prometheus/storage/buffer.go
2021-12-15 13:49:33 +01:00

373 lines
8.6 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package storage
import (
"fmt"
"math"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/tsdb/chunkenc"
)
// BufferedSeriesIterator wraps an iterator with a look-back buffer.
type BufferedSeriesIterator struct {
it chunkenc.Iterator
buf *sampleRing
delta int64
lastTime int64
valueType chunkenc.ValueType
}
// NewBuffer returns a new iterator that buffers the values within the time range
// of the current element and the duration of delta before, initialized with an
// empty iterator. Use Reset() to set an actual iterator to be buffered.
func NewBuffer(delta int64) *BufferedSeriesIterator {
return NewBufferIterator(chunkenc.NewNopIterator(), delta)
}
// NewBufferIterator returns a new iterator that buffers the values within the
// time range of the current element and the duration of delta before.
func NewBufferIterator(it chunkenc.Iterator, delta int64) *BufferedSeriesIterator {
// TODO(codesome): based on encoding, allocate different buffer.
bit := &BufferedSeriesIterator{
buf: newSampleRing(delta, 16),
delta: delta,
}
bit.Reset(it)
return bit
}
// Reset re-uses the buffer with a new iterator, resetting the buffered time
// delta to its original value.
func (b *BufferedSeriesIterator) Reset(it chunkenc.Iterator) {
b.it = it
b.lastTime = math.MinInt64
b.buf.reset()
b.buf.delta = b.delta
b.valueType = it.Next()
}
// ReduceDelta lowers the buffered time delta, for the current SeriesIterator only.
func (b *BufferedSeriesIterator) ReduceDelta(delta int64) bool {
return b.buf.reduceDelta(delta)
}
// PeekBack returns the nth previous element of the iterator. If there is none buffered,
// ok is false.
func (b *BufferedSeriesIterator) PeekBack(n int) (t int64, v float64, h *histogram.Histogram, ok bool) {
s, ok := b.buf.nthLast(n)
return s.t, s.v, s.h, ok
}
// Buffer returns an iterator over the buffered data. Invalidates previously
// returned iterators.
func (b *BufferedSeriesIterator) Buffer() chunkenc.Iterator {
return b.buf.iterator()
}
// Seek advances the iterator to the element at time t or greater.
func (b *BufferedSeriesIterator) Seek(t int64) chunkenc.ValueType {
t0 := t - b.buf.delta
// If the delta would cause us to seek backwards, preserve the buffer
// and just continue regular advancement while filling the buffer on the way.
if b.valueType != chunkenc.ValNone && t0 > b.lastTime {
b.buf.reset()
b.valueType = b.it.Seek(t0)
switch b.valueType {
case chunkenc.ValNone:
return chunkenc.ValNone
case chunkenc.ValFloat:
b.lastTime, _ = b.At()
case chunkenc.ValHistogram:
b.lastTime, _ = b.AtHistogram()
case chunkenc.ValFloatHistogram:
b.lastTime, _ = b.AtFloatHistogram()
default:
panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType))
}
}
if b.lastTime >= t {
return b.valueType
}
for {
if b.valueType = b.Next(); b.valueType == chunkenc.ValNone || b.lastTime >= t {
return b.valueType
}
}
}
// Next advances the iterator to the next element.
func (b *BufferedSeriesIterator) Next() chunkenc.ValueType {
// Add current element to buffer before advancing.
switch b.valueType {
case chunkenc.ValNone:
return chunkenc.ValNone
case chunkenc.ValFloat:
t, v := b.it.At()
b.buf.add(sample{t: t, v: v})
case chunkenc.ValHistogram:
t, h := b.it.AtHistogram()
b.buf.add(sample{t: t, h: h})
case chunkenc.ValFloatHistogram:
t, fh := b.it.AtFloatHistogram()
b.buf.add(sample{t: t, fh: fh})
default:
panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType))
}
b.valueType = b.it.Next()
if b.valueType != chunkenc.ValNone {
b.lastTime = b.AtT()
}
return b.valueType
}
// At returns the current float element of the iterator.
func (b *BufferedSeriesIterator) At() (int64, float64) {
return b.it.At()
}
// AtHistogram returns the current histogram element of the iterator.
func (b *BufferedSeriesIterator) AtHistogram() (int64, *histogram.Histogram) {
return b.it.AtHistogram()
}
// AtFloatHistogram returns the current float-histogram element of the iterator.
func (b *BufferedSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
return b.it.AtFloatHistogram()
}
// AtT returns the current timestamp of the iterator.
func (b *BufferedSeriesIterator) AtT() int64 {
return b.it.AtT()
}
// Err returns the last encountered error.
func (b *BufferedSeriesIterator) Err() error {
return b.it.Err()
}
// TODO(beorn7): Consider having different sample types for different value types.
type sample struct {
t int64
v float64
h *histogram.Histogram
fh *histogram.FloatHistogram
}
func (s sample) T() int64 {
return s.t
}
func (s sample) V() float64 {
return s.v
}
func (s sample) H() *histogram.Histogram {
return s.h
}
func (s sample) FH() *histogram.FloatHistogram {
return s.fh
}
func (s sample) Type() chunkenc.ValueType {
switch {
case s.h != nil:
return chunkenc.ValHistogram
case s.fh != nil:
return chunkenc.ValFloatHistogram
default:
return chunkenc.ValFloat
}
}
type sampleRing struct {
delta int64
buf []sample // lookback buffer
i int // position of most recent element in ring buffer
f int // position of first element in ring buffer
l int // number of elements in buffer
it sampleRingIterator
}
func newSampleRing(delta int64, sz int) *sampleRing {
r := &sampleRing{delta: delta, buf: make([]sample, sz)}
r.reset()
return r
}
func (r *sampleRing) reset() {
r.l = 0
r.i = -1
r.f = 0
}
// Returns the current iterator. Invalidates previously returned iterators.
func (r *sampleRing) iterator() chunkenc.Iterator {
r.it.r = r
r.it.i = -1
return &r.it
}
type sampleRingIterator struct {
r *sampleRing
i int
}
func (it *sampleRingIterator) Next() chunkenc.ValueType {
it.i++
if it.i >= it.r.l {
return chunkenc.ValNone
}
s := it.r.at(it.i)
switch {
case s.h != nil:
return chunkenc.ValHistogram
case s.fh != nil:
return chunkenc.ValFloatHistogram
default:
return chunkenc.ValFloat
}
}
func (it *sampleRingIterator) Seek(int64) chunkenc.ValueType {
return chunkenc.ValNone
}
func (it *sampleRingIterator) Err() error {
return nil
}
func (it *sampleRingIterator) At() (int64, float64) {
s := it.r.at(it.i)
return s.t, s.v
}
func (it *sampleRingIterator) AtHistogram() (int64, *histogram.Histogram) {
s := it.r.at(it.i)
return s.t, s.h
}
func (it *sampleRingIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
s := it.r.at(it.i)
if s.fh == nil {
return s.t, s.h.ToFloat()
}
return s.t, s.fh
}
func (it *sampleRingIterator) AtT() int64 {
s := it.r.at(it.i)
return s.t
}
func (r *sampleRing) at(i int) sample {
j := (r.f + i) % len(r.buf)
return r.buf[j]
}
// add adds a sample to the ring buffer and frees all samples that fall
// out of the delta range.
func (r *sampleRing) add(s sample) {
l := len(r.buf)
// Grow the ring buffer if it fits no more elements.
if l == r.l {
buf := make([]sample, 2*l)
copy(buf[l+r.f:], r.buf[r.f:])
copy(buf, r.buf[:r.f])
r.buf = buf
r.i = r.f
r.f += l
l = 2 * l
} else {
r.i++
if r.i >= l {
r.i -= l
}
}
r.buf[r.i] = s
r.l++
// Free head of the buffer of samples that just fell out of the range.
tmin := s.t - r.delta
for r.buf[r.f].t < tmin {
r.f++
if r.f >= l {
r.f -= l
}
r.l--
}
}
// reduceDelta lowers the buffered time delta, dropping any samples that are
// out of the new delta range.
func (r *sampleRing) reduceDelta(delta int64) bool {
if delta > r.delta {
return false
}
r.delta = delta
if r.l == 0 {
return true
}
// Free head of the buffer of samples that just fell out of the range.
l := len(r.buf)
tmin := r.buf[r.i].t - delta
for r.buf[r.f].t < tmin {
r.f++
if r.f >= l {
r.f -= l
}
r.l--
}
return true
}
// nthLast returns the nth most recent element added to the ring.
func (r *sampleRing) nthLast(n int) (sample, bool) {
if n > r.l {
return sample{}, false
}
return r.at(r.l - n), true
}
func (r *sampleRing) samples() []sample {
res := make([]sample, r.l)
k := r.f + r.l
var j int
if k > len(r.buf) {
k = len(r.buf)
j = r.l - k + r.f
}
n := copy(res, r.buf[r.f:k])
copy(res[n:], r.buf[:j])
return res
}