prometheus/tsdb/chunkenc/histo.go
beorn7 cb75747bce Fix re-encoding
Signed-off-by: beorn7 <beorn@grafana.com>
2021-07-06 00:20:35 +02:00

773 lines
21 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// The code in this file was largely written by Damian Gryski as part of
// https://github.com/dgryski/go-tsz and published under the license below.
// It was modified to accommodate reading from byte slices without modifying
// the underlying bytes, which would panic when reading from mmap'd
// read-only byte slices.
// Copyright (c) 2015,2016 Damian Gryski <damian@gryski.com>
// All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package chunkenc
import (
"encoding/binary"
"math"
"math/bits"
"github.com/prometheus/prometheus/pkg/histogram"
)
const ()
// HistoChunk holds sparse histogram encoded sample data.
// Appends a histogram sample
// * schema defines the resolution (number of buckets per power of 2)
// Currently, valid numbers are -4 <= n <= 8.
// They are all for base-2 bucket schemas, where 1 is a bucket boundary in each case, and
// then each power of two is divided into 2^n logarithmic buckets.
// Or in other words, each bucket boundary is the previous boundary times 2^(2^-n).
// In the future, more bucket schemas may be added using numbers < -4 or > 8.
// The bucket with upper boundary of 1 is always bucket 0.
// Then negative numbers for smaller boundaries and positive for uppers.
//
// fields are stored like so:
// field ts count zeroCount sum []posbuckets negbuckets
// observation 1 raw raw raw raw []raw []raw
// observation 2 delta delta delta xor []delta []delta
// observation >2 dod dod dod xor []dod []dod
// TODO zerothreshold
type HistoChunk struct {
b bstream
}
// NewHistoChunk returns a new chunk with Histo encoding of the given size.
func NewHistoChunk() *HistoChunk {
b := make([]byte, 2, 128)
return &HistoChunk{b: bstream{stream: b, count: 0}}
}
// Encoding returns the encoding type.
func (c *HistoChunk) Encoding() Encoding {
return EncSHS
}
// Bytes returns the underlying byte slice of the chunk.
func (c *HistoChunk) Bytes() []byte {
return c.b.bytes()
}
// NumSamples returns the number of samples in the chunk.
func (c *HistoChunk) NumSamples() int {
return int(binary.BigEndian.Uint16(c.Bytes()))
}
// Meta returns the histogram metadata.
// callers may only call this on chunks that have at least one sample
func (c *HistoChunk) Meta() (int32, []histogram.Span, []histogram.Span, error) {
if c.NumSamples() == 0 {
panic("HistoChunk.Meta() called on an empty chunk")
}
b := newBReader(c.Bytes()[2:])
return readHistoChunkMeta(&b)
}
// Compact implements the Chunk interface.
func (c *HistoChunk) Compact() {
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold {
buf := make([]byte, l)
copy(buf, c.b.stream)
c.b.stream = buf
}
}
// Appender implements the Chunk interface.
func (c *HistoChunk) Appender() (Appender, error) {
it := c.iterator(nil)
// To get an appender we must know the state it would have if we had
// appended all existing data from scratch.
// We iterate through the end and populate via the iterator's state.
for it.Next() {
}
if err := it.Err(); err != nil {
return nil, err
}
a := &HistoAppender{
b: &c.b,
schema: it.schema,
posSpans: it.posSpans,
negSpans: it.negSpans,
t: it.t,
cnt: it.cnt,
zcnt: it.zcnt,
tDelta: it.tDelta,
cntDelta: it.cntDelta,
zcntDelta: it.zcntDelta,
posbuckets: it.posbuckets,
negbuckets: it.negbuckets,
posbucketsDelta: it.posbucketsDelta,
negbucketsDelta: it.negbucketsDelta,
sum: it.sum,
leading: it.leading,
trailing: it.trailing,
buf64: make([]byte, binary.MaxVarintLen64),
}
if binary.BigEndian.Uint16(a.b.bytes()) == 0 {
a.leading = 0xff
}
return a, nil
}
func countSpans(spans []histogram.Span) int {
var cnt int
for _, s := range spans {
cnt += int(s.Length)
}
return cnt
}
func newHistoIterator(b []byte) *histoIterator {
it := &histoIterator{
br: newBReader(b),
numTotal: binary.BigEndian.Uint16(b),
t: math.MinInt64,
}
// The first 2 bytes contain chunk headers.
// We skip that for actual samples.
_, _ = it.br.readBits(16)
return it
}
func (c *HistoChunk) iterator(it Iterator) *histoIterator {
// TODO fix this. this is taken from xor.go // dieter not sure what the purpose of this is
// Should iterators guarantee to act on a copy of the data so it doesn't lock append?
// When using striped locks to guard access to chunks, probably yes.
// Could only copy data if the chunk is not completed yet.
//if histoIter, ok := it.(*histoIterator); ok {
// histoIter.Reset(c.b.bytes())
// return histoIter
//}
return newHistoIterator(c.b.bytes())
}
// Iterator implements the Chunk interface.
func (c *HistoChunk) Iterator(it Iterator) Iterator {
return c.iterator(it)
}
// HistoAppender is an Appender implementation for sparse histograms.
type HistoAppender struct {
b *bstream
// Metadata:
schema int32
posSpans, negSpans []histogram.Span
// For the fields that are tracked as dod's. Note that we expect to
// handle negative deltas (e.g. resets) by creating new chunks, we still
// want to support it in general hence signed integer types.
t int64
cnt, zcnt uint64
tDelta, cntDelta, zcntDelta int64
posbuckets, negbuckets []int64
posbucketsDelta, negbucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
buf64 []byte // For working on varint64's.
}
func putVarint(b *bstream, buf []byte, x int64) {
for _, byt := range buf[:binary.PutVarint(buf, x)] {
b.writeByte(byt)
}
}
func putUvarint(b *bstream, buf []byte, x uint64) {
for _, byt := range buf[:binary.PutUvarint(buf, x)] {
b.writeByte(byt)
}
}
// Append implements Appender. This implementation does nothing for now.
// TODO(beorn7): Implement in a meaningful way, i.e. we need to support
// appending of stale markers, but this should never be used for "real"
// samples.
func (a *HistoAppender) Append(int64, float64) {}
// Appendable returns whether the chunk can be appended to, and if so
// whether any recoding needs to happen using the provided interjections
// (in case of any new buckets, positive or negative range, respectively)
// The chunk is not appendable if:
// * the schema has changed
// * the zerobucket threshold has changed
// * any buckets disappeared
func (a *HistoAppender) Appendable(h histogram.SparseHistogram) ([]Interjection, []Interjection, bool) {
// TODO zerothreshold
if h.Schema != a.schema {
return nil, nil, false
}
posInterjections, ok := compareSpans(a.posSpans, h.PositiveSpans)
if !ok {
return nil, nil, false
}
negInterjections, ok := compareSpans(a.negSpans, h.NegativeSpans)
if !ok {
return nil, nil, false
}
return posInterjections, negInterjections, ok
}
// AppendHistogram appends a SparseHistogram to the chunk. We assume the
// histogram is properly structured. E.g. that the number of pos/neg buckets
// used corresponds to the number conveyed by the pos/neg span structures.
// callers must call Appendable() first and act accordingly!
func (a *HistoAppender) AppendHistogram(t int64, h histogram.SparseHistogram) {
var tDelta, cntDelta, zcntDelta int64
num := binary.BigEndian.Uint16(a.b.bytes())
switch num {
case 0:
// the first append gets the privilege to dictate the metadata
// but it's also responsible for encoding it into the chunk!
writeHistoChunkMeta(a.b, h.Schema, h.PositiveSpans, h.NegativeSpans)
a.schema = h.Schema
a.posSpans, a.negSpans = h.PositiveSpans, h.NegativeSpans
numPosBuckets, numNegBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans)
a.posbuckets = make([]int64, numPosBuckets)
a.negbuckets = make([]int64, numNegBuckets)
a.posbucketsDelta = make([]int64, numPosBuckets)
a.negbucketsDelta = make([]int64, numNegBuckets)
// now store actual data
putVarint(a.b, a.buf64, t)
putUvarint(a.b, a.buf64, h.Count)
putUvarint(a.b, a.buf64, h.ZeroCount)
a.b.writeBits(math.Float64bits(h.Sum), 64)
for _, buck := range h.PositiveBuckets {
putVarint(a.b, a.buf64, buck)
}
for _, buck := range h.NegativeBuckets {
putVarint(a.b, a.buf64, buck)
}
case 1:
tDelta = t - a.t
cntDelta = int64(h.Count) - int64(a.cnt)
zcntDelta = int64(h.ZeroCount) - int64(a.zcnt)
putVarint(a.b, a.buf64, tDelta)
putVarint(a.b, a.buf64, cntDelta)
putVarint(a.b, a.buf64, zcntDelta)
a.writeSumDelta(h.Sum)
for i, buck := range h.PositiveBuckets {
delta := buck - a.posbuckets[i]
putVarint(a.b, a.buf64, delta)
a.posbucketsDelta[i] = delta
}
for i, buck := range h.NegativeBuckets {
delta := buck - a.negbuckets[i]
putVarint(a.b, a.buf64, delta)
a.negbucketsDelta[i] = delta
}
default:
tDelta = t - a.t
cntDelta = int64(h.Count) - int64(a.cnt)
zcntDelta = int64(h.ZeroCount) - int64(a.zcnt)
tDod := tDelta - a.tDelta
cntDod := cntDelta - a.cntDelta
zcntDod := zcntDelta - a.zcntDelta
putInt64VBBucket(a.b, tDod)
putInt64VBBucket(a.b, cntDod)
putInt64VBBucket(a.b, zcntDod)
a.writeSumDelta(h.Sum)
for i, buck := range h.PositiveBuckets {
delta := buck - a.posbuckets[i]
dod := delta - a.posbucketsDelta[i]
putInt64VBBucket(a.b, dod)
a.posbucketsDelta[i] = delta
}
for i, buck := range h.NegativeBuckets {
delta := buck - a.negbuckets[i]
dod := delta - a.negbucketsDelta[i]
putInt64VBBucket(a.b, dod)
a.negbucketsDelta[i] = delta
}
}
binary.BigEndian.PutUint16(a.b.bytes(), num+1)
a.t = t
a.cnt = h.Count
a.zcnt = h.ZeroCount
a.tDelta = tDelta
a.cntDelta = cntDelta
a.zcntDelta = zcntDelta
a.posbuckets, a.negbuckets = h.PositiveBuckets, h.NegativeBuckets
// note that the bucket deltas were already updated above
a.sum = h.Sum
}
// Recode converts the current chunk to accommodate an expansion of the set of
// (positive and/or negative) buckets used, according to the provided
// interjections, resulting in the honoring of the provided new posSpans and
// negSpans.
func (a *HistoAppender) Recode(posInterjections, negInterjections []Interjection, posSpans, negSpans []histogram.Span) (Chunk, Appender) {
// TODO(beorn7): This currently just decodes everything and then encodes
// it again with the new span layout. This can probably be done in-place
// by editing the chunk. But let's first see how expensive it is in the
// big picture.
it := newHistoIterator(a.b.bytes())
hc := NewHistoChunk()
app, err := hc.Appender()
if err != nil {
panic(err)
}
numPosBuckets, numNegBuckets := countSpans(posSpans), countSpans(negSpans)
for it.Next() {
tOld, hOld := it.AtHistogram()
// We have to newly allocate slices for the modified buckets
// here because they are kept by the appender until the next
// append.
// TODO(beorn7): We might be able to optimize this.
posBuckets := make([]int64, numPosBuckets)
negBuckets := make([]int64, numNegBuckets)
// Save the modified histogram to the new chunk.
hOld.PositiveSpans, hOld.NegativeSpans = posSpans, negSpans
if len(posInterjections) > 0 {
hOld.PositiveBuckets = interject(hOld.PositiveBuckets, posBuckets, posInterjections)
}
if len(negInterjections) > 0 {
hOld.NegativeBuckets = interject(hOld.NegativeBuckets, negBuckets, negInterjections)
}
app.AppendHistogram(tOld, hOld)
}
return hc, app
}
func (a *HistoAppender) writeSumDelta(v float64) {
vDelta := math.Float64bits(v) ^ math.Float64bits(a.sum)
if vDelta == 0 {
a.b.writeBit(zero)
return
}
a.b.writeBit(one)
leading := uint8(bits.LeadingZeros64(vDelta))
trailing := uint8(bits.TrailingZeros64(vDelta))
// Clamp number of leading zeros to avoid overflow when encoding.
if leading >= 32 {
leading = 31
}
if a.leading != 0xff && leading >= a.leading && trailing >= a.trailing {
a.b.writeBit(zero)
a.b.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing))
} else {
a.leading, a.trailing = leading, trailing
a.b.writeBit(one)
a.b.writeBits(uint64(leading), 5)
// Note that if leading == trailing == 0, then sigbits == 64. But that value doesn't actually fit into the 6 bits we have.
// Luckily, we never need to encode 0 significant bits, since that would put us in the other case (vdelta == 0).
// So instead we write out a 0 and adjust it back to 64 on unpacking.
sigbits := 64 - leading - trailing
a.b.writeBits(uint64(sigbits), 6)
a.b.writeBits(vDelta>>trailing, int(sigbits))
}
}
type histoIterator struct {
br bstreamReader
numTotal uint16
numRead uint16
// Metadata:
schema int32
posSpans, negSpans []histogram.Span
// For the fields that are tracked as dod's.
t int64
cnt, zcnt uint64
tDelta, cntDelta, zcntDelta int64
posbuckets, negbuckets []int64
posbucketsDelta, negbucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
err error
}
func (it *histoIterator) Seek(t int64) bool {
if it.err != nil {
return false
}
for t > it.t || it.numRead == 0 {
if !it.Next() {
return false
}
}
return true
}
func (it *histoIterator) At() (int64, float64) {
panic("cannot call histoIterator.At().")
}
func (it *histoIterator) ChunkEncoding() Encoding {
return EncSHS
}
func (it *histoIterator) AtHistogram() (int64, histogram.SparseHistogram) {
return it.t, histogram.SparseHistogram{
Count: it.cnt,
ZeroCount: it.zcnt,
Sum: it.sum,
ZeroThreshold: 0, // TODO
Schema: it.schema,
PositiveSpans: it.posSpans,
NegativeSpans: it.negSpans,
PositiveBuckets: it.posbuckets,
NegativeBuckets: it.negbuckets,
}
}
func (it *histoIterator) Err() error {
return it.err
}
func (it *histoIterator) Reset(b []byte) {
// The first 2 bytes contain chunk headers.
// We skip that for actual samples.
it.br = newBReader(b[2:])
it.numTotal = binary.BigEndian.Uint16(b)
it.numRead = 0
it.t, it.cnt, it.zcnt = 0, 0, 0
it.tDelta, it.cntDelta, it.zcntDelta = 0, 0, 0
for i := range it.posbuckets {
it.posbuckets[i] = 0
it.posbucketsDelta[i] = 0
}
for i := range it.negbuckets {
it.negbuckets[i] = 0
it.negbucketsDelta[i] = 0
}
it.sum = 0
it.leading = 0
it.trailing = 0
it.err = nil
}
func (it *histoIterator) Next() bool {
if it.err != nil || it.numRead == it.numTotal {
return false
}
if it.numRead == 0 {
// first read is responsible for reading chunk metadata and initializing fields that depend on it
schema, posSpans, negSpans, err := readHistoChunkMeta(&it.br)
if err != nil {
it.err = err
return false
}
it.schema = schema
it.posSpans, it.negSpans = posSpans, negSpans
numPosBuckets, numNegBuckets := countSpans(posSpans), countSpans(negSpans)
it.posbuckets = make([]int64, numPosBuckets)
it.negbuckets = make([]int64, numNegBuckets)
it.posbucketsDelta = make([]int64, numPosBuckets)
it.negbucketsDelta = make([]int64, numNegBuckets)
// now read actual data
t, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.t = t
cnt, err := binary.ReadUvarint(&it.br)
if err != nil {
it.err = err
return false
}
it.cnt = cnt
zcnt, err := binary.ReadUvarint(&it.br)
if err != nil {
it.err = err
return false
}
it.zcnt = zcnt
sum, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
it.sum = math.Float64frombits(sum)
for i := range it.posbuckets {
v, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.posbuckets[i] = v
}
for i := range it.negbuckets {
v, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.negbuckets[i] = v
}
it.numRead++
return true
}
if it.numRead == 1 {
tDelta, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.tDelta = tDelta
it.t += int64(it.tDelta)
cntDelta, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.cntDelta = cntDelta
it.cnt = uint64(int64(it.cnt) + it.cntDelta)
zcntDelta, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.zcntDelta = zcntDelta
it.zcnt = uint64(int64(it.zcnt) + it.zcntDelta)
ok := it.readSum()
if !ok {
return false
}
for i := range it.posbuckets {
delta, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.posbucketsDelta[i] = delta
it.posbuckets[i] = it.posbuckets[i] + delta
}
for i := range it.negbuckets {
delta, err := binary.ReadVarint(&it.br)
if err != nil {
it.err = err
return false
}
it.negbucketsDelta[i] = delta
it.negbuckets[i] = it.negbuckets[i] + delta
}
it.numRead++
return true
}
tDod, err := readInt64VBBucket(&it.br)
if err != nil {
it.err = err
return false
}
it.tDelta = it.tDelta + tDod
it.t += it.tDelta
cntDod, err := readInt64VBBucket(&it.br)
if err != nil {
it.err = err
return false
}
it.cntDelta = it.cntDelta + cntDod
it.cnt = uint64(int64(it.cnt) + it.cntDelta)
zcntDod, err := readInt64VBBucket(&it.br)
if err != nil {
it.err = err
return false
}
it.zcntDelta = it.zcntDelta + zcntDod
it.zcnt = uint64(int64(it.zcnt) + it.zcntDelta)
ok := it.readSum()
if !ok {
return false
}
for i := range it.posbuckets {
dod, err := readInt64VBBucket(&it.br)
if err != nil {
it.err = err
return false
}
it.posbucketsDelta[i] = it.posbucketsDelta[i] + dod
it.posbuckets[i] = it.posbuckets[i] + it.posbucketsDelta[i]
}
for i := range it.negbuckets {
dod, err := readInt64VBBucket(&it.br)
if err != nil {
it.err = err
return false
}
it.negbucketsDelta[i] = it.negbucketsDelta[i] + dod
it.negbuckets[i] = it.negbuckets[i] + it.negbucketsDelta[i]
}
it.numRead++
return true
}
func (it *histoIterator) readSum() bool {
bit, err := it.br.readBitFast()
if err != nil {
bit, err = it.br.readBit()
}
if err != nil {
it.err = err
return false
}
if bit == zero {
// it.sum = it.sum
} else {
bit, err := it.br.readBitFast()
if err != nil {
bit, err = it.br.readBit()
}
if err != nil {
it.err = err
return false
}
if bit == zero {
// reuse leading/trailing zero bits
// it.leading, it.trailing = it.leading, it.trailing
} else {
bits, err := it.br.readBitsFast(5)
if err != nil {
bits, err = it.br.readBits(5)
}
if err != nil {
it.err = err
return false
}
it.leading = uint8(bits)
bits, err = it.br.readBitsFast(6)
if err != nil {
bits, err = it.br.readBits(6)
}
if err != nil {
it.err = err
return false
}
mbits := uint8(bits)
// 0 significant bits here means we overflowed and we actually need 64; see comment in encoder
if mbits == 0 {
mbits = 64
}
it.trailing = 64 - it.leading - mbits
}
mbits := 64 - it.leading - it.trailing
bits, err := it.br.readBitsFast(mbits)
if err != nil {
bits, err = it.br.readBits(mbits)
}
if err != nil {
it.err = err
return false
}
vbits := math.Float64bits(it.sum)
vbits ^= bits << it.trailing
it.sum = math.Float64frombits(vbits)
}
return true
}