prometheus/storage/metric/stochastic_test.go
Matt T. Proud 3e969a8ca2 Parameterize the buffer for marshal/unmarshal.
We are not reusing buffers yet.  This could introduce problems,
so the behavior is disabled for now.

Cursory benchmark data:
- Marshal for 10,000 samples: -30% overhead.
- Unmarshal for 10,000 samples: -15% overhead.

Change-Id: Ib006bdc656af45dca2b92de08a8f905d8d728cac
2014-04-16 12:16:59 +02:00

632 lines
16 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"math"
"math/rand"
"sort"
"testing"
"testing/quick"
clientmodel "github.com/prometheus/client_golang/model"
"github.com/prometheus/prometheus/coding/indexable"
"github.com/prometheus/prometheus/utility/test"
dto "github.com/prometheus/prometheus/model/generated"
)
const stochasticMaximumVariance = 8
func BasicLifecycleTests(p MetricPersistence, t test.Tester) {
if p == nil {
t.Errorf("Received nil Metric Persistence.\n")
return
}
}
func ReadEmptyTests(p MetricPersistence, t test.Tester) {
hasLabelPair := func(x int) (success bool) {
fingerprints, err := p.GetFingerprintsForLabelMatchers(LabelMatchers{{
Type: Equal,
Name: clientmodel.LabelName(string(x)),
Value: clientmodel.LabelValue(string(x)),
}})
if err != nil {
t.Error(err)
return
}
success = len(fingerprints) == 0
if !success {
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
}
return
}
err := quick.Check(hasLabelPair, nil)
if err != nil {
t.Error(err)
return
}
hasLabelName := func(x int) (success bool) {
labelName := clientmodel.LabelName(string(x))
values, err := p.GetLabelValuesForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
success = len(values) == 0
if !success {
t.Errorf("unexpected values length %d, got %d", 0, len(values))
}
return
}
err = quick.Check(hasLabelName, nil)
if err != nil {
t.Error(err)
return
}
}
func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := clientmodel.SampleValue(x)
ts := clientmodel.TimestampFromUnix(int64(x))
labelName := clientmodel.LabelName(x)
labelValue := clientmodel.LabelValue(x)
l := clientmodel.Metric{labelName: labelValue}
sample := &clientmodel.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSamples(clientmodel.Samples{sample})
success = err == nil
if !success {
t.Error(err)
}
return
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := clientmodel.SampleValue(x)
ts := clientmodel.TimestampFromUnix(int64(x))
labelName := clientmodel.LabelName(x)
labelValue := clientmodel.LabelValue(x)
l := clientmodel.Metric{labelName: labelValue}
sample := &clientmodel.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSamples(clientmodel.Samples{sample})
if err != nil {
t.Error(err)
return
}
values, err := p.GetLabelValuesForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(values) != 1 {
t.Errorf("expected label values count of %d, got %d", 1, len(values))
return
}
fingerprints, err := p.GetFingerprintsForLabelMatchers(LabelMatchers{{
Type: Equal,
Name: labelName,
Value: labelValue,
}})
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
return true
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) bool {
sample := &clientmodel.Sample{
Value: clientmodel.SampleValue(x),
Timestamp: clientmodel.TimestampFromUnix(int64(x)),
Metric: clientmodel.Metric{clientmodel.MetricNameLabel: "my_metric"},
}
err := p.AppendSamples(clientmodel.Samples{sample})
return err == nil
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func levelDBGetRangeValues(l *LevelDBMetricPersistence, fp *clientmodel.Fingerprint, i Interval) (samples Values, err error) {
fpDto := &dto.Fingerprint{}
dumpFingerprint(fpDto, fp)
k := &dto.SampleKey{
Fingerprint: fpDto,
Timestamp: indexable.EncodeTime(i.OldestInclusive),
}
iterator, err := l.MetricSamples.NewIterator(true)
if err != nil {
panic(err)
}
defer iterator.Close()
for valid := iterator.Seek(k); valid; valid = iterator.Next() {
retrievedKey, err := extractSampleKey(iterator)
if err != nil {
return samples, err
}
if retrievedKey.FirstTimestamp.After(i.NewestInclusive) {
break
}
if !retrievedKey.Fingerprint.Equal(fp) {
break
}
retrievedValues := unmarshalValues(iterator.RawValue(), nil)
samples = append(samples, retrievedValues...)
}
return
}
type timeslice []clientmodel.Timestamp
func (t timeslice) Len() int {
return len(t)
}
func (t timeslice) Swap(i, j int) {
t[i], t[j] = t[j], t[i]
}
func (t timeslice) Less(i, j int) bool {
return t[i].Before(t[j])
}
func StochasticTests(persistenceMaker func() (MetricPersistence, test.Closer), t test.Tester) {
stochastic := func(x int) (success bool) {
p, closer := persistenceMaker()
defer closer.Close()
defer p.Close()
seed := rand.NewSource(int64(x))
random := rand.New(seed)
numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1
numberOfSharedLabels := random.Intn(stochasticMaximumVariance)
numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance)
numberOfSamples := random.Intn(stochasticMaximumVariance) + 2
numberOfRangeScans := random.Intn(stochasticMaximumVariance)
metricTimestamps := map[int]map[int64]bool{}
metricEarliestSample := map[int]int64{}
metricNewestSample := map[int]int64{}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
sample := &clientmodel.Sample{
Metric: clientmodel.Metric{},
}
v := clientmodel.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
sample.Metric[clientmodel.MetricNameLabel] = v
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
l := clientmodel.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
v := clientmodel.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex))
sample.Metric[l] = v
}
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
l := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
v := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
sample.Metric[l] = v
}
timestamps := map[int64]bool{}
metricTimestamps[metricIndex] = timestamps
var newestSample int64 = math.MinInt64
var oldestSample int64 = math.MaxInt64
var nextTimestamp func() int64
nextTimestamp = func() int64 {
var candidate int64
candidate = random.Int63n(math.MaxInt32 - 1)
if _, has := timestamps[candidate]; has {
// WART
candidate = nextTimestamp()
}
timestamps[candidate] = true
if candidate < oldestSample {
oldestSample = candidate
}
if candidate > newestSample {
newestSample = candidate
}
return candidate
}
// BUG(matt): Invariant of the in-memory database assumes this.
sortedTimestamps := timeslice{}
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
sortedTimestamps = append(sortedTimestamps, clientmodel.TimestampFromUnix(nextTimestamp()))
}
sort.Sort(sortedTimestamps)
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
sample.Timestamp = sortedTimestamps[sampleIndex]
sample.Value = clientmodel.SampleValue(sampleIndex)
err := p.AppendSamples(clientmodel.Samples{sample})
if err != nil {
t.Error(err)
return
}
}
metricEarliestSample[metricIndex] = oldestSample
metricNewestSample[metricIndex] = newestSample
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
matchers := LabelMatchers{{
Type: Equal,
Name: clientmodel.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)),
Value: clientmodel.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)),
}}
fingerprints, err := p.GetFingerprintsForLabelMatchers(matchers)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) == 0 {
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
return
}
}
}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
labelName := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
labelValue := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
matchers := LabelMatchers{{
Type: Equal,
Name: labelName,
Value: labelValue,
}}
fingerprints, err := p.GetFingerprintsForLabelMatchers(matchers)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
}
metric := clientmodel.Metric{}
metric[clientmodel.MetricNameLabel] = clientmodel.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
for i := 0; i < numberOfSharedLabels; i++ {
l := clientmodel.LabelName(fmt.Sprintf("shared_label_%d", i))
v := clientmodel.LabelValue(fmt.Sprintf("label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfUnsharedLabels; i++ {
l := clientmodel.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i))
v := clientmodel.LabelValue(fmt.Sprintf("private_label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfRangeScans; i++ {
timestamps := metricTimestamps[metricIndex]
var first int64
var second int64
for {
firstCandidate := random.Int63n(int64(len(timestamps)))
secondCandidate := random.Int63n(int64(len(timestamps)))
smallest := int64(-1)
largest := int64(-1)
if firstCandidate == secondCandidate {
continue
} else if firstCandidate > secondCandidate {
largest = firstCandidate
smallest = secondCandidate
} else {
largest = secondCandidate
smallest = firstCandidate
}
j := int64(0)
for i := range timestamps {
if j == smallest {
first = i
} else if j == largest {
second = i
break
}
j++
}
break
}
begin := first
end := second
if second < first {
begin, end = second, first
}
interval := Interval{
OldestInclusive: clientmodel.TimestampFromUnix(begin),
NewestInclusive: clientmodel.TimestampFromUnix(end),
}
samples := Values{}
fp := &clientmodel.Fingerprint{}
fp.LoadFromMetric(metric)
switch persistence := p.(type) {
case View:
samples = persistence.GetRangeValues(fp, interval)
if len(samples) < 2 {
t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples))
}
case *LevelDBMetricPersistence:
var err error
samples, err = levelDBGetRangeValues(persistence, fp, interval)
if err != nil {
t.Fatal(err)
}
if len(samples) < 2 {
t.Fatalf("expected sample count greater than %d, got %d", 2, len(samples))
}
default:
t.Error("Unexpected type of MetricPersistence.")
}
}
}
return true
}
if err := quick.Check(stochastic, nil); err != nil {
t.Error(err)
}
}
// Test Definitions Follow
var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests)
func TestLevelDBBasicLifecycle(t *testing.T) {
testLevelDBBasicLifecycle(t)
}
func BenchmarkLevelDBBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBBasicLifecycle(b)
}
}
var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests)
func TestLevelDBReadEmpty(t *testing.T) {
testLevelDBReadEmpty(t)
}
func BenchmarkLevelDBReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBReadEmpty(b)
}
}
var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests)
func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSparseAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSparseAppend(b)
}
}
var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests)
func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) {
testLevelDBAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsSparseAppendWithReads(b)
}
}
var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests)
func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSingleEntityAppend(b)
}
}
func testLevelDBStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
temporaryDirectory := test.NewTemporaryDirectory("test_leveldb_stochastic", t)
p, err := NewLevelDBMetricPersistence(temporaryDirectory.Path())
if err != nil {
t.Errorf("Could not start up LevelDB: %q\n", err)
}
return p, temporaryDirectory
}
StochasticTests(persistenceMaker, t)
}
func TestLevelDBStochastic(t *testing.T) {
testLevelDBStochastic(t)
}
func BenchmarkLevelDBStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBStochastic(b)
}
}
var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests)
func TestMemoryBasicLifecycle(t *testing.T) {
testMemoryBasicLifecycle(t)
}
func BenchmarkMemoryBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryBasicLifecycle(b)
}
}
var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests)
func TestMemoryReadEmpty(t *testing.T) {
testMemoryReadEmpty(t)
}
func BenchmarkMemoryReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryReadEmpty(b)
}
}
var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests)
func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) {
testMemoryAppendSampleAsPureSparseAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSparseAppend(b)
}
}
var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests)
func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) {
testMemoryAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsSparseAppendWithReads(b)
}
}
var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests)
func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testMemoryAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSingleEntityAppend(b)
}
}
func testMemoryStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
return NewMemorySeriesStorage(MemorySeriesOptions{}), test.NilCloser
}
StochasticTests(persistenceMaker, t)
}
func TestMemoryStochastic(t *testing.T) {
testMemoryStochastic(t)
}
func BenchmarkMemoryStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryStochastic(b)
}
}