mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-10 07:34:04 -08:00
42d9169ba1
Signed-off-by: Ziqi Zhao <zhaoziqi9146@gmail.com>
980 lines
34 KiB
Go
980 lines
34 KiB
Go
// Copyright 2021 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package histogram
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
)
|
|
|
|
// FloatHistogram is similar to Histogram but uses float64 for all
|
|
// counts. Additionally, bucket counts are absolute and not deltas.
|
|
//
|
|
// A FloatHistogram is needed by PromQL to handle operations that might result
|
|
// in fractional counts. Since the counts in a histogram are unlikely to be too
|
|
// large to be represented precisely by a float64, a FloatHistogram can also be
|
|
// used to represent a histogram with integer counts and thus serves as a more
|
|
// generalized representation.
|
|
type FloatHistogram struct {
|
|
// Counter reset information.
|
|
CounterResetHint CounterResetHint
|
|
// Currently valid schema numbers are -4 <= n <= 8. They are all for
|
|
// base-2 bucket schemas, where 1 is a bucket boundary in each case, and
|
|
// then each power of two is divided into 2^n logarithmic buckets. Or
|
|
// in other words, each bucket boundary is the previous boundary times
|
|
// 2^(2^-n).
|
|
Schema int32
|
|
// Width of the zero bucket.
|
|
ZeroThreshold float64
|
|
// Observations falling into the zero bucket. Must be zero or positive.
|
|
ZeroCount float64
|
|
// Total number of observations. Must be zero or positive.
|
|
Count float64
|
|
// Sum of observations. This is also used as the stale marker.
|
|
Sum float64
|
|
// Spans for positive and negative buckets (see Span below).
|
|
PositiveSpans, NegativeSpans []Span
|
|
// Observation counts in buckets. Each represents an absolute count and
|
|
// must be zero or positive.
|
|
PositiveBuckets, NegativeBuckets []float64
|
|
}
|
|
|
|
// Copy returns a deep copy of the Histogram.
|
|
func (h *FloatHistogram) Copy() *FloatHistogram {
|
|
c := *h
|
|
|
|
if h.PositiveSpans != nil {
|
|
c.PositiveSpans = make([]Span, len(h.PositiveSpans))
|
|
copy(c.PositiveSpans, h.PositiveSpans)
|
|
}
|
|
if h.NegativeSpans != nil {
|
|
c.NegativeSpans = make([]Span, len(h.NegativeSpans))
|
|
copy(c.NegativeSpans, h.NegativeSpans)
|
|
}
|
|
if h.PositiveBuckets != nil {
|
|
c.PositiveBuckets = make([]float64, len(h.PositiveBuckets))
|
|
copy(c.PositiveBuckets, h.PositiveBuckets)
|
|
}
|
|
if h.NegativeBuckets != nil {
|
|
c.NegativeBuckets = make([]float64, len(h.NegativeBuckets))
|
|
copy(c.NegativeBuckets, h.NegativeBuckets)
|
|
}
|
|
|
|
return &c
|
|
}
|
|
|
|
// CopyToSchema works like Copy, but the returned deep copy has the provided
|
|
// target schema, which must be ≤ the original schema (i.e. it must have a lower
|
|
// resolution).
|
|
func (h *FloatHistogram) CopyToSchema(targetSchema int32) *FloatHistogram {
|
|
if targetSchema == h.Schema {
|
|
// Fast path.
|
|
return h.Copy()
|
|
}
|
|
if targetSchema > h.Schema {
|
|
panic(fmt.Errorf("cannot copy from schema %d to %d", h.Schema, targetSchema))
|
|
}
|
|
c := FloatHistogram{
|
|
Schema: targetSchema,
|
|
ZeroThreshold: h.ZeroThreshold,
|
|
ZeroCount: h.ZeroCount,
|
|
Count: h.Count,
|
|
Sum: h.Sum,
|
|
}
|
|
|
|
// TODO(beorn7): This is a straight-forward implementation using merging
|
|
// iterators for the original buckets and then adding one merged bucket
|
|
// after another to the newly created FloatHistogram. It's well possible
|
|
// that a more involved implementation performs much better, which we
|
|
// could do if this code path turns out to be performance-critical.
|
|
var iInSpan, index int32
|
|
for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(true, 0, targetSchema); it.Next(); {
|
|
b := it.At()
|
|
c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(false, 0, targetSchema); it.Next(); {
|
|
b := it.At()
|
|
c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
|
|
return &c
|
|
}
|
|
|
|
// String returns a string representation of the Histogram.
|
|
func (h *FloatHistogram) String() string {
|
|
var sb strings.Builder
|
|
fmt.Fprintf(&sb, "{count:%g, sum:%g", h.Count, h.Sum)
|
|
|
|
var nBuckets []Bucket[float64]
|
|
for it := h.NegativeBucketIterator(); it.Next(); {
|
|
bucket := it.At()
|
|
if bucket.Count != 0 {
|
|
nBuckets = append(nBuckets, it.At())
|
|
}
|
|
}
|
|
for i := len(nBuckets) - 1; i >= 0; i-- {
|
|
fmt.Fprintf(&sb, ", %s", nBuckets[i].String())
|
|
}
|
|
|
|
if h.ZeroCount != 0 {
|
|
fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String())
|
|
}
|
|
|
|
for it := h.PositiveBucketIterator(); it.Next(); {
|
|
bucket := it.At()
|
|
if bucket.Count != 0 {
|
|
fmt.Fprintf(&sb, ", %s", bucket.String())
|
|
}
|
|
}
|
|
|
|
sb.WriteRune('}')
|
|
return sb.String()
|
|
}
|
|
|
|
// ZeroBucket returns the zero bucket.
|
|
func (h *FloatHistogram) ZeroBucket() Bucket[float64] {
|
|
return Bucket[float64]{
|
|
Lower: -h.ZeroThreshold,
|
|
Upper: h.ZeroThreshold,
|
|
LowerInclusive: true,
|
|
UpperInclusive: true,
|
|
Count: h.ZeroCount,
|
|
}
|
|
}
|
|
|
|
// Mul multiplies the FloatHistogram by the provided factor, i.e. it scales all
|
|
// bucket counts including the zero bucket and the count and the sum of
|
|
// observations. The bucket layout stays the same. This method changes the
|
|
// receiving histogram directly (rather than acting on a copy). It returns a
|
|
// pointer to the receiving histogram for convenience.
|
|
func (h *FloatHistogram) Mul(factor float64) *FloatHistogram {
|
|
h.ZeroCount *= factor
|
|
h.Count *= factor
|
|
h.Sum *= factor
|
|
for i := range h.PositiveBuckets {
|
|
h.PositiveBuckets[i] *= factor
|
|
}
|
|
for i := range h.NegativeBuckets {
|
|
h.NegativeBuckets[i] *= factor
|
|
}
|
|
return h
|
|
}
|
|
|
|
// Div works like Scale but divides instead of multiplies.
|
|
// When dividing by 0, everything will be set to Inf.
|
|
func (h *FloatHistogram) Div(scalar float64) *FloatHistogram {
|
|
h.ZeroCount /= scalar
|
|
h.Count /= scalar
|
|
h.Sum /= scalar
|
|
for i := range h.PositiveBuckets {
|
|
h.PositiveBuckets[i] /= scalar
|
|
}
|
|
for i := range h.NegativeBuckets {
|
|
h.NegativeBuckets[i] /= scalar
|
|
}
|
|
return h
|
|
}
|
|
|
|
// Add adds the provided other histogram to the receiving histogram. Count, Sum,
|
|
// and buckets from the other histogram are added to the corresponding
|
|
// components of the receiving histogram. Buckets in the other histogram that do
|
|
// not exist in the receiving histogram are inserted into the latter. The
|
|
// resulting histogram might have buckets with a population of zero or directly
|
|
// adjacent spans (offset=0). To normalize those, call the Compact method.
|
|
//
|
|
// The method reconciles differences in the zero threshold and in the schema,
|
|
// but the schema of the other histogram must be ≥ the schema of the receiving
|
|
// histogram (i.e. must have an equal or higher resolution). This means that the
|
|
// schema of the receiving histogram won't change. Its zero threshold, however,
|
|
// will change if needed. The other histogram will not be modified in any case.
|
|
//
|
|
// This method returns a pointer to the receiving histogram for convenience.
|
|
func (h *FloatHistogram) Add(other *FloatHistogram) *FloatHistogram {
|
|
switch {
|
|
case other.CounterResetHint == h.CounterResetHint:
|
|
// Adding apples to apples, all good. No need to change anything.
|
|
case h.CounterResetHint == GaugeType:
|
|
// Adding something else to a gauge. That's probably OK. Outcome is a gauge.
|
|
// Nothing to do since the receiver is already marked as gauge.
|
|
case other.CounterResetHint == GaugeType:
|
|
// Similar to before, but this time the receiver is "something else" and we have to change it to gauge.
|
|
h.CounterResetHint = GaugeType
|
|
case h.CounterResetHint == UnknownCounterReset:
|
|
// With the receiver's CounterResetHint being "unknown", this could still be legitimate
|
|
// if the caller knows what they are doing. Outcome is then again "unknown".
|
|
// No need to do anything since the receiver's CounterResetHint is already "unknown".
|
|
case other.CounterResetHint == UnknownCounterReset:
|
|
// Similar to before, but now we have to set the receiver's CounterResetHint to "unknown".
|
|
h.CounterResetHint = UnknownCounterReset
|
|
default:
|
|
// All other cases shouldn't actually happen.
|
|
// They are a direct collision of CounterReset and NotCounterReset.
|
|
// Conservatively set the CounterResetHint to "unknown" and isse a warning.
|
|
h.CounterResetHint = UnknownCounterReset
|
|
// TODO(trevorwhitney): Actually issue the warning as soon as the plumbing for it is in place
|
|
}
|
|
|
|
otherZeroCount := h.reconcileZeroBuckets(other)
|
|
h.ZeroCount += otherZeroCount
|
|
h.Count += other.Count
|
|
h.Sum += other.Sum
|
|
|
|
// TODO(beorn7): If needed, this can be optimized by inspecting the
|
|
// spans in other and create missing buckets in h in batches.
|
|
var iInSpan, index int32
|
|
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); {
|
|
b := it.At()
|
|
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); {
|
|
b := it.At()
|
|
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
return h
|
|
}
|
|
|
|
// Sub works like Add but subtracts the other histogram.
|
|
func (h *FloatHistogram) Sub(other *FloatHistogram) *FloatHistogram {
|
|
otherZeroCount := h.reconcileZeroBuckets(other)
|
|
h.ZeroCount -= otherZeroCount
|
|
h.Count -= other.Count
|
|
h.Sum -= other.Sum
|
|
|
|
// TODO(beorn7): If needed, this can be optimized by inspecting the
|
|
// spans in other and create missing buckets in h in batches.
|
|
var iInSpan, index int32
|
|
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); {
|
|
b := it.At()
|
|
b.Count *= -1
|
|
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); {
|
|
b := it.At()
|
|
b.Count *= -1
|
|
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
|
|
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
|
|
)
|
|
index = b.Index
|
|
}
|
|
return h
|
|
}
|
|
|
|
// Equals returns true if the given float histogram matches exactly.
|
|
// Exact match is when there are no new buckets (even empty) and no missing buckets,
|
|
// and all the bucket values match. Spans can have different empty length spans in between,
|
|
// but they must represent the same bucket layout to match.
|
|
func (h *FloatHistogram) Equals(h2 *FloatHistogram) bool {
|
|
if h2 == nil {
|
|
return false
|
|
}
|
|
|
|
if h.Schema != h2.Schema || h.ZeroThreshold != h2.ZeroThreshold ||
|
|
h.ZeroCount != h2.ZeroCount || h.Count != h2.Count || h.Sum != h2.Sum {
|
|
return false
|
|
}
|
|
|
|
if !spansMatch(h.PositiveSpans, h2.PositiveSpans) {
|
|
return false
|
|
}
|
|
if !spansMatch(h.NegativeSpans, h2.NegativeSpans) {
|
|
return false
|
|
}
|
|
|
|
if !bucketsMatch(h.PositiveBuckets, h2.PositiveBuckets) {
|
|
return false
|
|
}
|
|
if !bucketsMatch(h.NegativeBuckets, h2.NegativeBuckets) {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// addBucket takes the "coordinates" of the last bucket that was handled and
|
|
// adds the provided bucket after it. If a corresponding bucket exists, the
|
|
// count is added. If not, the bucket is inserted. The updated slices and the
|
|
// coordinates of the inserted or added-to bucket are returned.
|
|
func addBucket(
|
|
b Bucket[float64],
|
|
spans []Span, buckets []float64,
|
|
iSpan, iBucket int,
|
|
iInSpan, index int32,
|
|
) (
|
|
newSpans []Span, newBuckets []float64,
|
|
newISpan, newIBucket int, newIInSpan int32,
|
|
) {
|
|
if iSpan == -1 {
|
|
// First add, check if it is before all spans.
|
|
if len(spans) == 0 || spans[0].Offset > b.Index {
|
|
// Add bucket before all others.
|
|
buckets = append(buckets, 0)
|
|
copy(buckets[1:], buckets)
|
|
buckets[0] = b.Count
|
|
if len(spans) > 0 && spans[0].Offset == b.Index+1 {
|
|
spans[0].Length++
|
|
spans[0].Offset--
|
|
return spans, buckets, 0, 0, 0
|
|
}
|
|
spans = append(spans, Span{})
|
|
copy(spans[1:], spans)
|
|
spans[0] = Span{Offset: b.Index, Length: 1}
|
|
if len(spans) > 1 {
|
|
// Convert the absolute offset in the formerly
|
|
// first span to a relative offset.
|
|
spans[1].Offset -= b.Index + 1
|
|
}
|
|
return spans, buckets, 0, 0, 0
|
|
}
|
|
if spans[0].Offset == b.Index {
|
|
// Just add to first bucket.
|
|
buckets[0] += b.Count
|
|
return spans, buckets, 0, 0, 0
|
|
}
|
|
// We are behind the first bucket, so set everything to the
|
|
// first bucket and continue normally.
|
|
iSpan, iBucket, iInSpan = 0, 0, 0
|
|
index = spans[0].Offset
|
|
}
|
|
deltaIndex := b.Index - index
|
|
for {
|
|
remainingInSpan := int32(spans[iSpan].Length) - iInSpan
|
|
if deltaIndex < remainingInSpan {
|
|
// Bucket is in current span.
|
|
iBucket += int(deltaIndex)
|
|
iInSpan += deltaIndex
|
|
buckets[iBucket] += b.Count
|
|
return spans, buckets, iSpan, iBucket, iInSpan
|
|
}
|
|
deltaIndex -= remainingInSpan
|
|
iBucket += int(remainingInSpan)
|
|
iSpan++
|
|
if iSpan == len(spans) || deltaIndex < spans[iSpan].Offset {
|
|
// Bucket is in gap behind previous span (or there are no further spans).
|
|
buckets = append(buckets, 0)
|
|
copy(buckets[iBucket+1:], buckets[iBucket:])
|
|
buckets[iBucket] = b.Count
|
|
if deltaIndex == 0 {
|
|
// Directly after previous span, extend previous span.
|
|
if iSpan < len(spans) {
|
|
spans[iSpan].Offset--
|
|
}
|
|
iSpan--
|
|
iInSpan = int32(spans[iSpan].Length)
|
|
spans[iSpan].Length++
|
|
return spans, buckets, iSpan, iBucket, iInSpan
|
|
}
|
|
if iSpan < len(spans) && deltaIndex == spans[iSpan].Offset-1 {
|
|
// Directly before next span, extend next span.
|
|
iInSpan = 0
|
|
spans[iSpan].Offset--
|
|
spans[iSpan].Length++
|
|
return spans, buckets, iSpan, iBucket, iInSpan
|
|
}
|
|
// No next span, or next span is not directly adjacent to new bucket.
|
|
// Add new span.
|
|
iInSpan = 0
|
|
if iSpan < len(spans) {
|
|
spans[iSpan].Offset -= deltaIndex + 1
|
|
}
|
|
spans = append(spans, Span{})
|
|
copy(spans[iSpan+1:], spans[iSpan:])
|
|
spans[iSpan] = Span{Length: 1, Offset: deltaIndex}
|
|
return spans, buckets, iSpan, iBucket, iInSpan
|
|
}
|
|
// Try start of next span.
|
|
deltaIndex -= spans[iSpan].Offset
|
|
iInSpan = 0
|
|
}
|
|
}
|
|
|
|
// Compact eliminates empty buckets at the beginning and end of each span, then
|
|
// merges spans that are consecutive or at most maxEmptyBuckets apart, and
|
|
// finally splits spans that contain more consecutive empty buckets than
|
|
// maxEmptyBuckets. (The actual implementation might do something more efficient
|
|
// but with the same result.) The compaction happens "in place" in the
|
|
// receiving histogram, but a pointer to it is returned for convenience.
|
|
//
|
|
// The ideal value for maxEmptyBuckets depends on circumstances. The motivation
|
|
// to set maxEmptyBuckets > 0 is the assumption that is is less overhead to
|
|
// represent very few empty buckets explicitly within one span than cutting the
|
|
// one span into two to treat the empty buckets as a gap between the two spans,
|
|
// both in terms of storage requirement as well as in terms of encoding and
|
|
// decoding effort. However, the tradeoffs are subtle. For one, they are
|
|
// different in the exposition format vs. in a TSDB chunk vs. for the in-memory
|
|
// representation as Go types. In the TSDB, as an additional aspects, the span
|
|
// layout is only stored once per chunk, while many histograms with that same
|
|
// chunk layout are then only stored with their buckets (so that even a single
|
|
// empty bucket will be stored many times).
|
|
//
|
|
// For the Go types, an additional Span takes 8 bytes. Similarly, an additional
|
|
// bucket takes 8 bytes. Therefore, with a single separating empty bucket, both
|
|
// options have the same storage requirement, but the single-span solution is
|
|
// easier to iterate through. Still, the safest bet is to use maxEmptyBuckets==0
|
|
// and only use a larger number if you know what you are doing.
|
|
func (h *FloatHistogram) Compact(maxEmptyBuckets int) *FloatHistogram {
|
|
h.PositiveBuckets, h.PositiveSpans = compactBuckets(
|
|
h.PositiveBuckets, h.PositiveSpans, maxEmptyBuckets, false,
|
|
)
|
|
h.NegativeBuckets, h.NegativeSpans = compactBuckets(
|
|
h.NegativeBuckets, h.NegativeSpans, maxEmptyBuckets, false,
|
|
)
|
|
return h
|
|
}
|
|
|
|
// DetectReset returns true if the receiving histogram is missing any buckets
|
|
// that have a non-zero population in the provided previous histogram. It also
|
|
// returns true if any count (in any bucket, in the zero count, or in the count
|
|
// of observations, but NOT the sum of observations) is smaller in the receiving
|
|
// histogram compared to the previous histogram. Otherwise, it returns false.
|
|
//
|
|
// This method will shortcut to true if a CounterReset is detected, and shortcut
|
|
// to false if NotCounterReset is detected. Otherwise it will do the work to detect
|
|
// a reset.
|
|
//
|
|
// Special behavior in case the Schema or the ZeroThreshold are not the same in
|
|
// both histograms:
|
|
//
|
|
// - A decrease of the ZeroThreshold or an increase of the Schema (i.e. an
|
|
// increase of resolution) can only happen together with a reset. Thus, the
|
|
// method returns true in either case.
|
|
//
|
|
// - Upon an increase of the ZeroThreshold, the buckets in the previous
|
|
// histogram that fall within the new ZeroThreshold are added to the ZeroCount
|
|
// of the previous histogram (without mutating the provided previous
|
|
// histogram). The scenario that a populated bucket of the previous histogram
|
|
// is partially within, partially outside of the new ZeroThreshold, can only
|
|
// happen together with a counter reset and therefore shortcuts to returning
|
|
// true.
|
|
//
|
|
// - Upon a decrease of the Schema, the buckets of the previous histogram are
|
|
// merged so that they match the new, lower-resolution schema (again without
|
|
// mutating the provided previous histogram).
|
|
func (h *FloatHistogram) DetectReset(previous *FloatHistogram) bool {
|
|
if h.CounterResetHint == CounterReset {
|
|
return true
|
|
}
|
|
if h.CounterResetHint == NotCounterReset {
|
|
return false
|
|
}
|
|
// In all other cases of CounterResetHint (UnknownCounterReset and GaugeType),
|
|
// we go on as we would otherwise, for reasons explained below.
|
|
//
|
|
// If the CounterResetHint is UnknownCounterReset, we do not know yet if this histogram comes
|
|
// with a counter reset. Therefore, we have to do all the detailed work to find out if there
|
|
// is a counter reset or not.
|
|
// We do the same if the CounterResetHint is GaugeType, which should not happen, but PromQL still
|
|
// allows the user to apply functions to gauge histograms that are only meant for counter histograms.
|
|
// In this case, we treat the gauge histograms as a counter histograms
|
|
// (and we plan to return a warning about it to the user).
|
|
if h.Count < previous.Count {
|
|
return true
|
|
}
|
|
if h.Schema > previous.Schema {
|
|
return true
|
|
}
|
|
if h.ZeroThreshold < previous.ZeroThreshold {
|
|
// ZeroThreshold decreased.
|
|
return true
|
|
}
|
|
previousZeroCount, newThreshold := previous.zeroCountForLargerThreshold(h.ZeroThreshold)
|
|
if newThreshold != h.ZeroThreshold {
|
|
// ZeroThreshold is within a populated bucket in previous
|
|
// histogram.
|
|
return true
|
|
}
|
|
if h.ZeroCount < previousZeroCount {
|
|
return true
|
|
}
|
|
currIt := h.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
|
|
prevIt := previous.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
|
|
if detectReset(currIt, prevIt) {
|
|
return true
|
|
}
|
|
currIt = h.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
|
|
prevIt = previous.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
|
|
return detectReset(currIt, prevIt)
|
|
}
|
|
|
|
func detectReset(currIt, prevIt BucketIterator[float64]) bool {
|
|
if !prevIt.Next() {
|
|
return false // If no buckets in previous histogram, nothing can be reset.
|
|
}
|
|
prevBucket := prevIt.At()
|
|
if !currIt.Next() {
|
|
// No bucket in current, but at least one in previous
|
|
// histogram. Check if any of those are non-zero, in which case
|
|
// this is a reset.
|
|
for {
|
|
if prevBucket.Count != 0 {
|
|
return true
|
|
}
|
|
if !prevIt.Next() {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
currBucket := currIt.At()
|
|
for {
|
|
// Forward currIt until we find the bucket corresponding to prevBucket.
|
|
for currBucket.Index < prevBucket.Index {
|
|
if !currIt.Next() {
|
|
// Reached end of currIt early, therefore
|
|
// previous histogram has a bucket that the
|
|
// current one does not have. Unlass all
|
|
// remaining buckets in the previous histogram
|
|
// are unpopulated, this is a reset.
|
|
for {
|
|
if prevBucket.Count != 0 {
|
|
return true
|
|
}
|
|
if !prevIt.Next() {
|
|
return false
|
|
}
|
|
}
|
|
}
|
|
currBucket = currIt.At()
|
|
}
|
|
if currBucket.Index > prevBucket.Index {
|
|
// Previous histogram has a bucket the current one does
|
|
// not have. If it's populated, it's a reset.
|
|
if prevBucket.Count != 0 {
|
|
return true
|
|
}
|
|
} else {
|
|
// We have reached corresponding buckets in both iterators.
|
|
// We can finally compare the counts.
|
|
if currBucket.Count < prevBucket.Count {
|
|
return true
|
|
}
|
|
}
|
|
if !prevIt.Next() {
|
|
// Reached end of prevIt without finding offending buckets.
|
|
return false
|
|
}
|
|
prevBucket = prevIt.At()
|
|
}
|
|
}
|
|
|
|
// PositiveBucketIterator returns a BucketIterator to iterate over all positive
|
|
// buckets in ascending order (starting next to the zero bucket and going up).
|
|
func (h *FloatHistogram) PositiveBucketIterator() BucketIterator[float64] {
|
|
return h.floatBucketIterator(true, 0, h.Schema)
|
|
}
|
|
|
|
// NegativeBucketIterator returns a BucketIterator to iterate over all negative
|
|
// buckets in descending order (starting next to the zero bucket and going
|
|
// down).
|
|
func (h *FloatHistogram) NegativeBucketIterator() BucketIterator[float64] {
|
|
return h.floatBucketIterator(false, 0, h.Schema)
|
|
}
|
|
|
|
// PositiveReverseBucketIterator returns a BucketIterator to iterate over all
|
|
// positive buckets in descending order (starting at the highest bucket and
|
|
// going down towards the zero bucket).
|
|
func (h *FloatHistogram) PositiveReverseBucketIterator() BucketIterator[float64] {
|
|
return newReverseFloatBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true)
|
|
}
|
|
|
|
// NegativeReverseBucketIterator returns a BucketIterator to iterate over all
|
|
// negative buckets in ascending order (starting at the lowest bucket and going
|
|
// up towards the zero bucket).
|
|
func (h *FloatHistogram) NegativeReverseBucketIterator() BucketIterator[float64] {
|
|
return newReverseFloatBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false)
|
|
}
|
|
|
|
// AllBucketIterator returns a BucketIterator to iterate over all negative,
|
|
// zero, and positive buckets in ascending order (starting at the lowest bucket
|
|
// and going up). If the highest negative bucket or the lowest positive bucket
|
|
// overlap with the zero bucket, their upper or lower boundary, respectively, is
|
|
// set to the zero threshold.
|
|
func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] {
|
|
return &allFloatBucketIterator{
|
|
h: h,
|
|
leftIter: h.NegativeReverseBucketIterator(),
|
|
rightIter: h.PositiveBucketIterator(),
|
|
state: -1,
|
|
}
|
|
}
|
|
|
|
// AllReverseBucketIterator returns a BucketIterator to iterate over all negative,
|
|
// zero, and positive buckets in descending order (starting at the lowest bucket
|
|
// and going up). If the highest negative bucket or the lowest positive bucket
|
|
// overlap with the zero bucket, their upper or lower boundary, respectively, is
|
|
// set to the zero threshold.
|
|
func (h *FloatHistogram) AllReverseBucketIterator() BucketIterator[float64] {
|
|
return &allFloatBucketIterator{
|
|
h: h,
|
|
leftIter: h.PositiveReverseBucketIterator(),
|
|
rightIter: h.NegativeBucketIterator(),
|
|
state: -1,
|
|
}
|
|
}
|
|
|
|
// zeroCountForLargerThreshold returns what the histogram's zero count would be
|
|
// if the ZeroThreshold had the provided larger (or equal) value. If the
|
|
// provided value is less than the histogram's ZeroThreshold, the method panics.
|
|
// If the largerThreshold ends up within a populated bucket of the histogram, it
|
|
// is adjusted upwards to the lower limit of that bucket (all in terms of
|
|
// absolute values) and that bucket's count is included in the returned
|
|
// count. The adjusted threshold is returned, too.
|
|
func (h *FloatHistogram) zeroCountForLargerThreshold(largerThreshold float64) (count, threshold float64) {
|
|
// Fast path.
|
|
if largerThreshold == h.ZeroThreshold {
|
|
return h.ZeroCount, largerThreshold
|
|
}
|
|
if largerThreshold < h.ZeroThreshold {
|
|
panic(fmt.Errorf("new threshold %f is less than old threshold %f", largerThreshold, h.ZeroThreshold))
|
|
}
|
|
outer:
|
|
for {
|
|
count = h.ZeroCount
|
|
i := h.PositiveBucketIterator()
|
|
for i.Next() {
|
|
b := i.At()
|
|
if b.Lower >= largerThreshold {
|
|
break
|
|
}
|
|
count += b.Count // Bucket to be merged into zero bucket.
|
|
if b.Upper > largerThreshold {
|
|
// New threshold ended up within a bucket. if it's
|
|
// populated, we need to adjust largerThreshold before
|
|
// we are done here.
|
|
if b.Count != 0 {
|
|
largerThreshold = b.Upper
|
|
}
|
|
break
|
|
}
|
|
}
|
|
i = h.NegativeBucketIterator()
|
|
for i.Next() {
|
|
b := i.At()
|
|
if b.Upper <= -largerThreshold {
|
|
break
|
|
}
|
|
count += b.Count // Bucket to be merged into zero bucket.
|
|
if b.Lower < -largerThreshold {
|
|
// New threshold ended up within a bucket. If
|
|
// it's populated, we need to adjust
|
|
// largerThreshold and have to redo the whole
|
|
// thing because the treatment of the positive
|
|
// buckets is invalid now.
|
|
if b.Count != 0 {
|
|
largerThreshold = -b.Lower
|
|
continue outer
|
|
}
|
|
break
|
|
}
|
|
}
|
|
return count, largerThreshold
|
|
}
|
|
}
|
|
|
|
// trimBucketsInZeroBucket removes all buckets that are within the zero
|
|
// bucket. It assumes that the zero threshold is at a bucket boundary and that
|
|
// the counts in the buckets to remove are already part of the zero count.
|
|
func (h *FloatHistogram) trimBucketsInZeroBucket() {
|
|
i := h.PositiveBucketIterator()
|
|
bucketsIdx := 0
|
|
for i.Next() {
|
|
b := i.At()
|
|
if b.Lower >= h.ZeroThreshold {
|
|
break
|
|
}
|
|
h.PositiveBuckets[bucketsIdx] = 0
|
|
bucketsIdx++
|
|
}
|
|
i = h.NegativeBucketIterator()
|
|
bucketsIdx = 0
|
|
for i.Next() {
|
|
b := i.At()
|
|
if b.Upper <= -h.ZeroThreshold {
|
|
break
|
|
}
|
|
h.NegativeBuckets[bucketsIdx] = 0
|
|
bucketsIdx++
|
|
}
|
|
// We are abusing Compact to trim the buckets set to zero
|
|
// above. Premature compacting could cause additional cost, but this
|
|
// code path is probably rarely used anyway.
|
|
h.Compact(0)
|
|
}
|
|
|
|
// reconcileZeroBuckets finds a zero bucket large enough to include the zero
|
|
// buckets of both histograms (the receiving histogram and the other histogram)
|
|
// with a zero threshold that is not within a populated bucket in either
|
|
// histogram. This method modifies the receiving histogram accourdingly, but
|
|
// leaves the other histogram as is. Instead, it returns the zero count the
|
|
// other histogram would have if it were modified.
|
|
func (h *FloatHistogram) reconcileZeroBuckets(other *FloatHistogram) float64 {
|
|
otherZeroCount := other.ZeroCount
|
|
otherZeroThreshold := other.ZeroThreshold
|
|
|
|
for otherZeroThreshold != h.ZeroThreshold {
|
|
if h.ZeroThreshold > otherZeroThreshold {
|
|
otherZeroCount, otherZeroThreshold = other.zeroCountForLargerThreshold(h.ZeroThreshold)
|
|
}
|
|
if otherZeroThreshold > h.ZeroThreshold {
|
|
h.ZeroCount, h.ZeroThreshold = h.zeroCountForLargerThreshold(otherZeroThreshold)
|
|
h.trimBucketsInZeroBucket()
|
|
}
|
|
}
|
|
return otherZeroCount
|
|
}
|
|
|
|
// floatBucketIterator is a low-level constructor for bucket iterators.
|
|
//
|
|
// If positive is true, the returned iterator iterates through the positive
|
|
// buckets, otherwise through the negative buckets.
|
|
//
|
|
// If absoluteStartValue is < the lowest absolute value of any upper bucket
|
|
// boundary, the iterator starts with the first bucket. Otherwise, it will skip
|
|
// all buckets with an absolute value of their upper boundary ≤
|
|
// absoluteStartValue.
|
|
//
|
|
// targetSchema must be ≤ the schema of FloatHistogram (and of course within the
|
|
// legal values for schemas in general). The buckets are merged to match the
|
|
// targetSchema prior to iterating (without mutating FloatHistogram).
|
|
func (h *FloatHistogram) floatBucketIterator(
|
|
positive bool, absoluteStartValue float64, targetSchema int32,
|
|
) *floatBucketIterator {
|
|
if targetSchema > h.Schema {
|
|
panic(fmt.Errorf("cannot merge from schema %d to %d", h.Schema, targetSchema))
|
|
}
|
|
i := &floatBucketIterator{
|
|
baseBucketIterator: baseBucketIterator[float64, float64]{
|
|
schema: h.Schema,
|
|
positive: positive,
|
|
},
|
|
targetSchema: targetSchema,
|
|
absoluteStartValue: absoluteStartValue,
|
|
}
|
|
if positive {
|
|
i.spans = h.PositiveSpans
|
|
i.buckets = h.PositiveBuckets
|
|
} else {
|
|
i.spans = h.NegativeSpans
|
|
i.buckets = h.NegativeBuckets
|
|
}
|
|
return i
|
|
}
|
|
|
|
// reverseFloatbucketiterator is a low-level constructor for reverse bucket iterators.
|
|
func newReverseFloatBucketIterator(
|
|
spans []Span, buckets []float64, schema int32, positive bool,
|
|
) *reverseFloatBucketIterator {
|
|
r := &reverseFloatBucketIterator{
|
|
baseBucketIterator: baseBucketIterator[float64, float64]{
|
|
schema: schema,
|
|
spans: spans,
|
|
buckets: buckets,
|
|
positive: positive,
|
|
},
|
|
}
|
|
|
|
r.spansIdx = len(r.spans) - 1
|
|
r.bucketsIdx = len(r.buckets) - 1
|
|
if r.spansIdx >= 0 {
|
|
r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1
|
|
}
|
|
r.currIdx = 0
|
|
for _, s := range r.spans {
|
|
r.currIdx += s.Offset + int32(s.Length)
|
|
}
|
|
|
|
return r
|
|
}
|
|
|
|
type floatBucketIterator struct {
|
|
baseBucketIterator[float64, float64]
|
|
|
|
targetSchema int32 // targetSchema is the schema to merge to and must be ≤ schema.
|
|
origIdx int32 // The bucket index within the original schema.
|
|
absoluteStartValue float64 // Never return buckets with an upper bound ≤ this value.
|
|
}
|
|
|
|
func (i *floatBucketIterator) Next() bool {
|
|
if i.spansIdx >= len(i.spans) {
|
|
return false
|
|
}
|
|
|
|
// Copy all of these into local variables so that we can forward to the
|
|
// next bucket and then roll back if needed.
|
|
origIdx, spansIdx, idxInSpan := i.origIdx, i.spansIdx, i.idxInSpan
|
|
span := i.spans[spansIdx]
|
|
firstPass := true
|
|
i.currCount = 0
|
|
|
|
mergeLoop: // Merge together all buckets from the original schema that fall into one bucket in the targetSchema.
|
|
for {
|
|
if i.bucketsIdx == 0 {
|
|
// Seed origIdx for the first bucket.
|
|
origIdx = span.Offset
|
|
} else {
|
|
origIdx++
|
|
}
|
|
for idxInSpan >= span.Length {
|
|
// We have exhausted the current span and have to find a new
|
|
// one. We even handle pathologic spans of length 0 here.
|
|
idxInSpan = 0
|
|
spansIdx++
|
|
if spansIdx >= len(i.spans) {
|
|
if firstPass {
|
|
return false
|
|
}
|
|
break mergeLoop
|
|
}
|
|
span = i.spans[spansIdx]
|
|
origIdx += span.Offset
|
|
}
|
|
currIdx := i.targetIdx(origIdx)
|
|
switch {
|
|
case firstPass:
|
|
i.currIdx = currIdx
|
|
firstPass = false
|
|
case currIdx != i.currIdx:
|
|
// Reached next bucket in targetSchema.
|
|
// Do not actually forward to the next bucket, but break out.
|
|
break mergeLoop
|
|
}
|
|
i.currCount += i.buckets[i.bucketsIdx]
|
|
idxInSpan++
|
|
i.bucketsIdx++
|
|
i.origIdx, i.spansIdx, i.idxInSpan = origIdx, spansIdx, idxInSpan
|
|
if i.schema == i.targetSchema {
|
|
// Don't need to test the next bucket for mergeability
|
|
// if we have no schema change anyway.
|
|
break mergeLoop
|
|
}
|
|
}
|
|
// Skip buckets before absoluteStartValue.
|
|
// TODO(beorn7): Maybe do something more efficient than this recursive call.
|
|
if getBound(i.currIdx, i.targetSchema) <= i.absoluteStartValue {
|
|
return i.Next()
|
|
}
|
|
return true
|
|
}
|
|
|
|
// targetIdx returns the bucket index within i.targetSchema for the given bucket
|
|
// index within i.schema.
|
|
func (i *floatBucketIterator) targetIdx(idx int32) int32 {
|
|
if i.schema == i.targetSchema {
|
|
// Fast path for the common case. The below would yield the same
|
|
// result, just with more effort.
|
|
return idx
|
|
}
|
|
return ((idx - 1) >> (i.schema - i.targetSchema)) + 1
|
|
}
|
|
|
|
type reverseFloatBucketIterator struct {
|
|
baseBucketIterator[float64, float64]
|
|
idxInSpan int32 // Changed from uint32 to allow negative values for exhaustion detection.
|
|
}
|
|
|
|
func (i *reverseFloatBucketIterator) Next() bool {
|
|
i.currIdx--
|
|
if i.bucketsIdx < 0 {
|
|
return false
|
|
}
|
|
|
|
for i.idxInSpan < 0 {
|
|
// We have exhausted the current span and have to find a new
|
|
// one. We'll even handle pathologic spans of length 0.
|
|
i.spansIdx--
|
|
i.idxInSpan = int32(i.spans[i.spansIdx].Length) - 1
|
|
i.currIdx -= i.spans[i.spansIdx+1].Offset
|
|
}
|
|
|
|
i.currCount = i.buckets[i.bucketsIdx]
|
|
i.bucketsIdx--
|
|
i.idxInSpan--
|
|
return true
|
|
}
|
|
|
|
type allFloatBucketIterator struct {
|
|
h *FloatHistogram
|
|
leftIter, rightIter BucketIterator[float64]
|
|
// -1 means we are iterating negative buckets.
|
|
// 0 means it is time for the zero bucket.
|
|
// 1 means we are iterating positive buckets.
|
|
// Anything else means iteration is over.
|
|
state int8
|
|
currBucket Bucket[float64]
|
|
}
|
|
|
|
func (i *allFloatBucketIterator) Next() bool {
|
|
switch i.state {
|
|
case -1:
|
|
if i.leftIter.Next() {
|
|
i.currBucket = i.leftIter.At()
|
|
switch {
|
|
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
|
|
i.currBucket.Upper = -i.h.ZeroThreshold
|
|
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
|
|
i.currBucket.Lower = i.h.ZeroThreshold
|
|
}
|
|
return true
|
|
}
|
|
i.state = 0
|
|
return i.Next()
|
|
case 0:
|
|
i.state = 1
|
|
if i.h.ZeroCount > 0 {
|
|
i.currBucket = Bucket[float64]{
|
|
Lower: -i.h.ZeroThreshold,
|
|
Upper: i.h.ZeroThreshold,
|
|
LowerInclusive: true,
|
|
UpperInclusive: true,
|
|
Count: i.h.ZeroCount,
|
|
// Index is irrelevant for the zero bucket.
|
|
}
|
|
return true
|
|
}
|
|
return i.Next()
|
|
case 1:
|
|
if i.rightIter.Next() {
|
|
i.currBucket = i.rightIter.At()
|
|
switch {
|
|
case i.currBucket.Lower > 0 && i.currBucket.Lower < i.h.ZeroThreshold:
|
|
i.currBucket.Lower = i.h.ZeroThreshold
|
|
case i.currBucket.Upper < 0 && i.currBucket.Upper > -i.h.ZeroThreshold:
|
|
i.currBucket.Upper = -i.h.ZeroThreshold
|
|
}
|
|
return true
|
|
}
|
|
i.state = 42
|
|
return false
|
|
}
|
|
|
|
return false
|
|
}
|
|
|
|
func (i *allFloatBucketIterator) At() Bucket[float64] {
|
|
return i.currBucket
|
|
}
|