prometheus/tsdb/head_append.go
Oleg Zaytsev b87c54de14 Load OutOfOrderTimeWindow only once per appender
We're loading the time window once per each Append() call, plus once in
the Commit(). While not extremely expensive, atomic operations are also
not cheap.

Additionally, it makes sense to keep the window consistent for a single
append.

Signed-off-by: Oleg Zaytsev <mail@olegzaytsev.com>
2022-08-11 10:46:12 +02:00

895 lines
29 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"context"
"fmt"
"math"
"github.com/go-kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
"github.com/prometheus/prometheus/tsdb/record"
)
// initAppender is a helper to initialize the time bounds of the head
// upon the first sample it receives.
type initAppender struct {
app storage.Appender
head *Head
}
var _ storage.GetRef = &initAppender{}
func (a *initAppender) Append(ref storage.SeriesRef, lset labels.Labels, t int64, v float64) (storage.SeriesRef, error) {
if a.app != nil {
return a.app.Append(ref, lset, t, v)
}
a.head.initTime(t)
a.app = a.head.appender()
return a.app.Append(ref, lset, t, v)
}
func (a *initAppender) AppendExemplar(ref storage.SeriesRef, l labels.Labels, e exemplar.Exemplar) (storage.SeriesRef, error) {
// Check if exemplar storage is enabled.
if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 {
return 0, nil
}
if a.app != nil {
return a.app.AppendExemplar(ref, l, e)
}
// We should never reach here given we would call Append before AppendExemplar
// and we probably want to always base head/WAL min time on sample times.
a.head.initTime(e.Ts)
a.app = a.head.appender()
return a.app.AppendExemplar(ref, l, e)
}
// initTime initializes a head with the first timestamp. This only needs to be called
// for a completely fresh head with an empty WAL.
func (h *Head) initTime(t int64) {
if !h.minTime.CAS(math.MaxInt64, t) {
return
}
// Ensure that max time is initialized to at least the min time we just set.
// Concurrent appenders may already have set it to a higher value.
h.maxTime.CAS(math.MinInt64, t)
}
func (a *initAppender) GetRef(lset labels.Labels) (storage.SeriesRef, labels.Labels) {
if g, ok := a.app.(storage.GetRef); ok {
return g.GetRef(lset)
}
return 0, nil
}
func (a *initAppender) Commit() error {
if a.app == nil {
a.head.metrics.activeAppenders.Dec()
return nil
}
return a.app.Commit()
}
func (a *initAppender) Rollback() error {
if a.app == nil {
a.head.metrics.activeAppenders.Dec()
return nil
}
return a.app.Rollback()
}
// Appender returns a new Appender on the database.
func (h *Head) Appender(_ context.Context) storage.Appender {
h.metrics.activeAppenders.Inc()
// The head cache might not have a starting point yet. The init appender
// picks up the first appended timestamp as the base.
if h.MinTime() == math.MaxInt64 {
return &initAppender{
head: h,
}
}
return h.appender()
}
func (h *Head) appender() *headAppender {
appendID, cleanupAppendIDsBelow := h.iso.newAppendID() // Every appender gets an ID that is cleared upon commit/rollback.
// Allocate the exemplars buffer only if exemplars are enabled.
var exemplarsBuf []exemplarWithSeriesRef
if h.opts.EnableExemplarStorage {
exemplarsBuf = h.getExemplarBuffer()
}
return &headAppender{
head: h,
minValidTime: h.appendableMinValidTime(),
mint: math.MaxInt64,
maxt: math.MinInt64,
headMaxt: h.MaxTime(),
oooTimeWindow: h.opts.OutOfOrderTimeWindow.Load(),
samples: h.getAppendBuffer(),
sampleSeries: h.getSeriesBuffer(),
exemplars: exemplarsBuf,
appendID: appendID,
cleanupAppendIDsBelow: cleanupAppendIDsBelow,
}
}
// appendableMinValidTime returns the minimum valid timestamp for appends,
// such that samples stay ahead of prior blocks and the head compaction window.
func (h *Head) appendableMinValidTime() int64 {
// This boundary ensures that no samples will be added to the compaction window.
// This allows race-free, concurrent appending and compaction.
cwEnd := h.MaxTime() - h.chunkRange.Load()/2
// This boundary ensures that we avoid overlapping timeframes from one block to the next.
// While not necessary for correctness, it means we're not required to use vertical compaction.
minValid := h.minValidTime.Load()
return max(cwEnd, minValid)
}
// AppendableMinValidTime returns the minimum valid time for samples to be appended to the Head.
// Returns false if Head hasn't been initialized yet and the minimum time isn't known yet.
func (h *Head) AppendableMinValidTime() (int64, bool) {
if h.MinTime() == math.MaxInt64 {
return 0, false
}
return h.appendableMinValidTime(), true
}
func min(a, b int64) int64 {
if a < b {
return a
}
return b
}
func max(a, b int64) int64 {
if a > b {
return a
}
return b
}
func (h *Head) getAppendBuffer() []record.RefSample {
b := h.appendPool.Get()
if b == nil {
return make([]record.RefSample, 0, 512)
}
return b.([]record.RefSample)
}
func (h *Head) putAppendBuffer(b []record.RefSample) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.appendPool.Put(b[:0])
}
func (h *Head) getExemplarBuffer() []exemplarWithSeriesRef {
b := h.exemplarsPool.Get()
if b == nil {
return make([]exemplarWithSeriesRef, 0, 512)
}
return b.([]exemplarWithSeriesRef)
}
func (h *Head) putExemplarBuffer(b []exemplarWithSeriesRef) {
if b == nil {
return
}
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.exemplarsPool.Put(b[:0])
}
func (h *Head) getSeriesBuffer() []*memSeries {
b := h.seriesPool.Get()
if b == nil {
return make([]*memSeries, 0, 512)
}
return b.([]*memSeries)
}
func (h *Head) putSeriesBuffer(b []*memSeries) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.seriesPool.Put(b[:0])
}
func (h *Head) getBytesBuffer() []byte {
b := h.bytesPool.Get()
if b == nil {
return make([]byte, 0, 1024)
}
return b.([]byte)
}
func (h *Head) putBytesBuffer(b []byte) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.bytesPool.Put(b[:0])
}
type exemplarWithSeriesRef struct {
ref storage.SeriesRef
exemplar exemplar.Exemplar
}
type headAppender struct {
head *Head
minValidTime int64 // No samples below this timestamp are allowed.
mint, maxt int64
headMaxt int64 // We track it here to not take the lock for every sample appended.
oooTimeWindow int64 // Use the same for the entire append, and don't load the atomic for each sample.
series []record.RefSeries // New series held by this appender.
samples []record.RefSample // New samples held by this appender.
exemplars []exemplarWithSeriesRef // New exemplars held by this appender.
sampleSeries []*memSeries // Series corresponding to the samples held by this appender (using corresponding slice indices - same series may appear more than once).
appendID, cleanupAppendIDsBelow uint64
closed bool
}
func (a *headAppender) Append(ref storage.SeriesRef, lset labels.Labels, t int64, v float64) (storage.SeriesRef, error) {
// For OOO inserts, this restriction is irrelevant and will be checked later once we confirm the sample is an in-order append.
// If OOO inserts are disabled, we may as well as check this as early as we can and avoid more work.
if a.oooTimeWindow == 0 && t < a.minValidTime {
a.head.metrics.outOfBoundSamples.Inc()
return 0, storage.ErrOutOfBounds
}
s := a.head.series.getByID(chunks.HeadSeriesRef(ref))
if s == nil {
// Ensure no empty labels have gotten through.
lset = lset.WithoutEmpty()
if len(lset) == 0 {
return 0, errors.Wrap(ErrInvalidSample, "empty labelset")
}
if l, dup := lset.HasDuplicateLabelNames(); dup {
return 0, errors.Wrap(ErrInvalidSample, fmt.Sprintf(`label name "%s" is not unique`, l))
}
var created bool
var err error
s, created, err = a.head.getOrCreate(lset.Hash(), lset)
if err != nil {
return 0, err
}
if created {
a.series = append(a.series, record.RefSeries{
Ref: s.ref,
Labels: lset,
})
}
}
s.Lock()
// TODO: if we definitely know at this point that the sample is ooo, then optimise
// to skip that sample from the WAL and write only in the WBL.
_, delta, err := s.appendable(t, v, a.headMaxt, a.minValidTime, a.oooTimeWindow)
if err == nil {
s.pendingCommit = true
}
s.Unlock()
if delta > 0 {
a.head.metrics.oooHistogram.Observe(float64(delta) / 1000)
}
if err != nil {
if err == storage.ErrOutOfOrderSample {
a.head.metrics.outOfOrderSamples.Inc()
}
if err == storage.ErrTooOldSample {
a.head.metrics.tooOldSamples.Inc()
}
return 0, err
}
if t < a.mint {
a.mint = t
}
if t > a.maxt {
a.maxt = t
}
a.samples = append(a.samples, record.RefSample{
Ref: s.ref,
T: t,
V: v,
})
a.sampleSeries = append(a.sampleSeries, s)
return storage.SeriesRef(s.ref), nil
}
// appendable checks whether the given sample is valid for appending to the series. (if we return false and no error)
// The sample belongs to the out of order chunk if we return true and no error.
// An error signifies the sample cannot be handled.
func (s *memSeries) appendable(t int64, v float64, headMaxt, minValidTime, oooTimeWindow int64) (isOutOfOrder bool, delta int64, err error) {
// Check if we can append in the in-order chunk.
if t >= minValidTime {
if s.head() == nil {
// The series has no sample and was freshly created.
return false, 0, nil
}
msMaxt := s.maxTime()
if t > msMaxt {
return false, 0, nil
}
if t == msMaxt {
// We are allowing exact duplicates as we can encounter them in valid cases
// like federation and erroring out at that time would be extremely noisy.
// This only checks against the latest in-order sample.
// The OOO headchunk has its own method to detect these duplicates
if math.Float64bits(s.sampleBuf[3].v) != math.Float64bits(v) {
return false, 0, storage.ErrDuplicateSampleForTimestamp
}
// Sample is identical (ts + value) with most current (highest ts) sample in sampleBuf.
return false, 0, nil
}
}
// The sample cannot go in the in-order chunk. Check if it can go in the out-of-order chunk.
if oooTimeWindow > 0 && t >= headMaxt-oooTimeWindow {
return true, headMaxt - t, nil
}
// The sample cannot go in both in-order and out-of-order chunk.
if oooTimeWindow > 0 {
return true, headMaxt - t, storage.ErrTooOldSample
}
if t < minValidTime {
return false, headMaxt - t, storage.ErrOutOfBounds
}
return false, headMaxt - t, storage.ErrOutOfOrderSample
}
// AppendExemplar for headAppender assumes the series ref already exists, and so it doesn't
// use getOrCreate or make any of the lset sanity checks that Append does.
func (a *headAppender) AppendExemplar(ref storage.SeriesRef, lset labels.Labels, e exemplar.Exemplar) (storage.SeriesRef, error) {
// Check if exemplar storage is enabled.
if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 {
return 0, nil
}
// Get Series
s := a.head.series.getByID(chunks.HeadSeriesRef(ref))
if s == nil {
s = a.head.series.getByHash(lset.Hash(), lset)
if s != nil {
ref = storage.SeriesRef(s.ref)
}
}
if s == nil {
return 0, fmt.Errorf("unknown HeadSeriesRef when trying to add exemplar: %d", ref)
}
// Ensure no empty labels have gotten through.
e.Labels = e.Labels.WithoutEmpty()
err := a.head.exemplars.ValidateExemplar(s.lset, e)
if err != nil {
if err == storage.ErrDuplicateExemplar || err == storage.ErrExemplarsDisabled {
// Duplicate, don't return an error but don't accept the exemplar.
return 0, nil
}
return 0, err
}
a.exemplars = append(a.exemplars, exemplarWithSeriesRef{ref, e})
return storage.SeriesRef(s.ref), nil
}
var _ storage.GetRef = &headAppender{}
func (a *headAppender) GetRef(lset labels.Labels) (storage.SeriesRef, labels.Labels) {
s := a.head.series.getByHash(lset.Hash(), lset)
if s == nil {
return 0, nil
}
// returned labels must be suitable to pass to Append()
return storage.SeriesRef(s.ref), s.lset
}
// log writes all headAppender's data to the WAL.
func (a *headAppender) log() error {
if a.head.wal == nil {
return nil
}
buf := a.head.getBytesBuffer()
defer func() { a.head.putBytesBuffer(buf) }()
var rec []byte
var enc record.Encoder
if len(a.series) > 0 {
rec = enc.Series(a.series, buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log series")
}
}
if len(a.samples) > 0 {
rec = enc.Samples(a.samples, buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log samples")
}
}
if len(a.exemplars) > 0 {
rec = enc.Exemplars(exemplarsForEncoding(a.exemplars), buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log exemplars")
}
}
return nil
}
func exemplarsForEncoding(es []exemplarWithSeriesRef) []record.RefExemplar {
ret := make([]record.RefExemplar, 0, len(es))
for _, e := range es {
ret = append(ret, record.RefExemplar{
Ref: chunks.HeadSeriesRef(e.ref),
T: e.exemplar.Ts,
V: e.exemplar.Value,
Labels: e.exemplar.Labels,
})
}
return ret
}
// Commit writes to the WAL and adds the data to the Head.
func (a *headAppender) Commit() (err error) {
if a.closed {
return ErrAppenderClosed
}
defer func() { a.closed = true }()
if err := a.log(); err != nil {
_ = a.Rollback() // Most likely the same error will happen again.
return errors.Wrap(err, "write to WAL")
}
// No errors logging to WAL, so pass the exemplars along to the in memory storage.
for _, e := range a.exemplars {
s := a.head.series.getByID(chunks.HeadSeriesRef(e.ref))
// We don't instrument exemplar appends here, all is instrumented by storage.
if err := a.head.exemplars.AddExemplar(s.lset, e.exemplar); err != nil {
if err == storage.ErrOutOfOrderExemplar {
continue
}
level.Debug(a.head.logger).Log("msg", "Unknown error while adding exemplar", "err", err)
}
}
defer a.head.metrics.activeAppenders.Dec()
defer a.head.putAppendBuffer(a.samples)
defer a.head.putSeriesBuffer(a.sampleSeries)
defer a.head.putExemplarBuffer(a.exemplars)
defer a.head.iso.closeAppend(a.appendID)
var (
samplesAppended = len(a.samples)
oooAccepted int // number of samples out of order but accepted: with ooo enabled and within time window
oooRejected int // number of samples rejected due to: out of order but OOO support disabled.
tooOldRejected int // number of samples rejected due to: that are out of order but too old (OOO support enabled, but outside time window)
oobRejected int // number of samples rejected due to: out of bounds: with t < minValidTime (OOO support disabled)
inOrderMint int64 = math.MaxInt64
inOrderMaxt int64 = math.MinInt64
ooomint int64 = math.MaxInt64
ooomaxt int64 = math.MinInt64
wblSamples []record.RefSample
oooMmapMarkers map[chunks.HeadSeriesRef]chunks.ChunkDiskMapperRef
oooRecords [][]byte
series *memSeries
enc record.Encoder
)
defer func() {
for i := range oooRecords {
a.head.putBytesBuffer(oooRecords[i][:0])
}
}()
collectOOORecords := func() {
if a.head.wbl == nil {
// WBL is not enabled. So no need to collect.
wblSamples = nil
oooMmapMarkers = nil
return
}
// The m-map happens before adding a new sample. So we collect
// the m-map markers first, and then samples.
// WBL Graphically:
// WBL Before this Commit(): [old samples before this commit for chunk 1]
// WBL After this Commit(): [old samples before this commit for chunk 1][new samples in this commit for chunk 1]mmapmarker1[samples for chunk 2]mmapmarker2[samples for chunk 3]
if oooMmapMarkers != nil {
markers := make([]record.RefMmapMarker, 0, len(oooMmapMarkers))
for ref, mmapRef := range oooMmapMarkers {
markers = append(markers, record.RefMmapMarker{
Ref: ref,
MmapRef: mmapRef,
})
}
r := enc.MmapMarkers(markers, a.head.getBytesBuffer())
oooRecords = append(oooRecords, r)
}
if len(wblSamples) > 0 {
r := enc.Samples(wblSamples, a.head.getBytesBuffer())
oooRecords = append(oooRecords, r)
}
wblSamples = nil
oooMmapMarkers = nil
}
for i, s := range a.samples {
series = a.sampleSeries[i]
series.Lock()
oooSample, _, err := series.appendable(s.T, s.V, a.headMaxt, a.minValidTime, a.oooTimeWindow)
switch err {
case storage.ErrOutOfOrderSample:
samplesAppended--
oooRejected++
case storage.ErrOutOfBounds:
samplesAppended--
oobRejected++
case storage.ErrTooOldSample:
samplesAppended--
tooOldRejected++
case nil:
// Do nothing.
default:
samplesAppended--
}
var ok, chunkCreated bool
if err == nil && oooSample {
// Sample is OOO and OOO handling is enabled
// and the delta is within the OOO tolerance.
var mmapRef chunks.ChunkDiskMapperRef
ok, chunkCreated, mmapRef = series.insert(s.T, s.V, a.head.chunkDiskMapper)
if chunkCreated {
r, ok := oooMmapMarkers[series.ref]
if !ok || r != 0 {
// !ok means there are no markers collected for these samples yet. So we first flush the samples
// before setting this m-map marker.
// r != 0 means we have already m-mapped a chunk for this series in the same Commit().
// Hence, before we m-map again, we should add the samples and m-map markers
// seen till now to the WBL records.
collectOOORecords()
}
if oooMmapMarkers == nil {
oooMmapMarkers = make(map[chunks.HeadSeriesRef]chunks.ChunkDiskMapperRef)
}
oooMmapMarkers[series.ref] = mmapRef
}
if ok {
wblSamples = append(wblSamples, s)
if s.T < ooomint {
ooomint = s.T
}
if s.T > ooomaxt {
ooomaxt = s.T
}
oooAccepted++
} else {
// exact duplicate of last sample.
// the sample was an attempted update.
// note that we can only detect updates if they clash with a sample in the OOOHeadChunk,
// not with samples in already flushed OOO chunks.
// TODO: error reporting? depends on addressing https://github.com/prometheus/prometheus/discussions/10305
samplesAppended--
}
} else if err == nil {
// if we're here, either of these is true:
// - the sample.t is beyond any previously ingested timestamp
// - the sample is an exact duplicate of the 'head sample'
_, ok, chunkCreated = series.append(s.T, s.V, a.appendID, a.head.chunkDiskMapper)
// TODO: handle overwrite.
// this would be storage.ErrDuplicateSampleForTimestamp, it has no attached counter
// in case of identical timestamp and value, we should drop silently
if ok {
// sample timestamp is beyond any previously ingested timestamp
if s.T < inOrderMint { // TODO(ganesh): dieter thinks this never applies and can be removed because we know we're in order.
inOrderMint = s.T
}
if s.T > inOrderMaxt {
inOrderMaxt = s.T
}
} else {
// ... therefore, in this case, we know the sample is an exact duplicate, and should be silently dropped.
samplesAppended--
}
}
if chunkCreated {
a.head.metrics.chunks.Inc()
a.head.metrics.chunksCreated.Inc()
}
series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow)
series.pendingCommit = false
series.Unlock()
}
a.head.metrics.outOfOrderSamples.Add(float64(oooRejected))
a.head.metrics.outOfBoundSamples.Add(float64(oobRejected))
a.head.metrics.tooOldSamples.Add(float64(tooOldRejected))
a.head.metrics.samplesAppended.Add(float64(samplesAppended))
a.head.metrics.outOfOrderSamplesAppended.Add(float64(oooAccepted))
a.head.updateMinMaxTime(inOrderMint, inOrderMaxt)
a.head.updateMinOOOMaxOOOTime(ooomint, ooomaxt)
// TODO: currently WBL logging of ooo samples is best effort here since we cannot try logging
// until we have found what samples become OOO. We can try having a metric for this failure.
// Returning the error here is not correct because we have already put the samples into the memory,
// hence the append/insert was a success.
collectOOORecords()
if a.head.wbl != nil {
if err := a.head.wbl.Log(oooRecords...); err != nil {
level.Error(a.head.logger).Log("msg", "Failed to log out of order samples into the WAL", "err", err)
}
}
return nil
}
// insert is like append, except it inserts. used for Out Of Order samples.
func (s *memSeries) insert(t int64, v float64, chunkDiskMapper chunkDiskMapper) (inserted, chunkCreated bool, mmapRef chunks.ChunkDiskMapperRef) {
c := s.oooHeadChunk
if c == nil || c.chunk.NumSamples() == int(s.oooCapMax) {
// Note: If no new samples come in then we rely on compaction to clean up stale in-memory OOO chunks.
c, mmapRef = s.cutNewOOOHeadChunk(t, chunkDiskMapper)
chunkCreated = true
}
ok := c.chunk.Insert(t, v)
if ok {
if chunkCreated || t < c.minTime {
c.minTime = t
}
if chunkCreated || t > c.maxTime {
c.maxTime = t
}
}
return ok, chunkCreated, mmapRef
}
// append adds the sample (t, v) to the series. The caller also has to provide
// the appendID for isolation. (The appendID can be zero, which results in no
// isolation for this append.)
// It is unsafe to call this concurrently with s.iterator(...) without holding the series lock.
func (s *memSeries) append(t int64, v float64, appendID uint64, chunkDiskMapper chunkDiskMapper) (delta int64, sampleInOrder, chunkCreated bool) {
// Based on Gorilla white papers this offers near-optimal compression ratio
// so anything bigger that this has diminishing returns and increases
// the time range within which we have to decompress all samples.
const samplesPerChunk = 120
c := s.head()
if c == nil {
if len(s.mmappedChunks) > 0 && s.mmappedChunks[len(s.mmappedChunks)-1].maxTime >= t {
// Out of order sample. Sample timestamp is already in the mmapped chunks, so ignore it.
return s.mmappedChunks[len(s.mmappedChunks)-1].maxTime - t, false, false
}
// There is no head chunk in this series yet, create the first chunk for the sample.
c = s.cutNewHeadChunk(t, chunkDiskMapper)
chunkCreated = true
}
// Out of order sample.
if c.maxTime >= t {
return c.maxTime - t, false, chunkCreated
}
numSamples := c.chunk.NumSamples()
if numSamples == 0 {
// It could be the new chunk created after reading the chunk snapshot,
// hence we fix the minTime of the chunk here.
c.minTime = t
s.nextAt = rangeForTimestamp(c.minTime, s.chunkRange)
}
// If we reach 25% of a chunk's desired sample count, predict an end time
// for this chunk that will try to make samples equally distributed within
// the remaining chunks in the current chunk range.
// At latest it must happen at the timestamp set when the chunk was cut.
if numSamples == samplesPerChunk/4 {
maxNextAt := s.nextAt
s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, maxNextAt)
s.nextAt = addJitterToChunkEndTime(s.hash, c.minTime, s.nextAt, maxNextAt, s.chunkEndTimeVariance)
}
// If numSamples > samplesPerChunk*2 then our previous prediction was invalid,
// most likely because samples rate has changed and now they are arriving more frequently.
// Since we assume that the rate is higher, we're being conservative and cutting at 2*samplesPerChunk
// as we expect more chunks to come.
// Note that next chunk will have its nextAt recalculated for the new rate.
if t >= s.nextAt || numSamples >= samplesPerChunk*2 {
c = s.cutNewHeadChunk(t, chunkDiskMapper)
chunkCreated = true
}
s.app.Append(t, v)
c.maxTime = t
s.sampleBuf[0] = s.sampleBuf[1]
s.sampleBuf[1] = s.sampleBuf[2]
s.sampleBuf[2] = s.sampleBuf[3]
s.sampleBuf[3] = sample{t: t, v: v}
if appendID > 0 && s.txs != nil {
s.txs.add(appendID)
}
return 0, true, chunkCreated
}
// computeChunkEndTime estimates the end timestamp based the beginning of a
// chunk, its current timestamp and the upper bound up to which we insert data.
// It assumes that the time range is 1/4 full.
// Assuming that the samples will keep arriving at the same rate, it will make the
// remaining n chunks within this chunk range (before max) equally sized.
func computeChunkEndTime(start, cur, max int64) int64 {
n := (max - start) / ((cur - start + 1) * 4)
if n <= 1 {
return max
}
return start + (max-start)/n
}
// addJitterToChunkEndTime return chunk's nextAt applying a jitter based on the provided expected variance.
// The variance is applied to the estimated chunk duration (nextAt - chunkMinTime); the returned updated chunk
// end time is guaranteed to be between "chunkDuration - (chunkDuration*(variance/2))" to
// "chunkDuration + chunkDuration*(variance/2)", and never greater than maxNextAt.
func addJitterToChunkEndTime(seriesHash uint64, chunkMinTime, nextAt, maxNextAt int64, variance float64) int64 {
if variance <= 0 {
return nextAt
}
// Do not apply the jitter if the chunk is expected to be the last one of the chunk range.
if nextAt >= maxNextAt {
return nextAt
}
// Compute the variance to apply to the chunk end time. The variance is based on the series hash so that
// different TSDBs ingesting the same exact samples (e.g. in a distributed system like Cortex) will have
// the same chunks for a given period.
chunkDuration := nextAt - chunkMinTime
chunkDurationMaxVariance := int64(float64(chunkDuration) * variance)
chunkDurationVariance := int64(seriesHash % uint64(chunkDurationMaxVariance))
return min(maxNextAt, nextAt+chunkDurationVariance-(chunkDurationMaxVariance/2))
}
func (s *memSeries) cutNewHeadChunk(mint int64, chunkDiskMapper chunkDiskMapper) *memChunk {
s.mmapCurrentHeadChunk(chunkDiskMapper)
s.headChunk = &memChunk{
chunk: chunkenc.NewXORChunk(),
minTime: mint,
maxTime: math.MinInt64,
}
// Set upper bound on when the next chunk must be started. An earlier timestamp
// may be chosen dynamically at a later point.
s.nextAt = rangeForTimestamp(mint, s.chunkRange)
app, err := s.headChunk.chunk.Appender()
if err != nil {
panic(err)
}
s.app = app
return s.headChunk
}
func (s *memSeries) cutNewOOOHeadChunk(mint int64, chunkDiskMapper chunkDiskMapper) (*oooHeadChunk, chunks.ChunkDiskMapperRef) {
ref := s.mmapCurrentOOOHeadChunk(chunkDiskMapper)
s.oooHeadChunk = &oooHeadChunk{
chunk: chunkenc.NewOOOChunk(int(s.oooCapMin)),
minTime: mint,
maxTime: math.MinInt64,
}
return s.oooHeadChunk, ref
}
func (s *memSeries) mmapCurrentOOOHeadChunk(chunkDiskMapper chunkDiskMapper) chunks.ChunkDiskMapperRef {
if s.oooHeadChunk == nil {
// There is no head chunk, so nothing to m-map here.
return 0
}
xor, _ := s.oooHeadChunk.chunk.ToXor() // encode to XorChunk which is more compact and implements all of the needed functionality to be encoded
oooXor := &chunkenc.OOOXORChunk{XORChunk: xor}
chunkRef := chunkDiskMapper.WriteChunk(s.ref, s.oooHeadChunk.minTime, s.oooHeadChunk.maxTime, oooXor, handleChunkWriteError)
s.oooMmappedChunks = append(s.oooMmappedChunks, &mmappedChunk{
ref: chunkRef,
numSamples: uint16(xor.NumSamples()),
minTime: s.oooHeadChunk.minTime,
maxTime: s.oooHeadChunk.maxTime,
})
s.oooHeadChunk = nil
return chunkRef
}
func (s *memSeries) mmapCurrentHeadChunk(chunkDiskMapper chunkDiskMapper) {
if s.headChunk == nil {
// There is no head chunk, so nothing to m-map here.
return
}
chunkRef := chunkDiskMapper.WriteChunk(s.ref, s.headChunk.minTime, s.headChunk.maxTime, s.headChunk.chunk, handleChunkWriteError)
s.mmappedChunks = append(s.mmappedChunks, &mmappedChunk{
ref: chunkRef,
numSamples: uint16(s.headChunk.chunk.NumSamples()),
minTime: s.headChunk.minTime,
maxTime: s.headChunk.maxTime,
})
}
func handleChunkWriteError(err error) {
if err != nil && err != chunks.ErrChunkDiskMapperClosed {
panic(err)
}
}
// Rollback removes the samples and exemplars from headAppender and writes any series to WAL.
func (a *headAppender) Rollback() (err error) {
if a.closed {
return ErrAppenderClosed
}
defer func() { a.closed = true }()
defer a.head.metrics.activeAppenders.Dec()
defer a.head.iso.closeAppend(a.appendID)
defer a.head.putSeriesBuffer(a.sampleSeries)
var series *memSeries
for i := range a.samples {
series = a.sampleSeries[i]
series.Lock()
series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow)
series.pendingCommit = false
series.Unlock()
}
a.head.putAppendBuffer(a.samples)
a.head.putExemplarBuffer(a.exemplars)
a.samples = nil
a.exemplars = nil
// Series are created in the head memory regardless of rollback. Thus we have
// to log them to the WAL in any case.
return a.log()
}