil {
return "", 0, err
}
i := uint64(0)
for _, f := range files {
j, err := strconv.ParseUint(f.Name(), 10, 64)
if err != nil {
continue
}
i = j
}
return filepath.Join(dir, fmt.Sprintf("%0.6d", i+1)), int(i + 1), nil
}
func exponential(d, min, max time.Duration) time.Duration {
d *= 2
if d < min {
d = min
}
if d > max {
d = max
}
return d
}