prometheus/storage/metric/tiered.go
Matt T. Proud 161c8fbf9b Include deletion processor for long-tail values.
This commit extracts the model.Values truncation behavior into the actual
tiered storage, which uses it and behaves in a peculiar way—notably the
retention of previous elements if the chunk were to ever go empty.  This is
done to enable interpolation between sparse sample values in the evaluation
cycle.  Nothing necessarily new here—just an extraction.

Now, the model.Values TruncateBefore functionality would do what a user
would expect without any surprises, which is required for the
DeletionProcessor, which may decide to split a large chunk in two if it
determines that the chunk contains the cut-off time.
2013-05-10 12:19:12 +02:00

625 lines
17 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"github.com/prometheus/prometheus/coding"
"github.com/prometheus/prometheus/coding/indexable"
"github.com/prometheus/prometheus/model"
dto "github.com/prometheus/prometheus/model/generated"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/storage/raw/leveldb"
"log"
"sort"
"sync"
"time"
)
type chunk model.Values
// TruncateBefore returns a subslice of the original such that extraneous
// samples in the collection that occur before the provided time are
// dropped. The original slice is not mutated. It works with the assumption
// that consumers of these values could want preceding values if none would
// exist prior to the defined time.
func (c chunk) TruncateBefore(t time.Time) chunk {
index := sort.Search(len(c), func(i int) bool {
timestamp := c[i].Timestamp
return !timestamp.Before(t)
})
switch index {
case 0:
return c
case len(c):
return c[len(c)-1:]
default:
return c[index-1:]
}
panic("unreachable")
}
// TieredStorage both persists samples and generates materialized views for
// queries.
type TieredStorage struct {
// BUG(matt): This introduces a Law of Demeter violation. Ugh.
DiskStorage *LevelDBMetricPersistence
appendToDiskQueue chan model.Samples
appendToMemoryQueue chan model.Samples
diskFrontier *diskFrontier
draining chan chan bool
flushMemoryInterval time.Duration
memoryArena memorySeriesStorage
memoryTTL time.Duration
mutex sync.Mutex
viewQueue chan viewJob
writeMemoryInterval time.Duration
}
// viewJob encapsulates a request to extract sample values from the datastore.
type viewJob struct {
builder ViewRequestBuilder
output chan View
abort chan bool
err chan error
}
func NewTieredStorage(appendToMemoryQueueDepth, appendToDiskQueueDepth, viewQueueDepth uint, flushMemoryInterval, writeMemoryInterval, memoryTTL time.Duration, root string) (storage *TieredStorage, err error) {
diskStorage, err := NewLevelDBMetricPersistence(root)
if err != nil {
return
}
storage = &TieredStorage{
appendToDiskQueue: make(chan model.Samples, appendToDiskQueueDepth),
appendToMemoryQueue: make(chan model.Samples, appendToMemoryQueueDepth),
DiskStorage: diskStorage,
draining: make(chan chan bool),
flushMemoryInterval: flushMemoryInterval,
memoryArena: NewMemorySeriesStorage(),
memoryTTL: memoryTTL,
viewQueue: make(chan viewJob, viewQueueDepth),
writeMemoryInterval: writeMemoryInterval,
}
return
}
// Enqueues Samples for storage.
func (t *TieredStorage) AppendSamples(s model.Samples) (err error) {
if len(t.draining) > 0 {
return fmt.Errorf("Storage is in the process of draining.")
}
t.appendToMemoryQueue <- s
return
}
// Stops the storage subsystem, flushing all pending operations.
func (t *TieredStorage) Drain() {
log.Println("Starting drain...")
drainingDone := make(chan bool)
if len(t.draining) == 0 {
t.draining <- drainingDone
}
<-drainingDone
log.Println("Done.")
}
// Enqueues a ViewRequestBuilder for materialization, subject to a timeout.
func (t *TieredStorage) MakeView(builder ViewRequestBuilder, deadline time.Duration) (view View, err error) {
if len(t.draining) > 0 {
err = fmt.Errorf("Storage is in the process of draining.")
return
}
// The result channel needs a one-element buffer in case we have timed out in
// MakeView, but the view rendering still completes afterwards and writes to
// the channel.
result := make(chan View, 1)
// The abort channel needs a one-element buffer in case the view rendering
// has already exited and doesn't consume from the channel anymore.
abortChan := make(chan bool, 1)
errChan := make(chan error)
t.viewQueue <- viewJob{
builder: builder,
output: result,
abort: abortChan,
err: errChan,
}
select {
case value := <-result:
view = value
case err = <-errChan:
return
case <-time.After(deadline):
abortChan <- true
err = fmt.Errorf("MakeView timed out after %s.", deadline)
}
return
}
func (t *TieredStorage) rebuildDiskFrontier(i leveldb.Iterator) (err error) {
begin := time.Now()
defer func() {
duration := time.Since(begin)
recordOutcome(duration, err, map[string]string{operation: appendSample, result: success}, map[string]string{operation: rebuildDiskFrontier, result: failure})
}()
t.diskFrontier, err = newDiskFrontier(i)
if err != nil {
return
}
return
}
// Starts serving requests.
func (t *TieredStorage) Serve() {
flushMemoryTicker := time.NewTicker(t.flushMemoryInterval)
defer flushMemoryTicker.Stop()
writeMemoryTicker := time.NewTicker(t.writeMemoryInterval)
defer writeMemoryTicker.Stop()
reportTicker := time.NewTicker(time.Second)
defer reportTicker.Stop()
go func() {
for _ = range reportTicker.C {
t.reportQueues()
}
}()
for {
select {
case <-writeMemoryTicker.C:
t.writeMemory()
case <-flushMemoryTicker.C:
t.flushMemory()
case viewRequest := <-t.viewQueue:
t.renderView(viewRequest)
case drainingDone := <-t.draining:
t.flush()
drainingDone <- true
return
}
}
}
func (t *TieredStorage) reportQueues() {
queueSizes.Set(map[string]string{"queue": "append_to_disk", "facet": "occupancy"}, float64(len(t.appendToDiskQueue)))
queueSizes.Set(map[string]string{"queue": "append_to_disk", "facet": "capacity"}, float64(cap(t.appendToDiskQueue)))
queueSizes.Set(map[string]string{"queue": "append_to_memory", "facet": "occupancy"}, float64(len(t.appendToMemoryQueue)))
queueSizes.Set(map[string]string{"queue": "append_to_memory", "facet": "capacity"}, float64(cap(t.appendToMemoryQueue)))
queueSizes.Set(map[string]string{"queue": "view_generation", "facet": "occupancy"}, float64(len(t.viewQueue)))
queueSizes.Set(map[string]string{"queue": "view_generation", "facet": "capacity"}, float64(cap(t.viewQueue)))
}
func (t *TieredStorage) writeMemory() {
begin := time.Now()
defer func() {
duration := time.Since(begin)
recordOutcome(duration, nil, map[string]string{operation: appendSample, result: success}, map[string]string{operation: writeMemory, result: failure})
}()
t.mutex.Lock()
defer t.mutex.Unlock()
pendingLength := len(t.appendToMemoryQueue)
for i := 0; i < pendingLength; i++ {
t.memoryArena.AppendSamples(<-t.appendToMemoryQueue)
}
}
func (t *TieredStorage) Flush() {
t.flush()
}
func (t *TieredStorage) Close() {
log.Println("Closing tiered storage...")
t.Drain()
t.DiskStorage.Close()
t.memoryArena.Close()
close(t.appendToDiskQueue)
close(t.appendToMemoryQueue)
close(t.viewQueue)
log.Println("Done.")
}
// Write all pending appends.
func (t *TieredStorage) flush() (err error) {
// Trim any old values to reduce iterative write costs.
t.flushMemory()
t.writeMemory()
t.flushMemory()
return
}
type memoryToDiskFlusher struct {
toDiskQueue chan model.Samples
disk MetricPersistence
olderThan time.Time
valuesAccepted int
valuesRejected int
}
type memoryToDiskFlusherVisitor struct {
stream stream
flusher *memoryToDiskFlusher
}
func (f memoryToDiskFlusherVisitor) DecodeKey(in interface{}) (out interface{}, err error) {
out = time.Time(in.(skipListTime))
return
}
func (f memoryToDiskFlusherVisitor) DecodeValue(in interface{}) (out interface{}, err error) {
out = in.(value).get()
return
}
func (f memoryToDiskFlusherVisitor) Filter(key, value interface{}) (filterResult storage.FilterResult) {
var (
recordTime = key.(time.Time)
)
if recordTime.Before(f.flusher.olderThan) {
f.flusher.valuesAccepted++
return storage.ACCEPT
}
f.flusher.valuesRejected++
return storage.STOP
}
func (f memoryToDiskFlusherVisitor) Operate(key, value interface{}) (err *storage.OperatorError) {
var (
recordTime = key.(time.Time)
recordValue = value.(model.SampleValue)
)
if len(f.flusher.toDiskQueue) == cap(f.flusher.toDiskQueue) {
f.flusher.Flush()
}
f.flusher.toDiskQueue <- model.Samples{
model.Sample{
Metric: f.stream.metric,
Timestamp: recordTime,
Value: recordValue,
},
}
f.stream.values.Delete(skipListTime(recordTime))
return
}
func (f *memoryToDiskFlusher) ForStream(stream stream) (decoder storage.RecordDecoder, filter storage.RecordFilter, operator storage.RecordOperator) {
visitor := memoryToDiskFlusherVisitor{
stream: stream,
flusher: f,
}
return visitor, visitor, visitor
}
func (f *memoryToDiskFlusher) Flush() {
length := len(f.toDiskQueue)
samples := model.Samples{}
for i := 0; i < length; i++ {
samples = append(samples, <-f.toDiskQueue...)
}
f.disk.AppendSamples(samples)
}
func (f memoryToDiskFlusher) Close() {
f.Flush()
}
// Persist a whole bunch of samples to the datastore.
func (t *TieredStorage) flushMemory() {
begin := time.Now()
defer func() {
duration := time.Since(begin)
recordOutcome(duration, nil, map[string]string{operation: appendSample, result: success}, map[string]string{operation: flushMemory, result: failure})
}()
t.mutex.Lock()
defer t.mutex.Unlock()
flusher := &memoryToDiskFlusher{
disk: t.DiskStorage,
olderThan: time.Now().Add(-1 * t.memoryTTL),
toDiskQueue: t.appendToDiskQueue,
}
defer flusher.Close()
t.memoryArena.ForEachSample(flusher)
return
}
func (t *TieredStorage) renderView(viewJob viewJob) {
// Telemetry.
var err error
begin := time.Now()
defer func() {
duration := time.Since(begin)
recordOutcome(duration, err, map[string]string{operation: renderView, result: success}, map[string]string{operation: renderView, result: failure})
}()
t.mutex.Lock()
defer t.mutex.Unlock()
var (
scans = viewJob.builder.ScanJobs()
view = newView()
// Get a single iterator that will be used for all data extraction below.
iterator = t.DiskStorage.MetricSamples.NewIterator(true)
)
defer iterator.Close()
// Rebuilding of the frontier should happen on a conditional basis if a
// (fingerprint, timestamp) tuple is outside of the current frontier.
err = t.rebuildDiskFrontier(iterator)
if err != nil {
panic(err)
}
for _, scanJob := range scans {
var seriesFrontier *seriesFrontier = nil
if t.diskFrontier != nil {
seriesFrontier, err = newSeriesFrontier(scanJob.fingerprint, *t.diskFrontier, iterator)
if err != nil {
panic(err)
}
}
standingOps := scanJob.operations
for len(standingOps) > 0 {
// Abort the view rendering if the caller (MakeView) has timed out.
if len(viewJob.abort) > 0 {
return
}
// Load data value chunk(s) around the first standing op's current time.
targetTime := *standingOps[0].CurrentTime()
currentChunk := chunk{}
memValues := t.memoryArena.GetValueAtTime(scanJob.fingerprint, targetTime)
// If we aimed before the oldest value in memory, load more data from disk.
if (len(memValues) == 0 || memValues.FirstTimeAfter(targetTime)) && seriesFrontier != nil {
// XXX: For earnest performance gains analagous to the benchmarking we
// performed, chunk should only be reloaded if it no longer contains
// the values we're looking for.
//
// To better understand this, look at https://github.com/prometheus/prometheus/blob/benchmark/leveldb/iterator-seek-characteristics/leveldb.go#L239 and note the behavior around retrievedValue.
diskValues := t.loadChunkAroundTime(iterator, seriesFrontier, scanJob.fingerprint, targetTime)
// If we aimed past the newest value on disk, combine it with the next value from memory.
if len(memValues) > 0 && diskValues.LastTimeBefore(targetTime) {
latestDiskValue := diskValues[len(diskValues)-1:]
currentChunk = append(chunk(latestDiskValue), chunk(memValues)...)
} else {
currentChunk = chunk(diskValues)
}
} else {
currentChunk = chunk(memValues)
}
// There's no data at all for this fingerprint, so stop processing ops for it.
if len(currentChunk) == 0 {
break
}
currentChunk = currentChunk.TruncateBefore(targetTime)
lastChunkTime := currentChunk[len(currentChunk)-1].Timestamp
if lastChunkTime.After(targetTime) {
targetTime = lastChunkTime
}
// For each op, extract all needed data from the current chunk.
out := model.Values{}
for _, op := range standingOps {
if op.CurrentTime().After(targetTime) {
break
}
currentChunk = currentChunk.TruncateBefore(*(op.CurrentTime()))
for op.CurrentTime() != nil && !op.CurrentTime().After(targetTime) {
out = op.ExtractSamples(model.Values(currentChunk))
}
}
// Append the extracted samples to the materialized view.
for _, sample := range out {
view.appendSample(scanJob.fingerprint, sample.Timestamp, sample.Value)
}
// Throw away standing ops which are finished.
filteredOps := ops{}
for _, op := range standingOps {
if op.CurrentTime() != nil {
filteredOps = append(filteredOps, op)
}
}
standingOps = filteredOps
// Sort ops by start time again, since they might be slightly off now.
// For example, consider a current chunk of values and two interval ops
// with different interval lengths. Their states after the cycle above
// could be:
//
// (C = current op time)
//
// Chunk: [ X X X X X ]
// Op 1: [ X X C . . . ]
// Op 2: [ X X C . . .]
//
// Op 2 now has an earlier current time than Op 1.
sort.Sort(startsAtSort{standingOps})
}
}
viewJob.output <- view
return
}
func (t *TieredStorage) loadChunkAroundTime(iterator leveldb.Iterator, frontier *seriesFrontier, fingerprint model.Fingerprint, ts time.Time) (chunk model.Values) {
var (
targetKey = &dto.SampleKey{
Fingerprint: fingerprint.ToDTO(),
}
foundKey model.SampleKey
foundValues model.Values
)
// Limit the target key to be within the series' keyspace.
if ts.After(frontier.lastSupertime) {
targetKey.Timestamp = indexable.EncodeTime(frontier.lastSupertime)
} else {
targetKey.Timestamp = indexable.EncodeTime(ts)
}
// Try seeking to target key.
rawKey, _ := coding.NewProtocolBuffer(targetKey).Encode()
iterator.Seek(rawKey)
foundKey, err := extractSampleKey(iterator)
if err != nil {
panic(err)
}
// Figure out if we need to rewind by one block.
// Imagine the following supertime blocks with time ranges:
//
// Block 1: ft 1000 - lt 1009 <data>
// Block 1: ft 1010 - lt 1019 <data>
//
// If we are aiming to find time 1005, we would first seek to the block with
// supertime 1010, then need to rewind by one block by virtue of LevelDB
// iterator seek behavior.
//
// Only do the rewind if there is another chunk before this one.
rewound := false
firstTime := foundKey.FirstTimestamp
if ts.Before(firstTime) && !frontier.firstSupertime.After(ts) {
iterator.Previous()
rewound = true
}
foundValues, err = extractSampleValues(iterator)
if err != nil {
return
}
// If we rewound, but the target time is still past the current block, return
// the last value of the current (rewound) block and the entire next block.
if rewound {
foundKey, err = extractSampleKey(iterator)
if err != nil {
return
}
currentChunkLastTime := foundKey.LastTimestamp
if ts.After(currentChunkLastTime) {
sampleCount := len(foundValues)
chunk = append(chunk, foundValues[sampleCount-1])
// We know there's a next block since we have rewound from it.
iterator.Next()
foundValues, err = extractSampleValues(iterator)
if err != nil {
return
}
}
}
// Now append all the samples of the currently seeked block to the output.
chunk = append(chunk, foundValues...)
return
}
// Get all label values that are associated with the provided label name.
func (t *TieredStorage) GetAllValuesForLabel(labelName model.LabelName) (values model.LabelValues, err error) {
diskValues, err := t.DiskStorage.GetAllValuesForLabel(labelName)
if err != nil {
return
}
memoryValues, err := t.memoryArena.GetAllValuesForLabel(labelName)
if err != nil {
return
}
valueSet := map[model.LabelValue]bool{}
for _, value := range append(diskValues, memoryValues...) {
if !valueSet[value] {
values = append(values, value)
valueSet[value] = true
}
}
return
}
// Get all of the metric fingerprints that are associated with the provided
// label set.
func (t *TieredStorage) GetFingerprintsForLabelSet(labelSet model.LabelSet) (fingerprints model.Fingerprints, err error) {
memFingerprints, err := t.memoryArena.GetFingerprintsForLabelSet(labelSet)
if err != nil {
return
}
diskFingerprints, err := t.DiskStorage.GetFingerprintsForLabelSet(labelSet)
if err != nil {
return
}
fingerprintSet := map[model.Fingerprint]bool{}
for _, fingerprint := range append(memFingerprints, diskFingerprints...) {
fingerprintSet[fingerprint] = true
}
for fingerprint := range fingerprintSet {
fingerprints = append(fingerprints, fingerprint)
}
return
}
// Get the metric associated with the provided fingerprint.
func (t *TieredStorage) GetMetricForFingerprint(f model.Fingerprint) (m *model.Metric, err error) {
m, err = t.memoryArena.GetMetricForFingerprint(f)
if err != nil {
return
}
if m == nil {
m, err = t.DiskStorage.GetMetricForFingerprint(f)
}
return
}