prometheus/compact.go
Fabian Reinartz 6ee254e353 Ensure postings are always sorted
IDs for new series are handed out before the postings are locked. Thus
series are not indexed in order of their IDs, which could result in only
partially sorted postings list.
Iterating over those silently skipped elements as the sort invariant was
violated.
2017-09-21 09:38:18 +02:00

763 lines
18 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"math/rand"
"os"
"path/filepath"
"sort"
"time"
"github.com/coreos/etcd/pkg/fileutil"
"github.com/go-kit/kit/log"
"github.com/oklog/ulid"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/tsdb/chunks"
"github.com/prometheus/tsdb/labels"
)
// ExponentialBlockRanges returns the time ranges based on the stepSize
func ExponentialBlockRanges(minSize int64, steps, stepSize int) []int64 {
ranges := make([]int64, 0, steps)
curRange := minSize
for i := 0; i < steps; i++ {
ranges = append(ranges, curRange)
curRange = curRange * int64(stepSize)
}
return ranges
}
// Compactor provides compaction against an underlying storage
// of time series data.
type Compactor interface {
// Plan returns a set of non-overlapping directories that can
// be compacted concurrently.
// Results returned when compactions are in progress are undefined.
Plan(dir string) ([]string, error)
// Write persists a Block into a directory.
Write(dest string, b BlockReader, mint, maxt int64) error
// Compact runs compaction against the provided directories. Must
// only be called concurrently with results of Plan().
Compact(dest string, dirs ...string) error
}
// LeveledCompactor implements the Compactor interface.
type LeveledCompactor struct {
dir string
metrics *compactorMetrics
logger log.Logger
ranges []int64
chunkPool chunks.Pool
}
type compactorMetrics struct {
ran prometheus.Counter
failed prometheus.Counter
duration prometheus.Histogram
chunkSize prometheus.Histogram
chunkSamples prometheus.Histogram
chunkRange prometheus.Histogram
}
func newCompactorMetrics(r prometheus.Registerer) *compactorMetrics {
m := &compactorMetrics{}
m.ran = prometheus.NewCounter(prometheus.CounterOpts{
Name: "tsdb_compactions_total",
Help: "Total number of compactions that were executed for the partition.",
})
m.failed = prometheus.NewCounter(prometheus.CounterOpts{
Name: "tsdb_compactions_failed_total",
Help: "Total number of compactions that failed for the partition.",
})
m.duration = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "tsdb_compaction_duration",
Help: "Duration of compaction runs.",
Buckets: prometheus.ExponentialBuckets(1, 2, 10),
})
m.chunkSize = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "tsdb_compaction_chunk_size",
Help: "Final size of chunks on their first compaction",
Buckets: prometheus.ExponentialBuckets(32, 1.5, 12),
})
m.chunkSamples = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "tsdb_compaction_chunk_samples",
Help: "Final number of samples on their first compaction",
Buckets: prometheus.ExponentialBuckets(4, 1.5, 12),
})
m.chunkRange = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "tsdb_compaction_chunk_range",
Help: "Final time range of chunks on their first compaction",
Buckets: prometheus.ExponentialBuckets(100, 4, 10),
})
if r != nil {
r.MustRegister(
m.ran,
m.failed,
m.duration,
m.chunkRange,
m.chunkSamples,
m.chunkSize,
)
}
return m
}
// NewLeveledCompactor returns a LeveledCompactor.
func NewLeveledCompactor(r prometheus.Registerer, l log.Logger, ranges []int64, pool chunks.Pool) (*LeveledCompactor, error) {
if len(ranges) == 0 {
return nil, errors.Errorf("at least one range must be provided")
}
if pool == nil {
pool = chunks.NewPool()
}
return &LeveledCompactor{
ranges: ranges,
chunkPool: pool,
logger: l,
metrics: newCompactorMetrics(r),
}, nil
}
type dirMeta struct {
dir string
meta *BlockMeta
}
// Plan returns a list of compactable blocks in the provided directory.
func (c *LeveledCompactor) Plan(dir string) ([]string, error) {
dirs, err := blockDirs(dir)
if err != nil {
return nil, err
}
var dms []dirMeta
for _, dir := range dirs {
meta, err := readMetaFile(dir)
if err != nil {
return nil, err
}
dms = append(dms, dirMeta{dir, meta})
}
return c.plan(dms)
}
func (c *LeveledCompactor) plan(dms []dirMeta) ([]string, error) {
sort.Slice(dms, func(i, j int) bool {
return dms[i].meta.MinTime < dms[j].meta.MinTime
})
var res []string
for _, dm := range c.selectDirs(dms) {
res = append(res, dm.dir)
}
if len(res) > 0 {
return res, nil
}
// Compact any blocks that have >5% tombstones.
for i := len(dms) - 1; i >= 0; i-- {
meta := dms[i].meta
if meta.MaxTime-meta.MinTime < c.ranges[len(c.ranges)/2] {
break
}
if float64(meta.Stats.NumTombstones)/float64(meta.Stats.NumSeries+1) > 0.05 {
return []string{dms[i].dir}, nil
}
}
return nil, nil
}
// selectDirs returns the dir metas that should be compacted into a single new block.
// If only a single block range is configured, the result is always nil.
func (c *LeveledCompactor) selectDirs(ds []dirMeta) []dirMeta {
if len(c.ranges) < 2 || len(ds) < 1 {
return nil
}
highTime := ds[len(ds)-1].meta.MinTime
for _, iv := range c.ranges[1:] {
parts := splitByRange(ds, iv)
if len(parts) == 0 {
continue
}
for _, p := range parts {
mint := p[0].meta.MinTime
maxt := p[len(p)-1].meta.MaxTime
// Pick the range of blocks if it spans the full range (potentially with gaps)
// or is before the most recent block.
// This ensures we don't compact blocks prematurely when another one of the same
// size still fits in the range.
if (maxt-mint == iv || maxt <= highTime) && len(p) > 1 {
return p
}
}
}
return nil
}
// splitByRange splits the directories by the time range. The range sequence starts at 0.
//
// For example, if we have blocks [0-10, 10-20, 50-60, 90-100] and the split range tr is 30
// it returns [0-10, 10-20], [50-60], [90-100].
func splitByRange(ds []dirMeta, tr int64) [][]dirMeta {
var splitDirs [][]dirMeta
for i := 0; i < len(ds); {
var (
group []dirMeta
t0 int64
m = ds[i].meta
)
// Compute start of aligned time range of size tr closest to the current block's start.
if m.MinTime >= 0 {
t0 = tr * (m.MinTime / tr)
} else {
t0 = tr * ((m.MinTime - tr + 1) / tr)
}
// Skip blocks that don't fall into the range. This can happen via mis-alignment or
// by being the multiple of the intended range.
if ds[i].meta.MinTime < t0 || ds[i].meta.MaxTime > t0+tr {
i++
continue
}
// Add all dirs to the current group that are within [t0, t0+tr].
for ; i < len(ds); i++ {
// Either the block falls into the next range or doesn't fit at all (checked above).
if ds[i].meta.MinTime < t0 || ds[i].meta.MaxTime > t0+tr {
break
}
group = append(group, ds[i])
}
if len(group) > 0 {
splitDirs = append(splitDirs, group)
}
}
return splitDirs
}
func compactBlockMetas(uid ulid.ULID, blocks ...*BlockMeta) *BlockMeta {
res := &BlockMeta{
ULID: uid,
MinTime: blocks[0].MinTime,
MaxTime: blocks[len(blocks)-1].MaxTime,
}
sources := map[ulid.ULID]struct{}{}
for _, b := range blocks {
if b.Compaction.Level > res.Compaction.Level {
res.Compaction.Level = b.Compaction.Level
}
for _, s := range b.Compaction.Sources {
sources[s] = struct{}{}
}
}
res.Compaction.Level++
for s := range sources {
res.Compaction.Sources = append(res.Compaction.Sources, s)
}
sort.Slice(res.Compaction.Sources, func(i, j int) bool {
return res.Compaction.Sources[i].Compare(res.Compaction.Sources[j]) < 0
})
return res
}
// Compact creates a new block in the compactor's directory from the blocks in the
// provided directories.
func (c *LeveledCompactor) Compact(dest string, dirs ...string) (err error) {
var blocks []BlockReader
var metas []*BlockMeta
for _, d := range dirs {
b, err := newPersistedBlock(d, c.chunkPool)
if err != nil {
return err
}
defer b.Close()
meta, err := readMetaFile(d)
if err != nil {
return err
}
metas = append(metas, meta)
blocks = append(blocks, b)
}
entropy := rand.New(rand.NewSource(time.Now().UnixNano()))
uid := ulid.MustNew(ulid.Now(), entropy)
return c.write(dest, compactBlockMetas(uid, metas...), blocks...)
}
func (c *LeveledCompactor) Write(dest string, b BlockReader, mint, maxt int64) error {
entropy := rand.New(rand.NewSource(time.Now().UnixNano()))
uid := ulid.MustNew(ulid.Now(), entropy)
meta := &BlockMeta{
ULID: uid,
MinTime: mint,
MaxTime: maxt,
}
meta.Compaction.Level = 1
meta.Compaction.Sources = []ulid.ULID{uid}
return c.write(dest, meta, b)
}
// instrumentedChunkWriter is used for level 1 compactions to record statistics
// about compacted chunks.
type instrumentedChunkWriter struct {
ChunkWriter
size prometheus.Histogram
samples prometheus.Histogram
trange prometheus.Histogram
}
func (w *instrumentedChunkWriter) WriteChunks(chunks ...ChunkMeta) error {
for _, c := range chunks {
w.size.Observe(float64(len(c.Chunk.Bytes())))
w.samples.Observe(float64(c.Chunk.NumSamples()))
w.trange.Observe(float64(c.MaxTime - c.MinTime))
}
return w.ChunkWriter.WriteChunks(chunks...)
}
// write creates a new block that is the union of the provided blocks into dir.
// It cleans up all files of the old blocks after completing successfully.
func (c *LeveledCompactor) write(dest string, meta *BlockMeta, blocks ...BlockReader) (err error) {
c.logger.Log("msg", "compact blocks", "count", len(blocks), "mint", meta.MinTime, "maxt", meta.MaxTime)
defer func(t time.Time) {
if err != nil {
c.metrics.failed.Inc()
}
c.metrics.ran.Inc()
c.metrics.duration.Observe(time.Since(t).Seconds())
}(time.Now())
dir := filepath.Join(dest, meta.ULID.String())
tmp := dir + ".tmp"
if err = os.RemoveAll(tmp); err != nil {
return err
}
if err = os.MkdirAll(tmp, 0777); err != nil {
return err
}
// Populate chunk and index files into temporary directory with
// data of all blocks.
var chunkw ChunkWriter
chunkw, err = newChunkWriter(chunkDir(tmp))
if err != nil {
return errors.Wrap(err, "open chunk writer")
}
// Record written chunk sizes on level 1 compactions.
if meta.Compaction.Level == 1 {
chunkw = &instrumentedChunkWriter{
ChunkWriter: chunkw,
size: c.metrics.chunkSize,
samples: c.metrics.chunkSamples,
trange: c.metrics.chunkRange,
}
}
indexw, err := newIndexWriter(tmp)
if err != nil {
return errors.Wrap(err, "open index writer")
}
if err := c.populateBlock(blocks, meta, indexw, chunkw); err != nil {
return errors.Wrap(err, "write compaction")
}
if err = writeMetaFile(tmp, meta); err != nil {
return errors.Wrap(err, "write merged meta")
}
if err = chunkw.Close(); err != nil {
return errors.Wrap(err, "close chunk writer")
}
if err = indexw.Close(); err != nil {
return errors.Wrap(err, "close index writer")
}
// Create an empty tombstones file.
if err := writeTombstoneFile(tmp, newEmptyTombstoneReader()); err != nil {
return errors.Wrap(err, "write new tombstones file")
}
// Block successfully written, make visible and remove old ones.
if err := renameFile(tmp, dir); err != nil {
return errors.Wrap(err, "rename block dir")
}
// Properly sync parent dir to ensure changes are visible.
df, err := fileutil.OpenDir(dir)
if err != nil {
return errors.Wrap(err, "sync block dir")
}
defer df.Close()
if err := fileutil.Fsync(df); err != nil {
return errors.Wrap(err, "sync block dir")
}
return nil
}
// populateBlock fills the index and chunk writers with new data gathered as the union
// of the provided blocks. It returns meta information for the new block.
func (c *LeveledCompactor) populateBlock(blocks []BlockReader, meta *BlockMeta, indexw IndexWriter, chunkw ChunkWriter) error {
var (
set compactionSet
allSymbols = make(map[string]struct{}, 1<<16)
)
for i, b := range blocks {
symbols, err := b.Index().Symbols()
if err != nil {
return errors.Wrap(err, "read symbols")
}
for s := range symbols {
allSymbols[s] = struct{}{}
}
indexr := b.Index()
all, err := indexr.Postings(allPostingsKey.Name, allPostingsKey.Value)
if err != nil {
return err
}
all = indexr.SortedPostings(all)
s := newCompactionSeriesSet(indexr, b.Chunks(), b.Tombstones(), all)
if i == 0 {
set = s
continue
}
set, err = newCompactionMerger(set, s)
if err != nil {
return err
}
}
// We fully rebuild the postings list index from merged series.
var (
postings = newMemPostings()
values = map[string]stringset{}
i = uint64(0)
)
if err := indexw.AddSymbols(allSymbols); err != nil {
return errors.Wrap(err, "add symbols")
}
for set.Next() {
lset, chks, dranges := set.At() // The chunks here are not fully deleted.
// Skip the series with all deleted chunks.
if len(chks) == 0 {
continue
}
if len(dranges) > 0 {
// Re-encode the chunk to not have deleted values.
for _, chk := range chks {
if intervalOverlap(dranges[0].Mint, dranges[len(dranges)-1].Maxt, chk.MinTime, chk.MaxTime) {
newChunk := chunks.NewXORChunk()
app, err := newChunk.Appender()
if err != nil {
return err
}
it := &deletedIterator{it: chk.Chunk.Iterator(), intervals: dranges}
for it.Next() {
ts, v := it.At()
app.Append(ts, v)
}
chk.Chunk = newChunk
}
}
}
if err := chunkw.WriteChunks(chks...); err != nil {
return errors.Wrap(err, "write chunks")
}
if err := indexw.AddSeries(i, lset, chks...); err != nil {
return errors.Wrap(err, "add series")
}
meta.Stats.NumChunks += uint64(len(chks))
meta.Stats.NumSeries++
for _, chk := range chks {
meta.Stats.NumSamples += uint64(chk.Chunk.NumSamples())
}
for _, chk := range chks {
c.chunkPool.Put(chk.Chunk)
}
for _, l := range lset {
valset, ok := values[l.Name]
if !ok {
valset = stringset{}
values[l.Name] = valset
}
valset.set(l.Value)
}
postings.add(i, lset)
i++
}
if set.Err() != nil {
return errors.Wrap(set.Err(), "iterate compaction set")
}
s := make([]string, 0, 256)
for n, v := range values {
s = s[:0]
for x := range v {
s = append(s, x)
}
if err := indexw.WriteLabelIndex([]string{n}, s); err != nil {
return errors.Wrap(err, "write label index")
}
}
for l := range postings.m {
if err := indexw.WritePostings(l.Name, l.Value, postings.get(l.Name, l.Value)); err != nil {
return errors.Wrap(err, "write postings")
}
}
return nil
}
type compactionSet interface {
Next() bool
At() (labels.Labels, []ChunkMeta, Intervals)
Err() error
}
type compactionSeriesSet struct {
p Postings
index IndexReader
chunks ChunkReader
tombstones TombstoneReader
series SeriesSet
l labels.Labels
c []ChunkMeta
intervals Intervals
err error
}
func newCompactionSeriesSet(i IndexReader, c ChunkReader, t TombstoneReader, p Postings) *compactionSeriesSet {
return &compactionSeriesSet{
index: i,
chunks: c,
tombstones: t,
p: p,
}
}
func (c *compactionSeriesSet) Next() bool {
if !c.p.Next() {
return false
}
var err error
c.intervals = c.tombstones.Get(c.p.At())
if err = c.index.Series(c.p.At(), &c.l, &c.c); err != nil {
c.err = errors.Wrapf(err, "get series %d", c.p.At())
return false
}
// Remove completely deleted chunks.
if len(c.intervals) > 0 {
chks := make([]ChunkMeta, 0, len(c.c))
for _, chk := range c.c {
if !(Interval{chk.MinTime, chk.MaxTime}.isSubrange(c.intervals)) {
chks = append(chks, chk)
}
}
c.c = chks
}
for i := range c.c {
chk := &c.c[i]
chk.Chunk, err = c.chunks.Chunk(chk.Ref)
if err != nil {
c.err = errors.Wrapf(err, "chunk %d not found", chk.Ref)
return false
}
}
return true
}
func (c *compactionSeriesSet) Err() error {
if c.err != nil {
return c.err
}
return c.p.Err()
}
func (c *compactionSeriesSet) At() (labels.Labels, []ChunkMeta, Intervals) {
return c.l, c.c, c.intervals
}
type compactionMerger struct {
a, b compactionSet
aok, bok bool
l labels.Labels
c []ChunkMeta
intervals Intervals
}
type compactionSeries struct {
labels labels.Labels
chunks []*ChunkMeta
}
func newCompactionMerger(a, b compactionSet) (*compactionMerger, error) {
c := &compactionMerger{
a: a,
b: b,
}
// Initialize first elements of both sets as Next() needs
// one element look-ahead.
c.aok = c.a.Next()
c.bok = c.b.Next()
return c, c.Err()
}
func (c *compactionMerger) compare() int {
if !c.aok {
return 1
}
if !c.bok {
return -1
}
a, _, _ := c.a.At()
b, _, _ := c.b.At()
return labels.Compare(a, b)
}
func (c *compactionMerger) Next() bool {
if !c.aok && !c.bok || c.Err() != nil {
return false
}
// While advancing child iterators the memory used for labels and chunks
// may be reused. When picking a series we have to store the result.
var lset labels.Labels
var chks []ChunkMeta
d := c.compare()
// Both sets contain the current series. Chain them into a single one.
if d > 0 {
lset, chks, c.intervals = c.b.At()
c.l = append(c.l[:0], lset...)
c.c = append(c.c[:0], chks...)
c.bok = c.b.Next()
} else if d < 0 {
lset, chks, c.intervals = c.a.At()
c.l = append(c.l[:0], lset...)
c.c = append(c.c[:0], chks...)
c.aok = c.a.Next()
} else {
l, ca, ra := c.a.At()
_, cb, rb := c.b.At()
for _, r := range rb {
ra = ra.add(r)
}
c.l = append(c.l[:0], l...)
c.c = append(append(c.c[:0], ca...), cb...)
c.intervals = ra
c.aok = c.a.Next()
c.bok = c.b.Next()
}
return true
}
func (c *compactionMerger) Err() error {
if c.a.Err() != nil {
return c.a.Err()
}
return c.b.Err()
}
func (c *compactionMerger) At() (labels.Labels, []ChunkMeta, Intervals) {
return c.l, c.c, c.intervals
}
func renameFile(from, to string) error {
if err := os.RemoveAll(to); err != nil {
return err
}
if err := os.Rename(from, to); err != nil {
return err
}
// Directory was renamed; sync parent dir to persist rename.
pdir, err := fileutil.OpenDir(filepath.Dir(to))
if err != nil {
return err
}
defer pdir.Close()
if err = fileutil.Fsync(pdir); err != nil {
return err
}
if err = pdir.Close(); err != nil {
return err
}
return nil
}