mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-14 17:44:06 -08:00
43c6b6557c
When doing comparison operations on vectors, filtering sometimes gets in the way and you have to go to a fair bit of effort to workaround it in order to always return a result. The 'bool' modifier instead of filtering returns 0/1 depending on the result of the compairson. This is also a prerequisite to removing plain scalar/scalar comparisons, as it maintains the current behaviour under a new syntax.
1204 lines
32 KiB
Go
1204 lines
32 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package promql
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"runtime"
|
|
"sort"
|
|
"time"
|
|
|
|
"github.com/prometheus/common/model"
|
|
"github.com/prometheus/log"
|
|
"golang.org/x/net/context"
|
|
|
|
"github.com/prometheus/prometheus/storage/local"
|
|
"github.com/prometheus/prometheus/storage/metric"
|
|
"github.com/prometheus/prometheus/util/stats"
|
|
)
|
|
|
|
// sampleStream is a stream of Values belonging to an attached COWMetric.
|
|
type sampleStream struct {
|
|
Metric metric.Metric
|
|
Values []model.SamplePair
|
|
}
|
|
|
|
// sample is a single sample belonging to a COWMetric.
|
|
type sample struct {
|
|
Metric metric.Metric
|
|
Value model.SampleValue
|
|
Timestamp model.Time
|
|
}
|
|
|
|
// vector is basically only an alias for model.Samples, but the
|
|
// contract is that in a Vector, all Samples have the same timestamp.
|
|
type vector []*sample
|
|
|
|
func (vector) Type() model.ValueType { return model.ValVector }
|
|
func (vec vector) String() string { return vec.value().String() }
|
|
|
|
func (vec vector) value() model.Vector {
|
|
val := make(model.Vector, len(vec))
|
|
for i, s := range vec {
|
|
val[i] = &model.Sample{
|
|
Metric: s.Metric.Copy().Metric,
|
|
Value: s.Value,
|
|
Timestamp: s.Timestamp,
|
|
}
|
|
}
|
|
return val
|
|
}
|
|
|
|
// matrix is a slice of SampleStreams that implements sort.Interface and
|
|
// has a String method.
|
|
type matrix []*sampleStream
|
|
|
|
func (matrix) Type() model.ValueType { return model.ValMatrix }
|
|
func (mat matrix) String() string { return mat.value().String() }
|
|
|
|
func (mat matrix) value() model.Matrix {
|
|
val := make(model.Matrix, len(mat))
|
|
for i, ss := range mat {
|
|
val[i] = &model.SampleStream{
|
|
Metric: ss.Metric.Copy().Metric,
|
|
Values: ss.Values,
|
|
}
|
|
}
|
|
return val
|
|
}
|
|
|
|
// Result holds the resulting value of an execution or an error
|
|
// if any occurred.
|
|
type Result struct {
|
|
Err error
|
|
Value model.Value
|
|
}
|
|
|
|
// Vector returns a vector if the result value is one. An error is returned if
|
|
// the result was an error or the result value is not a vector.
|
|
func (r *Result) Vector() (model.Vector, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(model.Vector)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a vector")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// Matrix returns a matrix. An error is returned if
|
|
// the result was an error or the result value is not a matrix.
|
|
func (r *Result) Matrix() (model.Matrix, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(model.Matrix)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a matrix")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
// Scalar returns a scalar value. An error is returned if
|
|
// the result was an error or the result value is not a scalar.
|
|
func (r *Result) Scalar() (*model.Scalar, error) {
|
|
if r.Err != nil {
|
|
return nil, r.Err
|
|
}
|
|
v, ok := r.Value.(*model.Scalar)
|
|
if !ok {
|
|
return nil, fmt.Errorf("query result is not a scalar")
|
|
}
|
|
return v, nil
|
|
}
|
|
|
|
func (r *Result) String() string {
|
|
if r.Err != nil {
|
|
return r.Err.Error()
|
|
}
|
|
if r.Value == nil {
|
|
return ""
|
|
}
|
|
return r.Value.String()
|
|
}
|
|
|
|
type (
|
|
// ErrQueryTimeout is returned if a query timed out during processing.
|
|
ErrQueryTimeout string
|
|
// ErrQueryCanceled is returned if a query was canceled during processing.
|
|
ErrQueryCanceled string
|
|
)
|
|
|
|
func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) }
|
|
func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) }
|
|
|
|
// A Query is derived from an a raw query string and can be run against an engine
|
|
// it is associated with.
|
|
type Query interface {
|
|
// Exec processes the query and
|
|
Exec() *Result
|
|
// Statement returns the parsed statement of the query.
|
|
Statement() Statement
|
|
// Stats returns statistics about the lifetime of the query.
|
|
Stats() *stats.TimerGroup
|
|
// Cancel signals that a running query execution should be aborted.
|
|
Cancel()
|
|
}
|
|
|
|
// query implements the Query interface.
|
|
type query struct {
|
|
// The original query string.
|
|
q string
|
|
// Statement of the parsed query.
|
|
stmt Statement
|
|
// Timer stats for the query execution.
|
|
stats *stats.TimerGroup
|
|
// Cancelation function for the query.
|
|
cancel func()
|
|
|
|
// The engine against which the query is executed.
|
|
ng *Engine
|
|
}
|
|
|
|
// Statement implements the Query interface.
|
|
func (q *query) Statement() Statement {
|
|
return q.stmt
|
|
}
|
|
|
|
// Stats implements the Query interface.
|
|
func (q *query) Stats() *stats.TimerGroup {
|
|
return q.stats
|
|
}
|
|
|
|
// Cancel implements the Query interface.
|
|
func (q *query) Cancel() {
|
|
if q.cancel != nil {
|
|
q.cancel()
|
|
}
|
|
}
|
|
|
|
// Exec implements the Query interface.
|
|
func (q *query) Exec() *Result {
|
|
res, err := q.ng.exec(q)
|
|
return &Result{Err: err, Value: res}
|
|
}
|
|
|
|
// contextDone returns an error if the context was canceled or timed out.
|
|
func contextDone(ctx context.Context, env string) error {
|
|
select {
|
|
case <-ctx.Done():
|
|
err := ctx.Err()
|
|
switch err {
|
|
case context.Canceled:
|
|
return ErrQueryCanceled(env)
|
|
case context.DeadlineExceeded:
|
|
return ErrQueryTimeout(env)
|
|
default:
|
|
return err
|
|
}
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Engine handles the lifetime of queries from beginning to end.
|
|
// It is connected to a storage.
|
|
type Engine struct {
|
|
// The storage on which the engine operates.
|
|
storage local.Storage
|
|
|
|
// The base context for all queries and its cancellation function.
|
|
baseCtx context.Context
|
|
cancelQueries func()
|
|
// The gate limiting the maximum number of concurrent and waiting queries.
|
|
gate *queryGate
|
|
|
|
options *EngineOptions
|
|
}
|
|
|
|
// NewEngine returns a new engine.
|
|
func NewEngine(storage local.Storage, o *EngineOptions) *Engine {
|
|
if o == nil {
|
|
o = DefaultEngineOptions
|
|
}
|
|
ctx, cancel := context.WithCancel(context.Background())
|
|
return &Engine{
|
|
storage: storage,
|
|
baseCtx: ctx,
|
|
cancelQueries: cancel,
|
|
gate: newQueryGate(o.MaxConcurrentQueries),
|
|
options: o,
|
|
}
|
|
}
|
|
|
|
// EngineOptions contains configuration parameters for an Engine.
|
|
type EngineOptions struct {
|
|
MaxConcurrentQueries int
|
|
Timeout time.Duration
|
|
}
|
|
|
|
// DefaultEngineOptions are the default engine options.
|
|
var DefaultEngineOptions = &EngineOptions{
|
|
MaxConcurrentQueries: 20,
|
|
Timeout: 2 * time.Minute,
|
|
}
|
|
|
|
// Stop the engine and cancel all running queries.
|
|
func (ng *Engine) Stop() {
|
|
ng.cancelQueries()
|
|
}
|
|
|
|
// NewInstantQuery returns an evaluation query for the given expression at the given time.
|
|
func (ng *Engine) NewInstantQuery(qs string, ts model.Time) (Query, error) {
|
|
expr, err := ParseExpr(qs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
qry := ng.newQuery(expr, ts, ts, 0)
|
|
qry.q = qs
|
|
|
|
return qry, nil
|
|
}
|
|
|
|
// NewRangeQuery returns an evaluation query for the given time range and with
|
|
// the resolution set by the interval.
|
|
func (ng *Engine) NewRangeQuery(qs string, start, end model.Time, interval time.Duration) (Query, error) {
|
|
expr, err := ParseExpr(qs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if expr.Type() != model.ValVector && expr.Type() != model.ValScalar {
|
|
return nil, fmt.Errorf("invalid expression type %q for range query, must be scalar or vector", expr.Type())
|
|
}
|
|
qry := ng.newQuery(expr, start, end, interval)
|
|
qry.q = qs
|
|
|
|
return qry, nil
|
|
}
|
|
|
|
func (ng *Engine) newQuery(expr Expr, start, end model.Time, interval time.Duration) *query {
|
|
es := &EvalStmt{
|
|
Expr: expr,
|
|
Start: start,
|
|
End: end,
|
|
Interval: interval,
|
|
}
|
|
qry := &query{
|
|
stmt: es,
|
|
ng: ng,
|
|
stats: stats.NewTimerGroup(),
|
|
}
|
|
return qry
|
|
}
|
|
|
|
// testStmt is an internal helper statement that allows execution
|
|
// of an arbitrary function during handling. It is used to test the Engine.
|
|
type testStmt func(context.Context) error
|
|
|
|
func (testStmt) String() string { return "test statement" }
|
|
func (testStmt) DotGraph() string { return "test statement" }
|
|
func (testStmt) stmt() {}
|
|
|
|
func (ng *Engine) newTestQuery(f func(context.Context) error) Query {
|
|
qry := &query{
|
|
q: "test statement",
|
|
stmt: testStmt(f),
|
|
ng: ng,
|
|
stats: stats.NewTimerGroup(),
|
|
}
|
|
return qry
|
|
}
|
|
|
|
// exec executes the query.
|
|
//
|
|
// At this point per query only one EvalStmt is evaluated. Alert and record
|
|
// statements are not handled by the Engine.
|
|
func (ng *Engine) exec(q *query) (model.Value, error) {
|
|
ctx, cancel := context.WithTimeout(q.ng.baseCtx, ng.options.Timeout)
|
|
q.cancel = cancel
|
|
|
|
queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start()
|
|
|
|
if err := ng.gate.Start(ctx); err != nil {
|
|
return nil, err
|
|
}
|
|
defer ng.gate.Done()
|
|
|
|
queueTimer.Stop()
|
|
|
|
// Cancel when execution is done or an error was raised.
|
|
defer q.cancel()
|
|
|
|
const env = "query execution"
|
|
|
|
evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start()
|
|
defer evalTimer.Stop()
|
|
|
|
// The base context might already be canceled on the first iteration (e.g. during shutdown).
|
|
if err := contextDone(ctx, env); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch s := q.Statement().(type) {
|
|
case *EvalStmt:
|
|
return ng.execEvalStmt(ctx, q, s)
|
|
case testStmt:
|
|
return nil, s(ctx)
|
|
}
|
|
|
|
panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement()))
|
|
}
|
|
|
|
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
|
|
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (model.Value, error) {
|
|
prepareTimer := query.stats.GetTimer(stats.TotalQueryPreparationTime).Start()
|
|
analyzeTimer := query.stats.GetTimer(stats.QueryAnalysisTime).Start()
|
|
|
|
// Only one execution statement per query is allowed.
|
|
analyzer := &Analyzer{
|
|
Storage: ng.storage,
|
|
Expr: s.Expr,
|
|
Start: s.Start,
|
|
End: s.End,
|
|
}
|
|
err := analyzer.Analyze(ctx)
|
|
if err != nil {
|
|
analyzeTimer.Stop()
|
|
prepareTimer.Stop()
|
|
return nil, err
|
|
}
|
|
analyzeTimer.Stop()
|
|
|
|
preloadTimer := query.stats.GetTimer(stats.PreloadTime).Start()
|
|
closer, err := analyzer.Prepare(ctx)
|
|
if err != nil {
|
|
preloadTimer.Stop()
|
|
prepareTimer.Stop()
|
|
return nil, err
|
|
}
|
|
defer closer.Close()
|
|
|
|
preloadTimer.Stop()
|
|
prepareTimer.Stop()
|
|
|
|
evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start()
|
|
// Instant evaluation.
|
|
if s.Start == s.End && s.Interval == 0 {
|
|
evaluator := &evaluator{
|
|
Timestamp: s.Start,
|
|
ctx: ctx,
|
|
}
|
|
val, err := evaluator.Eval(s.Expr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Turn matrix and vector types with protected metrics into
|
|
// model.* types.
|
|
switch v := val.(type) {
|
|
case vector:
|
|
val = v.value()
|
|
case matrix:
|
|
val = v.value()
|
|
}
|
|
|
|
evalTimer.Stop()
|
|
return val, nil
|
|
}
|
|
numSteps := int(s.End.Sub(s.Start) / s.Interval)
|
|
|
|
// Range evaluation.
|
|
sampleStreams := map[model.Fingerprint]*sampleStream{}
|
|
for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) {
|
|
|
|
if err := contextDone(ctx, "range evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
evaluator := &evaluator{
|
|
Timestamp: ts,
|
|
ctx: ctx,
|
|
}
|
|
val, err := evaluator.Eval(s.Expr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
switch v := val.(type) {
|
|
case *model.Scalar:
|
|
// As the expression type does not change we can safely default to 0
|
|
// as the fingerprint for scalar expressions.
|
|
ss := sampleStreams[0]
|
|
if ss == nil {
|
|
ss = &sampleStream{Values: make([]model.SamplePair, 0, numSteps)}
|
|
sampleStreams[0] = ss
|
|
}
|
|
ss.Values = append(ss.Values, model.SamplePair{
|
|
Value: v.Value,
|
|
Timestamp: v.Timestamp,
|
|
})
|
|
case vector:
|
|
for _, sample := range v {
|
|
fp := sample.Metric.Metric.Fingerprint()
|
|
ss := sampleStreams[fp]
|
|
if ss == nil {
|
|
ss = &sampleStream{
|
|
Metric: sample.Metric,
|
|
Values: make([]model.SamplePair, 0, numSteps),
|
|
}
|
|
sampleStreams[fp] = ss
|
|
}
|
|
ss.Values = append(ss.Values, model.SamplePair{
|
|
Value: sample.Value,
|
|
Timestamp: sample.Timestamp,
|
|
})
|
|
}
|
|
default:
|
|
panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
|
|
}
|
|
}
|
|
evalTimer.Stop()
|
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start()
|
|
mat := matrix{}
|
|
for _, ss := range sampleStreams {
|
|
mat = append(mat, ss)
|
|
}
|
|
appendTimer.Stop()
|
|
|
|
if err := contextDone(ctx, "expression evaluation"); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Turn matrix type with protected metric into model.Matrix.
|
|
resMatrix := mat.value()
|
|
|
|
sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start()
|
|
sort.Sort(resMatrix)
|
|
sortTimer.Stop()
|
|
|
|
return resMatrix, nil
|
|
}
|
|
|
|
// An evaluator evaluates given expressions at a fixed timestamp. It is attached to an
|
|
// engine through which it connects to a storage and reports errors. On timeout or
|
|
// cancellation of its context it terminates.
|
|
type evaluator struct {
|
|
ctx context.Context
|
|
|
|
Timestamp model.Time
|
|
}
|
|
|
|
// fatalf causes a panic with the input formatted into an error.
|
|
func (ev *evaluator) errorf(format string, args ...interface{}) {
|
|
ev.error(fmt.Errorf(format, args...))
|
|
}
|
|
|
|
// fatal causes a panic with the given error.
|
|
func (ev *evaluator) error(err error) {
|
|
panic(err)
|
|
}
|
|
|
|
// recover is the handler that turns panics into returns from the top level of evaluation.
|
|
func (ev *evaluator) recover(errp *error) {
|
|
e := recover()
|
|
if e != nil {
|
|
if _, ok := e.(runtime.Error); ok {
|
|
// Print the stack trace but do not inhibit the running application.
|
|
buf := make([]byte, 64<<10)
|
|
buf = buf[:runtime.Stack(buf, false)]
|
|
|
|
log.Errorf("parser panic: %v\n%s", e, buf)
|
|
*errp = fmt.Errorf("unexpected error")
|
|
} else {
|
|
*errp = e.(error)
|
|
}
|
|
}
|
|
}
|
|
|
|
// evalScalar attempts to evaluate e to a scalar value and errors otherwise.
|
|
func (ev *evaluator) evalScalar(e Expr) *model.Scalar {
|
|
val := ev.eval(e)
|
|
sv, ok := val.(*model.Scalar)
|
|
if !ok {
|
|
ev.errorf("expected scalar but got %s", val.Type())
|
|
}
|
|
return sv
|
|
}
|
|
|
|
// evalVector attempts to evaluate e to a vector value and errors otherwise.
|
|
func (ev *evaluator) evalVector(e Expr) vector {
|
|
val := ev.eval(e)
|
|
vec, ok := val.(vector)
|
|
if !ok {
|
|
ev.errorf("expected vector but got %s", val.Type())
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// evalInt attempts to evaluate e into an integer and errors otherwise.
|
|
func (ev *evaluator) evalInt(e Expr) int {
|
|
sc := ev.evalScalar(e)
|
|
return int(sc.Value)
|
|
}
|
|
|
|
// evalFloat attempts to evaluate e into a float and errors otherwise.
|
|
func (ev *evaluator) evalFloat(e Expr) float64 {
|
|
sc := ev.evalScalar(e)
|
|
return float64(sc.Value)
|
|
}
|
|
|
|
// evalMatrix attempts to evaluate e into a matrix and errors otherwise.
|
|
func (ev *evaluator) evalMatrix(e Expr) matrix {
|
|
val := ev.eval(e)
|
|
mat, ok := val.(matrix)
|
|
if !ok {
|
|
ev.errorf("expected matrix but got %s", val.Type())
|
|
}
|
|
return mat
|
|
}
|
|
|
|
// evalMatrixBounds attempts to evaluate e to matrix boundaries and errors otherwise.
|
|
func (ev *evaluator) evalMatrixBounds(e Expr) matrix {
|
|
ms, ok := e.(*MatrixSelector)
|
|
if !ok {
|
|
ev.errorf("matrix bounds can only be evaluated for matrix selectors, got %T", e)
|
|
}
|
|
return ev.matrixSelectorBounds(ms)
|
|
}
|
|
|
|
// evalString attempts to evaluate e to a string value and errors otherwise.
|
|
func (ev *evaluator) evalString(e Expr) *model.String {
|
|
val := ev.eval(e)
|
|
sv, ok := val.(*model.String)
|
|
if !ok {
|
|
ev.errorf("expected string but got %s", val.Type())
|
|
}
|
|
return sv
|
|
}
|
|
|
|
// evalOneOf evaluates e and errors unless the result is of one of the given types.
|
|
func (ev *evaluator) evalOneOf(e Expr, t1, t2 model.ValueType) model.Value {
|
|
val := ev.eval(e)
|
|
if val.Type() != t1 && val.Type() != t2 {
|
|
ev.errorf("expected %s or %s but got %s", t1, t2, val.Type())
|
|
}
|
|
return val
|
|
}
|
|
|
|
func (ev *evaluator) Eval(expr Expr) (v model.Value, err error) {
|
|
defer ev.recover(&err)
|
|
return ev.eval(expr), nil
|
|
}
|
|
|
|
// eval evaluates the given expression as the given AST expression node requires.
|
|
func (ev *evaluator) eval(expr Expr) model.Value {
|
|
// This is the top-level evaluation method.
|
|
// Thus, we check for timeout/cancelation here.
|
|
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
|
|
ev.error(err)
|
|
}
|
|
|
|
switch e := expr.(type) {
|
|
case *AggregateExpr:
|
|
vector := ev.evalVector(e.Expr)
|
|
return ev.aggregation(e.Op, e.Grouping, e.KeepExtraLabels, vector)
|
|
|
|
case *BinaryExpr:
|
|
lhs := ev.evalOneOf(e.LHS, model.ValScalar, model.ValVector)
|
|
rhs := ev.evalOneOf(e.RHS, model.ValScalar, model.ValVector)
|
|
|
|
switch lt, rt := lhs.Type(), rhs.Type(); {
|
|
case lt == model.ValScalar && rt == model.ValScalar:
|
|
return &model.Scalar{
|
|
Value: scalarBinop(e.Op, lhs.(*model.Scalar).Value, rhs.(*model.Scalar).Value),
|
|
Timestamp: ev.Timestamp,
|
|
}
|
|
|
|
case lt == model.ValVector && rt == model.ValVector:
|
|
switch e.Op {
|
|
case itemLAND:
|
|
return ev.vectorAnd(lhs.(vector), rhs.(vector), e.VectorMatching)
|
|
case itemLOR:
|
|
return ev.vectorOr(lhs.(vector), rhs.(vector), e.VectorMatching)
|
|
default:
|
|
return ev.vectorBinop(e.Op, lhs.(vector), rhs.(vector), e.VectorMatching, e.ReturnBool)
|
|
}
|
|
case lt == model.ValVector && rt == model.ValScalar:
|
|
return ev.vectorScalarBinop(e.Op, lhs.(vector), rhs.(*model.Scalar), false, e.ReturnBool)
|
|
|
|
case lt == model.ValScalar && rt == model.ValVector:
|
|
return ev.vectorScalarBinop(e.Op, rhs.(vector), lhs.(*model.Scalar), true, e.ReturnBool)
|
|
}
|
|
|
|
case *Call:
|
|
return e.Func.Call(ev, e.Args)
|
|
|
|
case *MatrixSelector:
|
|
return ev.matrixSelector(e)
|
|
|
|
case *NumberLiteral:
|
|
return &model.Scalar{Value: e.Val, Timestamp: ev.Timestamp}
|
|
|
|
case *ParenExpr:
|
|
return ev.eval(e.Expr)
|
|
|
|
case *StringLiteral:
|
|
return &model.String{Value: e.Val, Timestamp: ev.Timestamp}
|
|
|
|
case *UnaryExpr:
|
|
se := ev.evalOneOf(e.Expr, model.ValScalar, model.ValVector)
|
|
// Only + and - are possible operators.
|
|
if e.Op == itemSUB {
|
|
switch v := se.(type) {
|
|
case *model.Scalar:
|
|
v.Value = -v.Value
|
|
case vector:
|
|
for i, sv := range v {
|
|
v[i].Value = -sv.Value
|
|
}
|
|
}
|
|
}
|
|
return se
|
|
|
|
case *VectorSelector:
|
|
return ev.vectorSelector(e)
|
|
}
|
|
panic(fmt.Errorf("unhandled expression of type: %T", expr))
|
|
}
|
|
|
|
// vectorSelector evaluates a *VectorSelector expression.
|
|
func (ev *evaluator) vectorSelector(node *VectorSelector) vector {
|
|
vec := vector{}
|
|
for fp, it := range node.iterators {
|
|
sampleCandidates := it.ValueAtTime(ev.Timestamp.Add(-node.Offset))
|
|
samplePair := chooseClosestBefore(sampleCandidates, ev.Timestamp.Add(-node.Offset))
|
|
if samplePair != nil {
|
|
vec = append(vec, &sample{
|
|
Metric: node.metrics[fp],
|
|
Value: samplePair.Value,
|
|
Timestamp: ev.Timestamp,
|
|
})
|
|
}
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// matrixSelector evaluates a *MatrixSelector expression.
|
|
func (ev *evaluator) matrixSelector(node *MatrixSelector) matrix {
|
|
interval := metric.Interval{
|
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
|
|
NewestInclusive: ev.Timestamp.Add(-node.Offset),
|
|
}
|
|
|
|
sampleStreams := make([]*sampleStream, 0, len(node.iterators))
|
|
for fp, it := range node.iterators {
|
|
samplePairs := it.RangeValues(interval)
|
|
if len(samplePairs) == 0 {
|
|
continue
|
|
}
|
|
|
|
if node.Offset != 0 {
|
|
for _, sp := range samplePairs {
|
|
sp.Timestamp = sp.Timestamp.Add(node.Offset)
|
|
}
|
|
}
|
|
|
|
sampleStream := &sampleStream{
|
|
Metric: node.metrics[fp],
|
|
Values: samplePairs,
|
|
}
|
|
sampleStreams = append(sampleStreams, sampleStream)
|
|
}
|
|
return matrix(sampleStreams)
|
|
}
|
|
|
|
// matrixSelectorBounds evaluates the boundaries of a *MatrixSelector.
|
|
func (ev *evaluator) matrixSelectorBounds(node *MatrixSelector) matrix {
|
|
interval := metric.Interval{
|
|
OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset),
|
|
NewestInclusive: ev.Timestamp.Add(-node.Offset),
|
|
}
|
|
|
|
sampleStreams := make([]*sampleStream, 0, len(node.iterators))
|
|
for fp, it := range node.iterators {
|
|
samplePairs := it.BoundaryValues(interval)
|
|
if len(samplePairs) == 0 {
|
|
continue
|
|
}
|
|
|
|
ss := &sampleStream{
|
|
Metric: node.metrics[fp],
|
|
Values: samplePairs,
|
|
}
|
|
sampleStreams = append(sampleStreams, ss)
|
|
}
|
|
return matrix(sampleStreams)
|
|
}
|
|
|
|
func (ev *evaluator) vectorAnd(lhs, rhs vector, matching *VectorMatching) vector {
|
|
if matching.Card != CardManyToMany {
|
|
panic("logical operations must always be many-to-many matching")
|
|
}
|
|
// If no matching labels are specified, match by all labels.
|
|
sigf := signatureFunc(matching.On...)
|
|
|
|
var result vector
|
|
// The set of signatures for the right-hand side vector.
|
|
rightSigs := map[uint64]struct{}{}
|
|
// Add all rhs samples to a map so we can easily find matches later.
|
|
for _, rs := range rhs {
|
|
rightSigs[sigf(rs.Metric)] = struct{}{}
|
|
}
|
|
|
|
for _, ls := range lhs {
|
|
// If there's a matching entry in the right-hand side vector, add the sample.
|
|
if _, ok := rightSigs[sigf(ls.Metric)]; ok {
|
|
result = append(result, ls)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
func (ev *evaluator) vectorOr(lhs, rhs vector, matching *VectorMatching) vector {
|
|
if matching.Card != CardManyToMany {
|
|
panic("logical operations must always be many-to-many matching")
|
|
}
|
|
sigf := signatureFunc(matching.On...)
|
|
|
|
var result vector
|
|
leftSigs := map[uint64]struct{}{}
|
|
// Add everything from the left-hand-side vector.
|
|
for _, ls := range lhs {
|
|
leftSigs[sigf(ls.Metric)] = struct{}{}
|
|
result = append(result, ls)
|
|
}
|
|
// Add all right-hand side elements which have not been added from the left-hand side.
|
|
for _, rs := range rhs {
|
|
if _, ok := leftSigs[sigf(rs.Metric)]; !ok {
|
|
result = append(result, rs)
|
|
}
|
|
}
|
|
return result
|
|
}
|
|
|
|
// vectorBinop evaluates a binary operation between two vector, excluding AND and OR.
|
|
func (ev *evaluator) vectorBinop(op itemType, lhs, rhs vector, matching *VectorMatching, returnBool bool) vector {
|
|
if matching.Card == CardManyToMany {
|
|
panic("many-to-many only allowed for AND and OR")
|
|
}
|
|
var (
|
|
result = vector{}
|
|
sigf = signatureFunc(matching.On...)
|
|
resultLabels = append(matching.On, matching.Include...)
|
|
)
|
|
|
|
// The control flow below handles one-to-one or many-to-one matching.
|
|
// For one-to-many, swap sidedness and account for the swap when calculating
|
|
// values.
|
|
if matching.Card == CardOneToMany {
|
|
lhs, rhs = rhs, lhs
|
|
}
|
|
|
|
// All samples from the rhs hashed by the matching label/values.
|
|
rightSigs := map[uint64]*sample{}
|
|
|
|
// Add all rhs samples to a map so we can easily find matches later.
|
|
for _, rs := range rhs {
|
|
sig := sigf(rs.Metric)
|
|
// The rhs is guaranteed to be the 'one' side. Having multiple samples
|
|
// with the same signature means that the matching is many-to-many.
|
|
if _, found := rightSigs[sig]; found {
|
|
// Many-to-many matching not allowed.
|
|
ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side")
|
|
}
|
|
rightSigs[sig] = rs
|
|
}
|
|
|
|
// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
|
|
// the value is a set of signatures to detect duplicated result elements.
|
|
matchedSigs := map[uint64]map[uint64]struct{}{}
|
|
|
|
// For all lhs samples find a respective rhs sample and perform
|
|
// the binary operation.
|
|
for _, ls := range lhs {
|
|
sig := sigf(ls.Metric)
|
|
|
|
rs, found := rightSigs[sig] // Look for a match in the rhs vector.
|
|
if !found {
|
|
continue
|
|
}
|
|
|
|
// Account for potentially swapped sidedness.
|
|
vl, vr := ls.Value, rs.Value
|
|
if matching.Card == CardOneToMany {
|
|
vl, vr = vr, vl
|
|
}
|
|
value, keep := vectorElemBinop(op, vl, vr)
|
|
if returnBool {
|
|
if keep {
|
|
value = 1.0
|
|
} else {
|
|
value = 0.0
|
|
}
|
|
} else if !keep {
|
|
continue
|
|
}
|
|
metric := resultMetric(ls.Metric, op, resultLabels...)
|
|
|
|
insertedSigs, exists := matchedSigs[sig]
|
|
if matching.Card == CardOneToOne {
|
|
if exists {
|
|
ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
|
|
}
|
|
matchedSigs[sig] = nil // Set existance to true.
|
|
} else {
|
|
// In many-to-one matching the grouping labels have to ensure a unique metric
|
|
// for the result vector. Check whether those labels have already been added for
|
|
// the same matching labels.
|
|
insertSig := model.SignatureForLabels(metric.Metric, matching.Include...)
|
|
if !exists {
|
|
insertedSigs = map[uint64]struct{}{}
|
|
matchedSigs[sig] = insertedSigs
|
|
} else if _, duplicate := insertedSigs[insertSig]; duplicate {
|
|
ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
|
|
}
|
|
insertedSigs[insertSig] = struct{}{}
|
|
}
|
|
|
|
result = append(result, &sample{
|
|
Metric: metric,
|
|
Value: value,
|
|
Timestamp: ev.Timestamp,
|
|
})
|
|
}
|
|
return result
|
|
}
|
|
|
|
// signatureFunc returns a function that calculates the signature for a metric
|
|
// based on the provided labels.
|
|
func signatureFunc(labels ...model.LabelName) func(m metric.Metric) uint64 {
|
|
if len(labels) == 0 {
|
|
return func(m metric.Metric) uint64 {
|
|
m.Del(model.MetricNameLabel)
|
|
return uint64(m.Metric.Fingerprint())
|
|
}
|
|
}
|
|
return func(m metric.Metric) uint64 {
|
|
return model.SignatureForLabels(m.Metric, labels...)
|
|
}
|
|
}
|
|
|
|
// resultMetric returns the metric for the given sample(s) based on the vector
|
|
// binary operation and the matching options.
|
|
func resultMetric(met metric.Metric, op itemType, labels ...model.LabelName) metric.Metric {
|
|
if len(labels) == 0 {
|
|
if shouldDropMetricName(op) {
|
|
met.Del(model.MetricNameLabel)
|
|
}
|
|
return met
|
|
}
|
|
// As we definitly write, creating a new metric is the easiest solution.
|
|
m := model.Metric{}
|
|
for _, ln := range labels {
|
|
// Included labels from the `group_x` modifier are taken from the "many"-side.
|
|
if v, ok := met.Metric[ln]; ok {
|
|
m[ln] = v
|
|
}
|
|
}
|
|
return metric.Metric{Metric: m, Copied: false}
|
|
}
|
|
|
|
// vectorScalarBinop evaluates a binary operation between a vector and a scalar.
|
|
func (ev *evaluator) vectorScalarBinop(op itemType, lhs vector, rhs *model.Scalar, swap, returnBool bool) vector {
|
|
vec := make(vector, 0, len(lhs))
|
|
|
|
for _, lhsSample := range lhs {
|
|
lv, rv := lhsSample.Value, rhs.Value
|
|
// lhs always contains the vector. If the original position was different
|
|
// swap for calculating the value.
|
|
if swap {
|
|
lv, rv = rv, lv
|
|
}
|
|
value, keep := vectorElemBinop(op, lv, rv)
|
|
if returnBool {
|
|
if keep {
|
|
value = 1.0
|
|
} else {
|
|
value = 0.0
|
|
}
|
|
keep = true
|
|
}
|
|
if keep {
|
|
lhsSample.Value = value
|
|
if shouldDropMetricName(op) {
|
|
lhsSample.Metric.Del(model.MetricNameLabel)
|
|
}
|
|
vec = append(vec, lhsSample)
|
|
}
|
|
}
|
|
return vec
|
|
}
|
|
|
|
// scalarBinop evaluates a binary operation between two scalars.
|
|
func scalarBinop(op itemType, lhs, rhs model.SampleValue) model.SampleValue {
|
|
switch op {
|
|
case itemADD:
|
|
return lhs + rhs
|
|
case itemSUB:
|
|
return lhs - rhs
|
|
case itemMUL:
|
|
return lhs * rhs
|
|
case itemDIV:
|
|
return lhs / rhs
|
|
case itemMOD:
|
|
if rhs != 0 {
|
|
return model.SampleValue(int(lhs) % int(rhs))
|
|
}
|
|
return model.SampleValue(math.NaN())
|
|
case itemEQL:
|
|
return btos(lhs == rhs)
|
|
case itemNEQ:
|
|
return btos(lhs != rhs)
|
|
case itemGTR:
|
|
return btos(lhs > rhs)
|
|
case itemLSS:
|
|
return btos(lhs < rhs)
|
|
case itemGTE:
|
|
return btos(lhs >= rhs)
|
|
case itemLTE:
|
|
return btos(lhs <= rhs)
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for scalar operations", op))
|
|
}
|
|
|
|
// vectorElemBinop evaluates a binary operation between two vector elements.
|
|
func vectorElemBinop(op itemType, lhs, rhs model.SampleValue) (model.SampleValue, bool) {
|
|
switch op {
|
|
case itemADD:
|
|
return lhs + rhs, true
|
|
case itemSUB:
|
|
return lhs - rhs, true
|
|
case itemMUL:
|
|
return lhs * rhs, true
|
|
case itemDIV:
|
|
return lhs / rhs, true
|
|
case itemMOD:
|
|
if rhs != 0 {
|
|
return model.SampleValue(int(lhs) % int(rhs)), true
|
|
}
|
|
return model.SampleValue(math.NaN()), true
|
|
case itemEQL:
|
|
return lhs, lhs == rhs
|
|
case itemNEQ:
|
|
return lhs, lhs != rhs
|
|
case itemGTR:
|
|
return lhs, lhs > rhs
|
|
case itemLSS:
|
|
return lhs, lhs < rhs
|
|
case itemGTE:
|
|
return lhs, lhs >= rhs
|
|
case itemLTE:
|
|
return lhs, lhs <= rhs
|
|
}
|
|
panic(fmt.Errorf("operator %q not allowed for operations between vectors", op))
|
|
}
|
|
|
|
// labelIntersection returns the metric of common label/value pairs of two input metrics.
|
|
func labelIntersection(metric1, metric2 metric.Metric) metric.Metric {
|
|
for label, value := range metric1.Metric {
|
|
if metric2.Metric[label] != value {
|
|
metric1.Del(label)
|
|
}
|
|
}
|
|
return metric1
|
|
}
|
|
|
|
type groupedAggregation struct {
|
|
labels metric.Metric
|
|
value model.SampleValue
|
|
valuesSquaredSum model.SampleValue
|
|
groupCount int
|
|
}
|
|
|
|
// aggregation evaluates an aggregation operation on a vector.
|
|
func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, keepExtra bool, vec vector) vector {
|
|
|
|
result := map[uint64]*groupedAggregation{}
|
|
|
|
for _, sample := range vec {
|
|
groupingKey := model.SignatureForLabels(sample.Metric.Metric, grouping...)
|
|
|
|
groupedResult, ok := result[groupingKey]
|
|
// Add a new group if it doesn't exist.
|
|
if !ok {
|
|
var m metric.Metric
|
|
if keepExtra {
|
|
m = sample.Metric
|
|
m.Del(model.MetricNameLabel)
|
|
} else {
|
|
m = metric.Metric{
|
|
Metric: model.Metric{},
|
|
Copied: true,
|
|
}
|
|
for _, l := range grouping {
|
|
if v, ok := sample.Metric.Metric[l]; ok {
|
|
m.Set(l, v)
|
|
}
|
|
}
|
|
}
|
|
result[groupingKey] = &groupedAggregation{
|
|
labels: m,
|
|
value: sample.Value,
|
|
valuesSquaredSum: sample.Value * sample.Value,
|
|
groupCount: 1,
|
|
}
|
|
continue
|
|
}
|
|
// Add the sample to the existing group.
|
|
if keepExtra {
|
|
groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric)
|
|
}
|
|
|
|
switch op {
|
|
case itemSum:
|
|
groupedResult.value += sample.Value
|
|
case itemAvg:
|
|
groupedResult.value += sample.Value
|
|
groupedResult.groupCount++
|
|
case itemMax:
|
|
if groupedResult.value < sample.Value {
|
|
groupedResult.value = sample.Value
|
|
}
|
|
case itemMin:
|
|
if groupedResult.value > sample.Value {
|
|
groupedResult.value = sample.Value
|
|
}
|
|
case itemCount:
|
|
groupedResult.groupCount++
|
|
case itemStdvar, itemStddev:
|
|
groupedResult.value += sample.Value
|
|
groupedResult.valuesSquaredSum += sample.Value * sample.Value
|
|
groupedResult.groupCount++
|
|
default:
|
|
panic(fmt.Errorf("expected aggregation operator but got %q", op))
|
|
}
|
|
}
|
|
|
|
// Construct the result vector from the aggregated groups.
|
|
resultVector := make(vector, 0, len(result))
|
|
|
|
for _, aggr := range result {
|
|
switch op {
|
|
case itemAvg:
|
|
aggr.value = aggr.value / model.SampleValue(aggr.groupCount)
|
|
case itemCount:
|
|
aggr.value = model.SampleValue(aggr.groupCount)
|
|
case itemStdvar:
|
|
avg := float64(aggr.value) / float64(aggr.groupCount)
|
|
aggr.value = model.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)
|
|
case itemStddev:
|
|
avg := float64(aggr.value) / float64(aggr.groupCount)
|
|
aggr.value = model.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg))
|
|
default:
|
|
// For other aggregations, we already have the right value.
|
|
}
|
|
sample := &sample{
|
|
Metric: aggr.labels,
|
|
Value: aggr.value,
|
|
Timestamp: ev.Timestamp,
|
|
}
|
|
resultVector = append(resultVector, sample)
|
|
}
|
|
return resultVector
|
|
}
|
|
|
|
// btos returns 1 if b is true, 0 otherwise.
|
|
func btos(b bool) model.SampleValue {
|
|
if b {
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// shouldDropMetricName returns whether the metric name should be dropped in the
|
|
// result of the op operation.
|
|
func shouldDropMetricName(op itemType) bool {
|
|
switch op {
|
|
case itemADD, itemSUB, itemDIV, itemMUL, itemMOD:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// StalenessDelta determines the time since the last sample after which a time
|
|
// series is considered stale.
|
|
var StalenessDelta = 5 * time.Minute
|
|
|
|
// chooseClosestBefore chooses the closest sample of a list of samples
|
|
// before or at a given target time.
|
|
func chooseClosestBefore(samples []model.SamplePair, timestamp model.Time) *model.SamplePair {
|
|
for _, candidate := range samples {
|
|
delta := candidate.Timestamp.Sub(timestamp)
|
|
// Samples before or at target time.
|
|
if delta <= 0 {
|
|
// Ignore samples outside of staleness policy window.
|
|
if -delta > StalenessDelta {
|
|
continue
|
|
}
|
|
return &candidate
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// A queryGate controls the maximum number of concurrently running and waiting queries.
|
|
type queryGate struct {
|
|
ch chan struct{}
|
|
}
|
|
|
|
// newQueryGate returns a query gate that limits the number of queries
|
|
// being concurrently executed.
|
|
func newQueryGate(length int) *queryGate {
|
|
return &queryGate{
|
|
ch: make(chan struct{}, length),
|
|
}
|
|
}
|
|
|
|
// Start blocks until the gate has a free spot or the context is done.
|
|
func (g *queryGate) Start(ctx context.Context) error {
|
|
select {
|
|
case <-ctx.Done():
|
|
return contextDone(ctx, "query queue")
|
|
case g.ch <- struct{}{}:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Done releases a single spot in the gate.
|
|
func (g *queryGate) Done() {
|
|
select {
|
|
case <-g.ch:
|
|
default:
|
|
panic("engine.queryGate.Done: more operations done than started")
|
|
}
|
|
}
|