mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-14 17:44:06 -08:00
de16f5e387
The `info` function is an experiment to improve UX around including labels from info metrics. `info` has to be enabled via the feature flag `--enable-feature=promql-experimental-functions`. This MVP of info simplifies the implementation by assuming: * Only support for the target_info metric * That target_info's identifying labels are job and instance Also: * Encode info samples' original timestamp as sample value * Deduce info series select hints from top-most VectorSelector --------- Signed-off-by: Arve Knudsen <arve.knudsen@gmail.com> Co-authored-by: Ying WANG <ying.wang@grafana.com> Co-authored-by: Augustin Husson <augustin.husson@amadeus.com> Co-authored-by: Bartlomiej Plotka <bwplotka@gmail.com> Co-authored-by: Björn Rabenstein <github@rabenste.in> Co-authored-by: Bryan Boreham <bjboreham@gmail.com>
455 lines
14 KiB
Go
455 lines
14 KiB
Go
// Copyright 2024 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"slices"
|
|
"strings"
|
|
|
|
"github.com/grafana/regexp"
|
|
|
|
"github.com/prometheus/prometheus/model/labels"
|
|
"github.com/prometheus/prometheus/promql/parser"
|
|
"github.com/prometheus/prometheus/storage"
|
|
"github.com/prometheus/prometheus/util/annotations"
|
|
)
|
|
|
|
const targetInfo = "target_info"
|
|
|
|
// identifyingLabels are the labels we consider as identifying for info metrics.
|
|
// Currently hard coded, so we don't need knowledge of individual info metrics.
|
|
var identifyingLabels = []string{"instance", "job"}
|
|
|
|
// evalInfo implements the info PromQL function.
|
|
func (ev *evaluator) evalInfo(ctx context.Context, args parser.Expressions) (parser.Value, annotations.Annotations) {
|
|
val, annots := ev.eval(ctx, args[0])
|
|
mat := val.(Matrix)
|
|
// Map from data label name to matchers.
|
|
dataLabelMatchers := map[string][]*labels.Matcher{}
|
|
var infoNameMatchers []*labels.Matcher
|
|
if len(args) > 1 {
|
|
// TODO: Introduce a dedicated LabelSelector type.
|
|
labelSelector := args[1].(*parser.VectorSelector)
|
|
for _, m := range labelSelector.LabelMatchers {
|
|
dataLabelMatchers[m.Name] = append(dataLabelMatchers[m.Name], m)
|
|
if m.Name == labels.MetricName {
|
|
infoNameMatchers = append(infoNameMatchers, m)
|
|
}
|
|
}
|
|
} else {
|
|
infoNameMatchers = []*labels.Matcher{labels.MustNewMatcher(labels.MatchEqual, labels.MetricName, targetInfo)}
|
|
}
|
|
|
|
// Don't try to enrich info series.
|
|
ignoreSeries := map[int]struct{}{}
|
|
loop:
|
|
for i, s := range mat {
|
|
name := s.Metric.Get(labels.MetricName)
|
|
for _, m := range infoNameMatchers {
|
|
if m.Matches(name) {
|
|
ignoreSeries[i] = struct{}{}
|
|
continue loop
|
|
}
|
|
}
|
|
}
|
|
|
|
selectHints := ev.infoSelectHints(args[0])
|
|
infoSeries, ws, err := ev.fetchInfoSeries(ctx, mat, ignoreSeries, dataLabelMatchers, selectHints)
|
|
if err != nil {
|
|
ev.error(err)
|
|
}
|
|
annots.Merge(ws)
|
|
|
|
res, ws := ev.combineWithInfoSeries(ctx, mat, infoSeries, ignoreSeries, dataLabelMatchers)
|
|
annots.Merge(ws)
|
|
return res, annots
|
|
}
|
|
|
|
// infoSelectHints calculates the storage.SelectHints for selecting info series, given expr (first argument to info call).
|
|
func (ev *evaluator) infoSelectHints(expr parser.Expr) storage.SelectHints {
|
|
var nodeTimestamp *int64
|
|
var offset int64
|
|
parser.Inspect(expr, func(node parser.Node, path []parser.Node) error {
|
|
switch n := node.(type) {
|
|
case *parser.VectorSelector:
|
|
if n.Timestamp != nil {
|
|
nodeTimestamp = n.Timestamp
|
|
}
|
|
offset = durationMilliseconds(n.OriginalOffset)
|
|
return fmt.Errorf("end traversal")
|
|
default:
|
|
return nil
|
|
}
|
|
})
|
|
|
|
start := ev.startTimestamp
|
|
end := ev.endTimestamp
|
|
if nodeTimestamp != nil {
|
|
// The timestamp on the selector overrides everything.
|
|
start = *nodeTimestamp
|
|
end = *nodeTimestamp
|
|
}
|
|
// Reduce the start by one fewer ms than the lookback delta
|
|
// because wo want to exclude samples that are precisely the
|
|
// lookback delta before the eval time.
|
|
start -= durationMilliseconds(ev.lookbackDelta) - 1
|
|
start -= offset
|
|
end -= offset
|
|
|
|
return storage.SelectHints{
|
|
Start: start,
|
|
End: end,
|
|
Step: ev.interval,
|
|
Func: "info",
|
|
}
|
|
}
|
|
|
|
// fetchInfoSeries fetches info series given matching identifying labels in mat.
|
|
// Series in ignoreSeries are not fetched.
|
|
// dataLabelMatchers may be mutated.
|
|
func (ev *evaluator) fetchInfoSeries(ctx context.Context, mat Matrix, ignoreSeries map[int]struct{}, dataLabelMatchers map[string][]*labels.Matcher, selectHints storage.SelectHints) (Matrix, annotations.Annotations, error) {
|
|
// A map of values for all identifying labels we are interested in.
|
|
idLblValues := map[string]map[string]struct{}{}
|
|
for i, s := range mat {
|
|
if _, exists := ignoreSeries[i]; exists {
|
|
continue
|
|
}
|
|
|
|
// Register relevant values per identifying label for this series.
|
|
for _, l := range identifyingLabels {
|
|
val := s.Metric.Get(l)
|
|
if val == "" {
|
|
continue
|
|
}
|
|
|
|
if idLblValues[l] == nil {
|
|
idLblValues[l] = map[string]struct{}{}
|
|
}
|
|
idLblValues[l][val] = struct{}{}
|
|
}
|
|
}
|
|
if len(idLblValues) == 0 {
|
|
return nil, nil, nil
|
|
}
|
|
|
|
// Generate regexps for every interesting value per identifying label.
|
|
var sb strings.Builder
|
|
idLblRegexps := make(map[string]string, len(idLblValues))
|
|
for name, vals := range idLblValues {
|
|
sb.Reset()
|
|
i := 0
|
|
for v := range vals {
|
|
if i > 0 {
|
|
sb.WriteRune('|')
|
|
}
|
|
sb.WriteString(regexp.QuoteMeta(v))
|
|
i++
|
|
}
|
|
idLblRegexps[name] = sb.String()
|
|
}
|
|
|
|
var infoLabelMatchers []*labels.Matcher
|
|
for name, re := range idLblRegexps {
|
|
infoLabelMatchers = append(infoLabelMatchers, labels.MustNewMatcher(labels.MatchRegexp, name, re))
|
|
}
|
|
var nameMatcher *labels.Matcher
|
|
for name, ms := range dataLabelMatchers {
|
|
for i, m := range ms {
|
|
if m.Name == labels.MetricName {
|
|
nameMatcher = m
|
|
ms = slices.Delete(ms, i, i+1)
|
|
}
|
|
infoLabelMatchers = append(infoLabelMatchers, m)
|
|
}
|
|
if len(ms) > 0 {
|
|
dataLabelMatchers[name] = ms
|
|
} else {
|
|
delete(dataLabelMatchers, name)
|
|
}
|
|
}
|
|
if nameMatcher == nil {
|
|
// Default to using the target_info metric.
|
|
infoLabelMatchers = append([]*labels.Matcher{labels.MustNewMatcher(labels.MatchEqual, labels.MetricName, targetInfo)}, infoLabelMatchers...)
|
|
}
|
|
|
|
infoIt := ev.querier.Select(ctx, false, &selectHints, infoLabelMatchers...)
|
|
infoSeries, ws, err := expandSeriesSet(ctx, infoIt)
|
|
if err != nil {
|
|
return nil, ws, err
|
|
}
|
|
|
|
infoMat := ev.evalSeries(ctx, infoSeries, 0, true)
|
|
return infoMat, ws, nil
|
|
}
|
|
|
|
// combineWithInfoSeries combines mat with select data labels from infoMat.
|
|
func (ev *evaluator) combineWithInfoSeries(ctx context.Context, mat, infoMat Matrix, ignoreSeries map[int]struct{}, dataLabelMatchers map[string][]*labels.Matcher) (Matrix, annotations.Annotations) {
|
|
buf := make([]byte, 0, 1024)
|
|
lb := labels.NewScratchBuilder(0)
|
|
sigFunction := func(name string) func(labels.Labels) string {
|
|
return func(lset labels.Labels) string {
|
|
lb.Reset()
|
|
lb.Add(labels.MetricName, name)
|
|
lset.MatchLabels(true, identifyingLabels...).Range(func(l labels.Label) {
|
|
lb.Add(l.Name, l.Value)
|
|
})
|
|
lb.Sort()
|
|
return string(lb.Labels().Bytes(buf))
|
|
}
|
|
}
|
|
|
|
infoMetrics := map[string]struct{}{}
|
|
for _, is := range infoMat {
|
|
lblMap := is.Metric.Map()
|
|
infoMetrics[lblMap[labels.MetricName]] = struct{}{}
|
|
}
|
|
sigfs := make(map[string]func(labels.Labels) string, len(infoMetrics))
|
|
for name := range infoMetrics {
|
|
sigfs[name] = sigFunction(name)
|
|
}
|
|
|
|
// Keep a copy of the original point slices so they can be returned to the pool.
|
|
origMatrices := []Matrix{
|
|
make(Matrix, len(mat)),
|
|
make(Matrix, len(infoMat)),
|
|
}
|
|
copy(origMatrices[0], mat)
|
|
copy(origMatrices[1], infoMat)
|
|
|
|
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
|
|
originalNumSamples := ev.currentSamples
|
|
|
|
// Create an output vector that is as big as the input matrix with
|
|
// the most time series.
|
|
biggestLen := max(len(mat), len(infoMat))
|
|
baseVector := make(Vector, 0, len(mat))
|
|
infoVector := make(Vector, 0, len(infoMat))
|
|
enh := &EvalNodeHelper{
|
|
Out: make(Vector, 0, biggestLen),
|
|
}
|
|
type seriesAndTimestamp struct {
|
|
Series
|
|
ts int64
|
|
}
|
|
seriess := make(map[uint64]seriesAndTimestamp, biggestLen) // Output series by series hash.
|
|
tempNumSamples := ev.currentSamples
|
|
|
|
// For every base series, compute signature per info metric.
|
|
baseSigs := make([]map[string]string, 0, len(mat))
|
|
for _, s := range mat {
|
|
sigs := make(map[string]string, len(infoMetrics))
|
|
for infoName := range infoMetrics {
|
|
sigs[infoName] = sigfs[infoName](s.Metric)
|
|
}
|
|
baseSigs = append(baseSigs, sigs)
|
|
}
|
|
|
|
infoSigs := make([]string, 0, len(infoMat))
|
|
for _, s := range infoMat {
|
|
name := s.Metric.Map()[labels.MetricName]
|
|
infoSigs = append(infoSigs, sigfs[name](s.Metric))
|
|
}
|
|
|
|
var warnings annotations.Annotations
|
|
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
|
|
// Reset number of samples in memory after each timestamp.
|
|
ev.currentSamples = tempNumSamples
|
|
// Gather input vectors for this timestamp.
|
|
baseVector, _ = ev.gatherVector(ts, mat, baseVector, nil, nil)
|
|
infoVector, _ = ev.gatherVector(ts, infoMat, infoVector, nil, nil)
|
|
|
|
enh.Ts = ts
|
|
result, err := ev.combineWithInfoVector(baseVector, infoVector, ignoreSeries, baseSigs, infoSigs, enh, dataLabelMatchers)
|
|
if err != nil {
|
|
ev.error(err)
|
|
}
|
|
enh.Out = result[:0] // Reuse result vector.
|
|
|
|
vecNumSamples := result.TotalSamples()
|
|
ev.currentSamples += vecNumSamples
|
|
// When we reset currentSamples to tempNumSamples during the next iteration of the loop it also
|
|
// needs to include the samples from the result here, as they're still in memory.
|
|
tempNumSamples += vecNumSamples
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
if ev.currentSamples > ev.maxSamples {
|
|
ev.error(ErrTooManySamples(env))
|
|
}
|
|
|
|
// Add samples in result vector to output series.
|
|
for _, sample := range result {
|
|
h := sample.Metric.Hash()
|
|
ss, exists := seriess[h]
|
|
if exists {
|
|
if ss.ts == ts { // If we've seen this output series before at this timestamp, it's a duplicate.
|
|
ev.errorf("vector cannot contain metrics with the same labelset")
|
|
}
|
|
ss.ts = ts
|
|
} else {
|
|
ss = seriesAndTimestamp{Series{Metric: sample.Metric}, ts}
|
|
}
|
|
addToSeries(&ss.Series, enh.Ts, sample.F, sample.H, numSteps)
|
|
seriess[h] = ss
|
|
}
|
|
}
|
|
|
|
// Reuse the original point slices.
|
|
for _, m := range origMatrices {
|
|
for _, s := range m {
|
|
putFPointSlice(s.Floats)
|
|
putHPointSlice(s.Histograms)
|
|
}
|
|
}
|
|
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
|
numSamples := 0
|
|
output := make(Matrix, 0, len(seriess))
|
|
for _, ss := range seriess {
|
|
numSamples += len(ss.Floats) + totalHPointSize(ss.Histograms)
|
|
output = append(output, ss.Series)
|
|
}
|
|
ev.currentSamples = originalNumSamples + numSamples
|
|
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
|
return output, warnings
|
|
}
|
|
|
|
// combineWithInfoVector combines base and info Vectors.
|
|
// Base series in ignoreSeries are not combined.
|
|
func (ev *evaluator) combineWithInfoVector(base, info Vector, ignoreSeries map[int]struct{}, baseSigs []map[string]string, infoSigs []string, enh *EvalNodeHelper, dataLabelMatchers map[string][]*labels.Matcher) (Vector, error) {
|
|
if len(base) == 0 {
|
|
return nil, nil // Short-circuit: nothing is going to match.
|
|
}
|
|
|
|
// All samples from the info Vector hashed by the matching label/values.
|
|
if enh.rightSigs == nil {
|
|
enh.rightSigs = make(map[string]Sample, len(enh.Out))
|
|
} else {
|
|
clear(enh.rightSigs)
|
|
}
|
|
|
|
for i, s := range info {
|
|
if s.H != nil {
|
|
ev.error(errors.New("info sample should be float"))
|
|
}
|
|
// We encode original info sample timestamps via the float value.
|
|
origT := int64(s.F)
|
|
|
|
sig := infoSigs[i]
|
|
if existing, exists := enh.rightSigs[sig]; exists {
|
|
// We encode original info sample timestamps via the float value.
|
|
existingOrigT := int64(existing.F)
|
|
switch {
|
|
case existingOrigT > origT:
|
|
// Keep the other info sample, since it's newer.
|
|
case existingOrigT < origT:
|
|
// Keep this info sample, since it's newer.
|
|
enh.rightSigs[sig] = s
|
|
default:
|
|
// The two info samples have the same timestamp - conflict.
|
|
name := s.Metric.Map()[labels.MetricName]
|
|
ev.errorf("found duplicate series for info metric %s", name)
|
|
}
|
|
} else {
|
|
enh.rightSigs[sig] = s
|
|
}
|
|
}
|
|
|
|
for i, bs := range base {
|
|
if _, exists := ignoreSeries[i]; exists {
|
|
// This series should not be enriched with info metric data labels.
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: bs.Metric,
|
|
F: bs.F,
|
|
H: bs.H,
|
|
})
|
|
continue
|
|
}
|
|
|
|
baseLabels := bs.Metric.Map()
|
|
enh.resetBuilder(labels.Labels{})
|
|
|
|
// For every info metric name, try to find an info series with the same signature.
|
|
seenInfoMetrics := map[string]struct{}{}
|
|
for infoName, sig := range baseSigs[i] {
|
|
is, exists := enh.rightSigs[sig]
|
|
if !exists {
|
|
continue
|
|
}
|
|
if _, exists := seenInfoMetrics[infoName]; exists {
|
|
continue
|
|
}
|
|
|
|
err := is.Metric.Validate(func(l labels.Label) error {
|
|
if l.Name == labels.MetricName {
|
|
return nil
|
|
}
|
|
if _, exists := dataLabelMatchers[l.Name]; len(dataLabelMatchers) > 0 && !exists {
|
|
// Not among the specified data label matchers.
|
|
return nil
|
|
}
|
|
|
|
if v := enh.lb.Get(l.Name); v != "" && v != l.Value {
|
|
return fmt.Errorf("conflicting label: %s", l.Name)
|
|
}
|
|
if _, exists := baseLabels[l.Name]; exists {
|
|
// Skip labels already on the base metric.
|
|
return nil
|
|
}
|
|
|
|
enh.lb.Set(l.Name, l.Value)
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
seenInfoMetrics[infoName] = struct{}{}
|
|
}
|
|
|
|
infoLbls := enh.lb.Labels()
|
|
if infoLbls.Len() == 0 {
|
|
// If there's at least one data label matcher not matching the empty string,
|
|
// we have to ignore this series as there are no matching info series.
|
|
allMatchersMatchEmpty := true
|
|
for _, ms := range dataLabelMatchers {
|
|
for _, m := range ms {
|
|
if !m.Matches("") {
|
|
allMatchersMatchEmpty = false
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if !allMatchersMatchEmpty {
|
|
continue
|
|
}
|
|
}
|
|
|
|
enh.resetBuilder(bs.Metric)
|
|
infoLbls.Range(func(l labels.Label) {
|
|
enh.lb.Set(l.Name, l.Value)
|
|
})
|
|
|
|
enh.Out = append(enh.Out, Sample{
|
|
Metric: enh.lb.Labels(),
|
|
F: bs.F,
|
|
H: bs.H,
|
|
})
|
|
}
|
|
return enh.Out, nil
|
|
}
|