prometheus/storage/remote/codec.go
Callum Styan 4bdb73780c remove more format types we probably won't use
Signed-off-by: Callum Styan <callumstyan@gmail.com>
Signed-off-by: Nicolás Pazos <npazosmendez@gmail.com>
2023-12-19 14:29:11 -03:00

1159 lines
33 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remote
import (
"compress/gzip"
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"net/http"
"sort"
"strings"
"sync"
"unsafe"
"github.com/gogo/protobuf/proto"
"github.com/golang/snappy"
"github.com/prometheus/common/model"
"go.opentelemetry.io/collector/pdata/pmetric/pmetricotlp"
"golang.org/x/exp/slices"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/textparse"
"github.com/prometheus/prometheus/prompb"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
"github.com/prometheus/prometheus/util/annotations"
)
const (
// decodeReadLimit is the maximum size of a read request body in bytes.
decodeReadLimit = 32 * 1024 * 1024
pbContentType = "application/x-protobuf"
jsonContentType = "application/json"
)
type HTTPError struct {
msg string
status int
}
func (e HTTPError) Error() string {
return e.msg
}
func (e HTTPError) Status() int {
return e.status
}
// DecodeReadRequest reads a remote.Request from a http.Request.
func DecodeReadRequest(r *http.Request) (*prompb.ReadRequest, error) {
compressed, err := io.ReadAll(io.LimitReader(r.Body, decodeReadLimit))
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.ReadRequest
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}
// EncodeReadResponse writes a remote.Response to a http.ResponseWriter.
func EncodeReadResponse(resp *prompb.ReadResponse, w http.ResponseWriter) error {
data, err := proto.Marshal(resp)
if err != nil {
return err
}
compressed := snappy.Encode(nil, data)
_, err = w.Write(compressed)
return err
}
// ToQuery builds a Query proto.
func ToQuery(from, to int64, matchers []*labels.Matcher, hints *storage.SelectHints) (*prompb.Query, error) {
ms, err := toLabelMatchers(matchers)
if err != nil {
return nil, err
}
var rp *prompb.ReadHints
if hints != nil {
rp = &prompb.ReadHints{
StartMs: hints.Start,
EndMs: hints.End,
StepMs: hints.Step,
Func: hints.Func,
Grouping: hints.Grouping,
By: hints.By,
RangeMs: hints.Range,
}
}
return &prompb.Query{
StartTimestampMs: from,
EndTimestampMs: to,
Matchers: ms,
Hints: rp,
}, nil
}
// ToQueryResult builds a QueryResult proto.
func ToQueryResult(ss storage.SeriesSet, sampleLimit int) (*prompb.QueryResult, annotations.Annotations, error) {
numSamples := 0
resp := &prompb.QueryResult{}
var iter chunkenc.Iterator
for ss.Next() {
series := ss.At()
iter = series.Iterator(iter)
var (
samples []prompb.Sample
histograms []prompb.Histogram
)
for valType := iter.Next(); valType != chunkenc.ValNone; valType = iter.Next() {
numSamples++
if sampleLimit > 0 && numSamples > sampleLimit {
return nil, ss.Warnings(), HTTPError{
msg: fmt.Sprintf("exceeded sample limit (%d)", sampleLimit),
status: http.StatusBadRequest,
}
}
switch valType {
case chunkenc.ValFloat:
ts, val := iter.At()
samples = append(samples, prompb.Sample{
Timestamp: ts,
Value: val,
})
case chunkenc.ValHistogram:
ts, h := iter.AtHistogram()
histograms = append(histograms, HistogramToHistogramProto(ts, h))
case chunkenc.ValFloatHistogram:
ts, fh := iter.AtFloatHistogram()
histograms = append(histograms, FloatHistogramToHistogramProto(ts, fh))
default:
return nil, ss.Warnings(), fmt.Errorf("unrecognized value type: %s", valType)
}
}
if err := iter.Err(); err != nil {
return nil, ss.Warnings(), err
}
resp.Timeseries = append(resp.Timeseries, &prompb.TimeSeries{
Labels: labelsToLabelsProto(series.Labels(), nil),
Samples: samples,
Histograms: histograms,
})
}
return resp, ss.Warnings(), ss.Err()
}
// FromQueryResult unpacks and sorts a QueryResult proto.
func FromQueryResult(sortSeries bool, res *prompb.QueryResult) storage.SeriesSet {
series := make([]storage.Series, 0, len(res.Timeseries))
for _, ts := range res.Timeseries {
if err := validateLabelsAndMetricName(ts.Labels); err != nil {
return errSeriesSet{err: err}
}
lbls := labelProtosToLabels(ts.Labels)
series = append(series, &concreteSeries{labels: lbls, floats: ts.Samples, histograms: ts.Histograms})
}
if sortSeries {
slices.SortFunc(series, func(a, b storage.Series) int {
return labels.Compare(a.Labels(), b.Labels())
})
}
return &concreteSeriesSet{
series: series,
}
}
// NegotiateResponseType returns first accepted response type that this server supports.
// On the empty accepted list we assume that the SAMPLES response type was requested. This is to maintain backward compatibility.
func NegotiateResponseType(accepted []prompb.ReadRequest_ResponseType) (prompb.ReadRequest_ResponseType, error) {
if len(accepted) == 0 {
accepted = []prompb.ReadRequest_ResponseType{prompb.ReadRequest_SAMPLES}
}
supported := map[prompb.ReadRequest_ResponseType]struct{}{
prompb.ReadRequest_SAMPLES: {},
prompb.ReadRequest_STREAMED_XOR_CHUNKS: {},
}
for _, resType := range accepted {
if _, ok := supported[resType]; ok {
return resType, nil
}
}
return 0, fmt.Errorf("server does not support any of the requested response types: %v; supported: %v", accepted, supported)
}
// StreamChunkedReadResponses iterates over series, builds chunks and streams those to the caller.
// It expects Series set with populated chunks.
func StreamChunkedReadResponses(
stream io.Writer,
queryIndex int64,
ss storage.ChunkSeriesSet,
sortedExternalLabels []prompb.Label,
maxBytesInFrame int,
marshalPool *sync.Pool,
) (annotations.Annotations, error) {
var (
chks []prompb.Chunk
lbls []prompb.Label
iter chunks.Iterator
)
for ss.Next() {
series := ss.At()
iter = series.Iterator(iter)
lbls = MergeLabels(labelsToLabelsProto(series.Labels(), lbls), sortedExternalLabels)
maxDataLength := maxBytesInFrame
for _, lbl := range lbls {
maxDataLength -= lbl.Size()
}
frameBytesLeft := maxDataLength
isNext := iter.Next()
// Send at most one series per frame; series may be split over multiple frames according to maxBytesInFrame.
for isNext {
chk := iter.At()
if chk.Chunk == nil {
return ss.Warnings(), fmt.Errorf("StreamChunkedReadResponses: found not populated chunk returned by SeriesSet at ref: %v", chk.Ref)
}
// Cut the chunk.
chks = append(chks, prompb.Chunk{
MinTimeMs: chk.MinTime,
MaxTimeMs: chk.MaxTime,
Type: prompb.Chunk_Encoding(chk.Chunk.Encoding()),
Data: chk.Chunk.Bytes(),
})
frameBytesLeft -= chks[len(chks)-1].Size()
// We are fine with minor inaccuracy of max bytes per frame. The inaccuracy will be max of full chunk size.
isNext = iter.Next()
if frameBytesLeft > 0 && isNext {
continue
}
resp := &prompb.ChunkedReadResponse{
ChunkedSeries: []*prompb.ChunkedSeries{
{Labels: lbls, Chunks: chks},
},
QueryIndex: queryIndex,
}
b, err := resp.PooledMarshal(marshalPool)
if err != nil {
return ss.Warnings(), fmt.Errorf("marshal ChunkedReadResponse: %w", err)
}
if _, err := stream.Write(b); err != nil {
return ss.Warnings(), fmt.Errorf("write to stream: %w", err)
}
// We immediately flush the Write() so it is safe to return to the pool.
marshalPool.Put(&b)
chks = chks[:0]
frameBytesLeft = maxDataLength
}
if err := iter.Err(); err != nil {
return ss.Warnings(), err
}
}
return ss.Warnings(), ss.Err()
}
// MergeLabels merges two sets of sorted proto labels, preferring those in
// primary to those in secondary when there is an overlap.
func MergeLabels(primary, secondary []prompb.Label) []prompb.Label {
result := make([]prompb.Label, 0, len(primary)+len(secondary))
i, j := 0, 0
for i < len(primary) && j < len(secondary) {
switch {
case primary[i].Name < secondary[j].Name:
result = append(result, primary[i])
i++
case primary[i].Name > secondary[j].Name:
result = append(result, secondary[j])
j++
default:
result = append(result, primary[i])
i++
j++
}
}
for ; i < len(primary); i++ {
result = append(result, primary[i])
}
for ; j < len(secondary); j++ {
result = append(result, secondary[j])
}
return result
}
// errSeriesSet implements storage.SeriesSet, just returning an error.
type errSeriesSet struct {
err error
}
func (errSeriesSet) Next() bool {
return false
}
func (errSeriesSet) At() storage.Series {
return nil
}
func (e errSeriesSet) Err() error {
return e.err
}
func (e errSeriesSet) Warnings() annotations.Annotations { return nil }
// concreteSeriesSet implements storage.SeriesSet.
type concreteSeriesSet struct {
cur int
series []storage.Series
}
func (c *concreteSeriesSet) Next() bool {
c.cur++
return c.cur-1 < len(c.series)
}
func (c *concreteSeriesSet) At() storage.Series {
return c.series[c.cur-1]
}
func (c *concreteSeriesSet) Err() error {
return nil
}
func (c *concreteSeriesSet) Warnings() annotations.Annotations { return nil }
// concreteSeries implements storage.Series.
type concreteSeries struct {
labels labels.Labels
floats []prompb.Sample
histograms []prompb.Histogram
}
func (c *concreteSeries) Labels() labels.Labels {
return c.labels.Copy()
}
func (c *concreteSeries) Iterator(it chunkenc.Iterator) chunkenc.Iterator {
if csi, ok := it.(*concreteSeriesIterator); ok {
csi.reset(c)
return csi
}
return newConcreteSeriesIterator(c)
}
// concreteSeriesIterator implements storage.SeriesIterator.
type concreteSeriesIterator struct {
floatsCur int
histogramsCur int
curValType chunkenc.ValueType
series *concreteSeries
}
func newConcreteSeriesIterator(series *concreteSeries) chunkenc.Iterator {
return &concreteSeriesIterator{
floatsCur: -1,
histogramsCur: -1,
curValType: chunkenc.ValNone,
series: series,
}
}
func (c *concreteSeriesIterator) reset(series *concreteSeries) {
c.floatsCur = -1
c.histogramsCur = -1
c.curValType = chunkenc.ValNone
c.series = series
}
// Seek implements storage.SeriesIterator.
func (c *concreteSeriesIterator) Seek(t int64) chunkenc.ValueType {
if c.floatsCur == -1 {
c.floatsCur = 0
}
if c.histogramsCur == -1 {
c.histogramsCur = 0
}
if c.floatsCur >= len(c.series.floats) && c.histogramsCur >= len(c.series.histograms) {
return chunkenc.ValNone
}
// No-op check.
if (c.curValType == chunkenc.ValFloat && c.series.floats[c.floatsCur].Timestamp >= t) ||
((c.curValType == chunkenc.ValHistogram || c.curValType == chunkenc.ValFloatHistogram) && c.series.histograms[c.histogramsCur].Timestamp >= t) {
return c.curValType
}
c.curValType = chunkenc.ValNone
// Binary search between current position and end for both float and histograms samples.
c.floatsCur += sort.Search(len(c.series.floats)-c.floatsCur, func(n int) bool {
return c.series.floats[n+c.floatsCur].Timestamp >= t
})
c.histogramsCur += sort.Search(len(c.series.histograms)-c.histogramsCur, func(n int) bool {
return c.series.histograms[n+c.histogramsCur].Timestamp >= t
})
switch {
case c.floatsCur < len(c.series.floats) && c.histogramsCur < len(c.series.histograms):
// If float samples and histogram samples have overlapping timestamps prefer the float samples.
if c.series.floats[c.floatsCur].Timestamp <= c.series.histograms[c.histogramsCur].Timestamp {
c.curValType = chunkenc.ValFloat
} else {
c.curValType = getHistogramValType(&c.series.histograms[c.histogramsCur])
}
// When the timestamps do not overlap the cursor for the non-selected sample type has advanced too
// far; we decrement it back down here.
if c.series.floats[c.floatsCur].Timestamp != c.series.histograms[c.histogramsCur].Timestamp {
if c.curValType == chunkenc.ValFloat {
c.histogramsCur--
} else {
c.floatsCur--
}
}
case c.floatsCur < len(c.series.floats):
c.curValType = chunkenc.ValFloat
case c.histogramsCur < len(c.series.histograms):
c.curValType = getHistogramValType(&c.series.histograms[c.histogramsCur])
}
return c.curValType
}
func getHistogramValType(h *prompb.Histogram) chunkenc.ValueType {
if h.IsFloatHistogram() {
return chunkenc.ValFloatHistogram
}
return chunkenc.ValHistogram
}
// At implements chunkenc.Iterator.
func (c *concreteSeriesIterator) At() (t int64, v float64) {
if c.curValType != chunkenc.ValFloat {
panic("iterator is not on a float sample")
}
s := c.series.floats[c.floatsCur]
return s.Timestamp, s.Value
}
// AtHistogram implements chunkenc.Iterator.
func (c *concreteSeriesIterator) AtHistogram() (int64, *histogram.Histogram) {
if c.curValType != chunkenc.ValHistogram {
panic("iterator is not on an integer histogram sample")
}
h := c.series.histograms[c.histogramsCur]
return h.Timestamp, HistogramProtoToHistogram(h)
}
// AtFloatHistogram implements chunkenc.Iterator.
func (c *concreteSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
switch c.curValType {
case chunkenc.ValHistogram:
fh := c.series.histograms[c.histogramsCur]
return fh.Timestamp, HistogramProtoToFloatHistogram(fh)
case chunkenc.ValFloatHistogram:
fh := c.series.histograms[c.histogramsCur]
return fh.Timestamp, FloatHistogramProtoToFloatHistogram(fh)
default:
panic("iterator is not on a histogram sample")
}
}
// AtT implements chunkenc.Iterator.
func (c *concreteSeriesIterator) AtT() int64 {
if c.curValType == chunkenc.ValHistogram || c.curValType == chunkenc.ValFloatHistogram {
return c.series.histograms[c.histogramsCur].Timestamp
}
return c.series.floats[c.floatsCur].Timestamp
}
const noTS = int64(math.MaxInt64)
// Next implements chunkenc.Iterator.
func (c *concreteSeriesIterator) Next() chunkenc.ValueType {
peekFloatTS := noTS
if c.floatsCur+1 < len(c.series.floats) {
peekFloatTS = c.series.floats[c.floatsCur+1].Timestamp
}
peekHistTS := noTS
if c.histogramsCur+1 < len(c.series.histograms) {
peekHistTS = c.series.histograms[c.histogramsCur+1].Timestamp
}
c.curValType = chunkenc.ValNone
switch {
case peekFloatTS < peekHistTS:
c.floatsCur++
c.curValType = chunkenc.ValFloat
case peekHistTS < peekFloatTS:
c.histogramsCur++
c.curValType = chunkenc.ValHistogram
case peekFloatTS == noTS && peekHistTS == noTS:
// This only happens when the iterator is exhausted; we set the cursors off the end to prevent
// Seek() from returning anything afterwards.
c.floatsCur = len(c.series.floats)
c.histogramsCur = len(c.series.histograms)
default:
// Prefer float samples to histogram samples if there's a conflict. We advance the cursor for histograms
// anyway otherwise the histogram sample will get selected on the next call to Next().
c.floatsCur++
c.histogramsCur++
c.curValType = chunkenc.ValFloat
}
return c.curValType
}
// Err implements chunkenc.Iterator.
func (c *concreteSeriesIterator) Err() error {
return nil
}
// validateLabelsAndMetricName validates the label names/values and metric names returned from remote read,
// also making sure that there are no labels with duplicate names.
func validateLabelsAndMetricName(ls []prompb.Label) error {
for i, l := range ls {
if l.Name == labels.MetricName && !model.IsValidMetricName(model.LabelValue(l.Value)) {
return fmt.Errorf("invalid metric name: %v", l.Value)
}
if !model.LabelName(l.Name).IsValid() {
return fmt.Errorf("invalid label name: %v", l.Name)
}
if !model.LabelValue(l.Value).IsValid() {
return fmt.Errorf("invalid label value: %v", l.Value)
}
if i > 0 && l.Name == ls[i-1].Name {
return fmt.Errorf("duplicate label with name: %v", l.Name)
}
}
return nil
}
func toLabelMatchers(matchers []*labels.Matcher) ([]*prompb.LabelMatcher, error) {
pbMatchers := make([]*prompb.LabelMatcher, 0, len(matchers))
for _, m := range matchers {
var mType prompb.LabelMatcher_Type
switch m.Type {
case labels.MatchEqual:
mType = prompb.LabelMatcher_EQ
case labels.MatchNotEqual:
mType = prompb.LabelMatcher_NEQ
case labels.MatchRegexp:
mType = prompb.LabelMatcher_RE
case labels.MatchNotRegexp:
mType = prompb.LabelMatcher_NRE
default:
return nil, errors.New("invalid matcher type")
}
pbMatchers = append(pbMatchers, &prompb.LabelMatcher{
Type: mType,
Name: m.Name,
Value: m.Value,
})
}
return pbMatchers, nil
}
// FromLabelMatchers parses protobuf label matchers to Prometheus label matchers.
func FromLabelMatchers(matchers []*prompb.LabelMatcher) ([]*labels.Matcher, error) {
result := make([]*labels.Matcher, 0, len(matchers))
for _, matcher := range matchers {
var mtype labels.MatchType
switch matcher.Type {
case prompb.LabelMatcher_EQ:
mtype = labels.MatchEqual
case prompb.LabelMatcher_NEQ:
mtype = labels.MatchNotEqual
case prompb.LabelMatcher_RE:
mtype = labels.MatchRegexp
case prompb.LabelMatcher_NRE:
mtype = labels.MatchNotRegexp
default:
return nil, errors.New("invalid matcher type")
}
matcher, err := labels.NewMatcher(mtype, matcher.Name, matcher.Value)
if err != nil {
return nil, err
}
result = append(result, matcher)
}
return result, nil
}
func exemplarProtoToExemplar(ep prompb.Exemplar) exemplar.Exemplar {
timestamp := ep.Timestamp
return exemplar.Exemplar{
Labels: labelProtosToLabels(ep.Labels),
Value: ep.Value,
Ts: timestamp,
HasTs: timestamp != 0,
}
}
// HistogramProtoToHistogram extracts a (normal integer) Histogram from the
// provided proto message. The caller has to make sure that the proto message
// represents an integer histogram and not a float histogram, or it panics.
func HistogramProtoToHistogram(hp prompb.Histogram) *histogram.Histogram {
if hp.IsFloatHistogram() {
panic("HistogramProtoToHistogram called with a float histogram")
}
return &histogram.Histogram{
CounterResetHint: histogram.CounterResetHint(hp.ResetHint),
Schema: hp.Schema,
ZeroThreshold: hp.ZeroThreshold,
ZeroCount: hp.GetZeroCountInt(),
Count: hp.GetCountInt(),
Sum: hp.Sum,
PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()),
PositiveBuckets: hp.GetPositiveDeltas(),
NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()),
NegativeBuckets: hp.GetNegativeDeltas(),
}
}
// FloatHistogramProtoToFloatHistogram extracts a float Histogram from the
// provided proto message to a Float Histogram. The caller has to make sure that
// the proto message represents a float histogram and not an integer histogram,
// or it panics.
func FloatHistogramProtoToFloatHistogram(hp prompb.Histogram) *histogram.FloatHistogram {
if !hp.IsFloatHistogram() {
panic("FloatHistogramProtoToFloatHistogram called with an integer histogram")
}
return &histogram.FloatHistogram{
CounterResetHint: histogram.CounterResetHint(hp.ResetHint),
Schema: hp.Schema,
ZeroThreshold: hp.ZeroThreshold,
ZeroCount: hp.GetZeroCountFloat(),
Count: hp.GetCountFloat(),
Sum: hp.Sum,
PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()),
PositiveBuckets: hp.GetPositiveCounts(),
NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()),
NegativeBuckets: hp.GetNegativeCounts(),
}
}
// HistogramProtoToFloatHistogram extracts and converts a (normal integer) histogram from the provided proto message
// to a float histogram. The caller has to make sure that the proto message represents an integer histogram and not a
// float histogram, or it panics.
func HistogramProtoToFloatHistogram(hp prompb.Histogram) *histogram.FloatHistogram {
if hp.IsFloatHistogram() {
panic("HistogramProtoToFloatHistogram called with a float histogram")
}
return &histogram.FloatHistogram{
CounterResetHint: histogram.CounterResetHint(hp.ResetHint),
Schema: hp.Schema,
ZeroThreshold: hp.ZeroThreshold,
ZeroCount: float64(hp.GetZeroCountInt()),
Count: float64(hp.GetCountInt()),
Sum: hp.Sum,
PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()),
PositiveBuckets: deltasToCounts(hp.GetPositiveDeltas()),
NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()),
NegativeBuckets: deltasToCounts(hp.GetNegativeDeltas()),
}
}
func spansProtoToSpans(s []prompb.BucketSpan) []histogram.Span {
spans := make([]histogram.Span, len(s))
for i := 0; i < len(s); i++ {
spans[i] = histogram.Span{Offset: s[i].Offset, Length: s[i].Length}
}
return spans
}
func deltasToCounts(deltas []int64) []float64 {
counts := make([]float64, len(deltas))
var cur float64
for i, d := range deltas {
cur += float64(d)
counts[i] = cur
}
return counts
}
func HistogramToHistogramProto(timestamp int64, h *histogram.Histogram) prompb.Histogram {
return prompb.Histogram{
Count: &prompb.Histogram_CountInt{CountInt: h.Count},
Sum: h.Sum,
Schema: h.Schema,
ZeroThreshold: h.ZeroThreshold,
ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: h.ZeroCount},
NegativeSpans: spansToSpansProto(h.NegativeSpans),
NegativeDeltas: h.NegativeBuckets,
PositiveSpans: spansToSpansProto(h.PositiveSpans),
PositiveDeltas: h.PositiveBuckets,
ResetHint: prompb.Histogram_ResetHint(h.CounterResetHint),
Timestamp: timestamp,
}
}
func FloatHistogramToHistogramProto(timestamp int64, fh *histogram.FloatHistogram) prompb.Histogram {
return prompb.Histogram{
Count: &prompb.Histogram_CountFloat{CountFloat: fh.Count},
Sum: fh.Sum,
Schema: fh.Schema,
ZeroThreshold: fh.ZeroThreshold,
ZeroCount: &prompb.Histogram_ZeroCountFloat{ZeroCountFloat: fh.ZeroCount},
NegativeSpans: spansToSpansProto(fh.NegativeSpans),
NegativeCounts: fh.NegativeBuckets,
PositiveSpans: spansToSpansProto(fh.PositiveSpans),
PositiveCounts: fh.PositiveBuckets,
ResetHint: prompb.Histogram_ResetHint(fh.CounterResetHint),
Timestamp: timestamp,
}
}
func spansToSpansProto(s []histogram.Span) []prompb.BucketSpan {
spans := make([]prompb.BucketSpan, len(s))
for i := 0; i < len(s); i++ {
spans[i] = prompb.BucketSpan{Offset: s[i].Offset, Length: s[i].Length}
}
return spans
}
// LabelProtosToMetric unpack a []*prompb.Label to a model.Metric.
func LabelProtosToMetric(labelPairs []*prompb.Label) model.Metric {
metric := make(model.Metric, len(labelPairs))
for _, l := range labelPairs {
metric[model.LabelName(l.Name)] = model.LabelValue(l.Value)
}
return metric
}
func labelProtosToLabels(labelPairs []prompb.Label) labels.Labels {
b := labels.ScratchBuilder{}
for _, l := range labelPairs {
b.Add(l.Name, l.Value)
}
b.Sort()
return b.Labels()
}
// labelsToLabelsProto transforms labels into prompb labels. The buffer slice
// will be used to avoid allocations if it is big enough to store the labels.
func labelsToLabelsProto(lbls labels.Labels, buf []prompb.Label) []prompb.Label {
result := buf[:0]
lbls.Range(func(l labels.Label) {
result = append(result, prompb.Label{
Name: l.Name,
Value: l.Value,
})
})
return result
}
func labelsToUint32Slice(lbls labels.Labels, symbolTable *rwSymbolTable, buf []uint32) []uint32 {
result := buf[:0]
lbls.Range(func(l labels.Label) {
off, leng := symbolTable.Ref(l.Name)
result = append(result, off, leng)
off, leng = symbolTable.Ref(l.Value)
result = append(result, off, leng)
})
return result
}
func labelsToUint64Slice(lbls labels.Labels, symbolTable *rwSymbolTable, buf []uint64) []uint64 {
result := buf[:0]
lbls.Range(func(l labels.Label) {
result = append(result, symbolTable.Ref64Packed(l.Name))
result = append(result, symbolTable.Ref64Packed(l.Value))
})
return result
}
func labelsToUint32Packed(lbls labels.Labels, symbolTable *rwSymbolTable, buf []uint32) []uint32 {
result := buf[:0]
lbls.Range(func(l labels.Label) {
result = append(result, symbolTable.Ref32Packed(l.Name))
result = append(result, symbolTable.Ref32Packed(l.Value))
})
return result
}
func labelsToByteSlice(lbls labels.Labels, symbolTable *rwSymbolTable, buf []byte) []byte {
result := buf[:0]
lbls.Range(func(l labels.Label) {
off, leng := symbolTable.Ref(l.Name)
result = binary.AppendUvarint(result, uint64(off))
result = binary.AppendUvarint(result, uint64(leng))
off, leng = symbolTable.Ref(l.Value)
result = binary.AppendUvarint(result, uint64(off))
result = binary.AppendUvarint(result, uint64(leng))
})
return result
}
func labelsToUint32SliceLen(lbls labels.Labels, symbolTable *rwSymbolTable, buf []uint32) []uint32 {
result := buf[:0]
lbls.Range(func(l labels.Label) {
off := symbolTable.RefLen(l.Name)
result = append(result, off)
off = symbolTable.RefLen(l.Value)
result = append(result, off)
})
return result
}
func Uint32LenRefToLabels(symbols []byte, minLabels []uint32) labels.Labels {
ls := labels.NewScratchBuilder(len(minLabels) / 2)
labelIdx := 0
for labelIdx < len(minLabels) {
// todo, check for overflow?
offset := minLabels[labelIdx]
labelIdx++
length, n := binary.Uvarint(symbols[offset:])
offset += uint32(n)
name := symbols[offset : uint64(offset)+length]
offset = minLabels[labelIdx]
labelIdx++
length, n = binary.Uvarint(symbols[offset:])
offset += uint32(n)
value := symbols[offset : uint64(offset)+length]
ls.Add(yoloString(name), yoloString(value))
}
return ls.Labels()
}
func yoloString(b []byte) string {
return *(*string)(unsafe.Pointer(&b))
}
func Uint32RefToLabels(symbols string, minLabels []uint32) labels.Labels {
ls := labels.NewScratchBuilder(len(minLabels) / 2)
labelIdx := 0
for labelIdx < len(minLabels) {
// todo, check for overflow?
offset := minLabels[labelIdx]
labelIdx++
length := minLabels[labelIdx]
labelIdx++
name := symbols[offset : offset+length]
// todo, check for overflow?
offset = minLabels[labelIdx]
labelIdx++
length = minLabels[labelIdx]
labelIdx++
value := symbols[offset : offset+length]
ls.Add(name, value)
}
return ls.Labels()
}
func ByteSliceToLabels(symbols string, minLabels []byte) labels.Labels {
ls := labels.NewScratchBuilder(len(minLabels) / 2)
for len(minLabels) > 0 {
// todo, check for overflow?
offset, n := binary.Uvarint(minLabels)
//fmt.Println(:"offset")
minLabels = minLabels[n:]
length, n := binary.Uvarint(minLabels)
minLabels = minLabels[n:]
name := symbols[offset : offset+length]
// todo, check for overflow?
offset, n = binary.Uvarint(minLabels)
minLabels = minLabels[n:]
length, n = binary.Uvarint(minLabels)
minLabels = minLabels[n:]
value := symbols[offset : offset+length]
ls.Add(name, value)
}
// labelIdx := 0
// for labelIdx < len(minLabels) {
// // todo, check for overflow?
// offset := minLabels[labelIdx]
// labelIdx++
// length := minLabels[labelIdx]
// labelIdx++
// name := symbols[offset : offset+length]
// // todo, check for overflow?
// offset = minLabels[labelIdx]
// labelIdx++
// length = minLabels[labelIdx]
// labelIdx++
// value := symbols[offset : offset+length]
// ls.Add(name, value)
// }
return ls.Labels()
}
func ByteSliceToLabelsSymbolsByte(symbols []byte, minLabels []byte) labels.Labels {
ls := labels.NewScratchBuilder(len(minLabels) / 2)
for len(minLabels) > 0 {
// todo, check for overflow?
offset, n := binary.Uvarint(minLabels)
//fmt.Println(:"offset")
minLabels = minLabels[n:]
length, n := binary.Uvarint(minLabels)
minLabels = minLabels[n:]
name := symbols[offset : offset+length]
// todo, check for overflow?
offset, n = binary.Uvarint(minLabels)
minLabels = minLabels[n:]
length, n = binary.Uvarint(minLabels)
minLabels = minLabels[n:]
value := symbols[offset : offset+length]
ls.Add(string(name), string(value))
}
// labelIdx := 0
// for labelIdx < len(minLabels) {
// // todo, check for overflow?
// offset := minLabels[labelIdx]
// labelIdx++
// length := minLabels[labelIdx]
// labelIdx++
// name := symbols[offset : offset+length]
// // todo, check for overflow?
// offset = minLabels[labelIdx]
// labelIdx++
// length = minLabels[labelIdx]
// labelIdx++
// value := symbols[offset : offset+length]
// ls.Add(name, value)
// }
return ls.Labels()
}
func Uint64RefToLabels(symbols string, minLabels []uint64) labels.Labels {
ls := labels.NewScratchBuilder(len(minLabels) / 2)
labelIdx := 0
for labelIdx < len(minLabels) {
// todo, check for overflow?
offset, length := unpackRef64(minLabels[labelIdx])
name := symbols[offset : offset+length]
// todo, check for overflow?
offset, length = unpackRef64(minLabels[labelIdx+1])
value := symbols[offset : offset+length]
ls.Add(name, value)
labelIdx += 2
}
return ls.Labels()
}
// metricTypeToMetricTypeProto transforms a Prometheus metricType into prompb metricType. Since the former is a string we need to transform it to an enum.
func metricTypeToMetricTypeProto(t textparse.MetricType) prompb.MetricMetadata_MetricType {
mt := strings.ToUpper(string(t))
v, ok := prompb.MetricMetadata_MetricType_value[mt]
if !ok {
return prompb.MetricMetadata_UNKNOWN
}
return prompb.MetricMetadata_MetricType(v)
}
// DecodeWriteRequest from an io.Reader into a prompb.WriteRequest, handling
// snappy decompression.
func DecodeWriteRequest(r io.Reader) (*prompb.WriteRequest, error) {
compressed, err := io.ReadAll(r)
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.WriteRequest
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}
func DecodeOTLPWriteRequest(r *http.Request) (pmetricotlp.ExportRequest, error) {
contentType := r.Header.Get("Content-Type")
var decoderFunc func(buf []byte) (pmetricotlp.ExportRequest, error)
switch contentType {
case pbContentType:
decoderFunc = func(buf []byte) (pmetricotlp.ExportRequest, error) {
req := pmetricotlp.NewExportRequest()
return req, req.UnmarshalProto(buf)
}
case jsonContentType:
decoderFunc = func(buf []byte) (pmetricotlp.ExportRequest, error) {
req := pmetricotlp.NewExportRequest()
return req, req.UnmarshalJSON(buf)
}
default:
return pmetricotlp.NewExportRequest(), fmt.Errorf("unsupported content type: %s, supported: [%s, %s]", contentType, jsonContentType, pbContentType)
}
reader := r.Body
// Handle compression.
switch r.Header.Get("Content-Encoding") {
case "gzip":
gr, err := gzip.NewReader(reader)
if err != nil {
return pmetricotlp.NewExportRequest(), err
}
reader = gr
case "":
// No compression.
default:
return pmetricotlp.NewExportRequest(), fmt.Errorf("unsupported compression: %s. Only \"gzip\" or no compression supported", r.Header.Get("Content-Encoding"))
}
body, err := io.ReadAll(reader)
if err != nil {
r.Body.Close()
return pmetricotlp.NewExportRequest(), err
}
if err = r.Body.Close(); err != nil {
return pmetricotlp.NewExportRequest(), err
}
otlpReq, err := decoderFunc(body)
if err != nil {
return pmetricotlp.NewExportRequest(), err
}
return otlpReq, nil
}
// DecodeMinimizedWriteRequest from an io.Reader into a prompb.WriteRequest, handling
// snappy decompression.
func DecodeMinimizedWriteRequest(r io.Reader) (*prompb.MinimizedWriteRequest, error) {
compressed, err := io.ReadAll(r)
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.MinimizedWriteRequest
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}
func DecodeMinimizedWriteRequestLen(r io.Reader) (*prompb.MinimizedWriteRequestLen, error) {
compressed, err := io.ReadAll(r)
if err != nil {
return nil, err
}
reqBuf, err := snappy.Decode(nil, compressed)
if err != nil {
return nil, err
}
var req prompb.MinimizedWriteRequestLen
if err := proto.Unmarshal(reqBuf, &req); err != nil {
return nil, err
}
return &req, nil
}
func MinimizedWriteRequestToWriteRequest(redReq *prompb.MinimizedWriteRequest) (*prompb.WriteRequest, error) {
req := &prompb.WriteRequest{
Timeseries: make([]prompb.TimeSeries, len(redReq.Timeseries)),
//Metadata: redReq.Metadata,
}
for i, rts := range redReq.Timeseries {
Uint32RefToLabels(redReq.Symbols, rts.LabelSymbols).Range(func(l labels.Label) {
req.Timeseries[i].Labels = append(req.Timeseries[i].Labels, prompb.Label{
Name: l.Name,
Value: l.Value,
})
})
exemplars := make([]prompb.Exemplar, len(rts.Exemplars))
for j, e := range rts.Exemplars {
exemplars[j].Value = e.Value
exemplars[j].Timestamp = e.Timestamp
exemplars[j].Labels = e.Labels
}
req.Timeseries[i].Samples = rts.Samples
req.Timeseries[i].Exemplars = exemplars
req.Timeseries[i].Histograms = rts.Histograms
}
return req, nil
}
// for use with minimized remote write proto format
func packRef(offset, length int) uint32 {
return uint32((offset&0xFFFFF)<<12 | (length & 0xFFF))
}
func unpackRef(ref uint32) (offset, length int) {
return int(ref>>12) & 0xFFFFF, int(ref & 0xFFF)
}
// for use with minimized remote write proto format
func packRef64(offset, length uint32) uint64 {
return (uint64(offset) << 32) | uint64(length)
}
func unpackRef64(ref uint64) (offset, length uint32) {
return uint32(ref >> 32), uint32(ref & 0xFFFFFFFF)
}