mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-07 20:07:27 -08:00
3344bb5c33
* Move WAL watcher code to tsdb/wal package. Signed-off-by: Callum Styan <callumstyan@gmail.com> * Fix tests after moving WAL watcher code. Signed-off-by: Callum Styan <callumstyan@gmail.com> * Lint fixes. Signed-off-by: Callum Styan <callumstyan@gmail.com>
856 lines
26 KiB
Go
856 lines
26 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package remote
|
|
|
|
import (
|
|
"context"
|
|
"math"
|
|
"strconv"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/go-kit/kit/log"
|
|
"github.com/go-kit/kit/log/level"
|
|
"github.com/gogo/protobuf/proto"
|
|
"github.com/golang/snappy"
|
|
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
"github.com/prometheus/client_golang/prometheus/promauto"
|
|
"github.com/prometheus/prometheus/config"
|
|
"github.com/prometheus/prometheus/pkg/labels"
|
|
"github.com/prometheus/prometheus/pkg/relabel"
|
|
"github.com/prometheus/prometheus/prompb"
|
|
tsdbLabels "github.com/prometheus/prometheus/tsdb/labels"
|
|
"github.com/prometheus/prometheus/tsdb/record"
|
|
"github.com/prometheus/prometheus/tsdb/wal"
|
|
)
|
|
|
|
// String constants for instrumentation.
|
|
const (
|
|
namespace = "prometheus"
|
|
subsystem = "remote_storage"
|
|
queue = "queue"
|
|
|
|
// We track samples in/out and how long pushes take using an Exponentially
|
|
// Weighted Moving Average.
|
|
ewmaWeight = 0.2
|
|
shardUpdateDuration = 10 * time.Second
|
|
|
|
// Allow 30% too many shards before scaling down.
|
|
shardToleranceFraction = 0.3
|
|
)
|
|
|
|
var (
|
|
succeededSamplesTotal = promauto.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "succeeded_samples_total",
|
|
Help: "Total number of samples successfully sent to remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
failedSamplesTotal = promauto.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "failed_samples_total",
|
|
Help: "Total number of samples which failed on send to remote storage, non-recoverable errors.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
retriedSamplesTotal = promauto.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "retried_samples_total",
|
|
Help: "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
droppedSamplesTotal = promauto.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "dropped_samples_total",
|
|
Help: "Total number of samples which were dropped after being read from the WAL before being sent via remote write.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
enqueueRetriesTotal = promauto.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "enqueue_retries_total",
|
|
Help: "Total number of times enqueue has failed because a shards queue was full.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
sentBatchDuration = promauto.NewHistogramVec(
|
|
prometheus.HistogramOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "sent_batch_duration_seconds",
|
|
Help: "Duration of sample batch send calls to the remote storage.",
|
|
Buckets: prometheus.DefBuckets,
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queueHighestSentTimestamp = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queue_highest_sent_timestamp_seconds",
|
|
Help: "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queuePendingSamples = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "pending_samples",
|
|
Help: "The number of samples pending in the queues shards to be sent to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
shardCapacity = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shard_capacity",
|
|
Help: "The capacity of each shard of the queue used for parallel sending to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
numShards = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards",
|
|
Help: "The number of shards used for parallel sending to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
maxNumShards = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards_max",
|
|
Help: "The maximum number of shards that the queue is allowed to run.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
minNumShards = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards_min",
|
|
Help: "The minimum number of shards that the queue is allowed to run.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
desiredNumShards = promauto.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards_desired",
|
|
Help: "The number of shards that the queues shard calculation wants to run based on the rate of samples in vs. samples out.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
)
|
|
|
|
// StorageClient defines an interface for sending a batch of samples to an
|
|
// external timeseries database.
|
|
type StorageClient interface {
|
|
// Store stores the given samples in the remote storage.
|
|
Store(context.Context, []byte) error
|
|
// Name identifies the remote storage implementation.
|
|
Name() string
|
|
}
|
|
|
|
// QueueManager manages a queue of samples to be sent to the Storage
|
|
// indicated by the provided StorageClient. Implements writeTo interface
|
|
// used by WAL Watcher.
|
|
type QueueManager struct {
|
|
logger log.Logger
|
|
flushDeadline time.Duration
|
|
cfg config.QueueConfig
|
|
externalLabels labels.Labels
|
|
relabelConfigs []*relabel.Config
|
|
client StorageClient
|
|
watcher *wal.Watcher
|
|
|
|
seriesLabels map[uint64]labels.Labels
|
|
seriesSegmentIndexes map[uint64]int
|
|
droppedSeries map[uint64]struct{}
|
|
|
|
shards *shards
|
|
numShards int
|
|
reshardChan chan int
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
|
|
samplesIn, samplesDropped, samplesOut, samplesOutDuration *ewmaRate
|
|
integralAccumulator float64
|
|
startedAt time.Time
|
|
|
|
highestSentTimestampMetric *maxGauge
|
|
pendingSamplesMetric prometheus.Gauge
|
|
enqueueRetriesMetric prometheus.Counter
|
|
droppedSamplesTotal prometheus.Counter
|
|
numShardsMetric prometheus.Gauge
|
|
failedSamplesTotal prometheus.Counter
|
|
sentBatchDuration prometheus.Observer
|
|
succeededSamplesTotal prometheus.Counter
|
|
retriedSamplesTotal prometheus.Counter
|
|
shardCapacity prometheus.Gauge
|
|
maxNumShards prometheus.Gauge
|
|
minNumShards prometheus.Gauge
|
|
desiredNumShards prometheus.Gauge
|
|
}
|
|
|
|
// NewQueueManager builds a new QueueManager.
|
|
func NewQueueManager(reg prometheus.Registerer, logger log.Logger, walDir string, samplesIn *ewmaRate, cfg config.QueueConfig, externalLabels labels.Labels, relabelConfigs []*relabel.Config, client StorageClient, flushDeadline time.Duration) *QueueManager {
|
|
if logger == nil {
|
|
logger = log.NewNopLogger()
|
|
}
|
|
|
|
name := client.Name()
|
|
logger = log.With(logger, "queue", name)
|
|
t := &QueueManager{
|
|
logger: logger,
|
|
flushDeadline: flushDeadline,
|
|
cfg: cfg,
|
|
externalLabels: externalLabels,
|
|
relabelConfigs: relabelConfigs,
|
|
client: client,
|
|
|
|
seriesLabels: make(map[uint64]labels.Labels),
|
|
seriesSegmentIndexes: make(map[uint64]int),
|
|
droppedSeries: make(map[uint64]struct{}),
|
|
|
|
numShards: cfg.MinShards,
|
|
reshardChan: make(chan int),
|
|
quit: make(chan struct{}),
|
|
|
|
samplesIn: samplesIn,
|
|
samplesDropped: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
}
|
|
|
|
t.watcher = wal.NewWatcher(reg, wal.NewWatcherMetrics(reg), logger, name, t, walDir)
|
|
t.shards = t.newShards()
|
|
|
|
return t
|
|
}
|
|
|
|
// Append queues a sample to be sent to the remote storage. Blocks until all samples are
|
|
// enqueued on their shards or a shutdown signal is received.
|
|
func (t *QueueManager) Append(samples []record.RefSample) bool {
|
|
outer:
|
|
for _, s := range samples {
|
|
lbls, ok := t.seriesLabels[s.Ref]
|
|
if !ok {
|
|
t.droppedSamplesTotal.Inc()
|
|
t.samplesDropped.incr(1)
|
|
if _, ok := t.droppedSeries[s.Ref]; !ok {
|
|
level.Info(t.logger).Log("msg", "dropped sample for series that was not explicitly dropped via relabelling", "ref", s.Ref)
|
|
}
|
|
continue
|
|
}
|
|
// This will only loop if the queues are being resharded.
|
|
backoff := t.cfg.MinBackoff
|
|
for {
|
|
select {
|
|
case <-t.quit:
|
|
return false
|
|
default:
|
|
}
|
|
|
|
if t.shards.enqueue(s.Ref, sample{
|
|
labels: lbls,
|
|
t: s.T,
|
|
v: s.V,
|
|
}) {
|
|
continue outer
|
|
}
|
|
|
|
t.enqueueRetriesMetric.Inc()
|
|
time.Sleep(time.Duration(backoff))
|
|
backoff = backoff * 2
|
|
if backoff > t.cfg.MaxBackoff {
|
|
backoff = t.cfg.MaxBackoff
|
|
}
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Start the queue manager sending samples to the remote storage.
|
|
// Does not block.
|
|
func (t *QueueManager) Start() {
|
|
t.startedAt = time.Now()
|
|
|
|
// Setup the QueueManagers metrics. We do this here rather than in the
|
|
// constructor because of the ordering of creating Queue Managers's, stopping them,
|
|
// and then starting new ones in storage/remote/storage.go ApplyConfig.
|
|
name := t.client.Name()
|
|
t.highestSentTimestampMetric = &maxGauge{
|
|
Gauge: queueHighestSentTimestamp.WithLabelValues(name),
|
|
}
|
|
t.pendingSamplesMetric = queuePendingSamples.WithLabelValues(name)
|
|
t.enqueueRetriesMetric = enqueueRetriesTotal.WithLabelValues(name)
|
|
t.droppedSamplesTotal = droppedSamplesTotal.WithLabelValues(name)
|
|
t.numShardsMetric = numShards.WithLabelValues(name)
|
|
t.failedSamplesTotal = failedSamplesTotal.WithLabelValues(name)
|
|
t.sentBatchDuration = sentBatchDuration.WithLabelValues(name)
|
|
t.succeededSamplesTotal = succeededSamplesTotal.WithLabelValues(name)
|
|
t.retriedSamplesTotal = retriedSamplesTotal.WithLabelValues(name)
|
|
t.shardCapacity = shardCapacity.WithLabelValues(name)
|
|
t.maxNumShards = maxNumShards.WithLabelValues(name)
|
|
t.minNumShards = minNumShards.WithLabelValues(name)
|
|
t.desiredNumShards = desiredNumShards.WithLabelValues(name)
|
|
|
|
// Initialise some metrics.
|
|
t.shardCapacity.Set(float64(t.cfg.Capacity))
|
|
t.pendingSamplesMetric.Set(0)
|
|
t.maxNumShards.Set(float64(t.cfg.MaxShards))
|
|
t.minNumShards.Set(float64(t.cfg.MinShards))
|
|
t.desiredNumShards.Set(float64(t.cfg.MinShards))
|
|
|
|
t.shards.start(t.numShards)
|
|
t.watcher.Start()
|
|
|
|
t.wg.Add(2)
|
|
go t.updateShardsLoop()
|
|
go t.reshardLoop()
|
|
}
|
|
|
|
// Stop stops sending samples to the remote storage and waits for pending
|
|
// sends to complete.
|
|
func (t *QueueManager) Stop() {
|
|
level.Info(t.logger).Log("msg", "Stopping remote storage...")
|
|
defer level.Info(t.logger).Log("msg", "Remote storage stopped.")
|
|
|
|
close(t.quit)
|
|
t.wg.Wait()
|
|
// Wait for all QueueManager routines to end before stopping shards and WAL watcher. This
|
|
// is to ensure we don't end up executing a reshard and shards.stop() at the same time, which
|
|
// causes a closed channel panic.
|
|
t.shards.stop()
|
|
t.watcher.Stop()
|
|
|
|
// On shutdown, release the strings in the labels from the intern pool.
|
|
for _, labels := range t.seriesLabels {
|
|
releaseLabels(labels)
|
|
}
|
|
// Delete metrics so we don't have alerts for queues that are gone.
|
|
name := t.client.Name()
|
|
queueHighestSentTimestamp.DeleteLabelValues(name)
|
|
queuePendingSamples.DeleteLabelValues(name)
|
|
enqueueRetriesTotal.DeleteLabelValues(name)
|
|
droppedSamplesTotal.DeleteLabelValues(name)
|
|
numShards.DeleteLabelValues(name)
|
|
failedSamplesTotal.DeleteLabelValues(name)
|
|
sentBatchDuration.DeleteLabelValues(name)
|
|
succeededSamplesTotal.DeleteLabelValues(name)
|
|
retriedSamplesTotal.DeleteLabelValues(name)
|
|
shardCapacity.DeleteLabelValues(name)
|
|
maxNumShards.DeleteLabelValues(name)
|
|
minNumShards.DeleteLabelValues(name)
|
|
desiredNumShards.DeleteLabelValues(name)
|
|
}
|
|
|
|
// StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
|
|
func (t *QueueManager) StoreSeries(series []record.RefSeries, index int) {
|
|
for _, s := range series {
|
|
ls := processExternalLabels(s.Labels, t.externalLabels)
|
|
lbls := relabel.Process(ls, t.relabelConfigs...)
|
|
if len(lbls) == 0 {
|
|
t.droppedSeries[s.Ref] = struct{}{}
|
|
continue
|
|
}
|
|
t.seriesSegmentIndexes[s.Ref] = index
|
|
internLabels(lbls)
|
|
|
|
// We should not ever be replacing a series labels in the map, but just
|
|
// in case we do we need to ensure we do not leak the replaced interned
|
|
// strings.
|
|
if orig, ok := t.seriesLabels[s.Ref]; ok {
|
|
releaseLabels(orig)
|
|
}
|
|
t.seriesLabels[s.Ref] = lbls
|
|
}
|
|
}
|
|
|
|
// SeriesReset is used when reading a checkpoint. WAL Watcher should have
|
|
// stored series records with the checkpoints index number, so we can now
|
|
// delete any ref ID's lower than that # from the two maps.
|
|
func (t *QueueManager) SeriesReset(index int) {
|
|
// Check for series that are in segments older than the checkpoint
|
|
// that were not also present in the checkpoint.
|
|
for k, v := range t.seriesSegmentIndexes {
|
|
if v < index {
|
|
delete(t.seriesSegmentIndexes, k)
|
|
releaseLabels(t.seriesLabels[k])
|
|
delete(t.seriesLabels, k)
|
|
}
|
|
}
|
|
}
|
|
|
|
func internLabels(lbls labels.Labels) {
|
|
for i, l := range lbls {
|
|
lbls[i].Name = interner.intern(l.Name)
|
|
lbls[i].Value = interner.intern(l.Value)
|
|
}
|
|
}
|
|
|
|
func releaseLabels(ls labels.Labels) {
|
|
for _, l := range ls {
|
|
interner.release(l.Name)
|
|
interner.release(l.Value)
|
|
}
|
|
}
|
|
|
|
// processExternalLabels merges externalLabels into ls. If ls contains
|
|
// a label in externalLabels, the value in ls wins.
|
|
func processExternalLabels(ls tsdbLabels.Labels, externalLabels labels.Labels) labels.Labels {
|
|
i, j, result := 0, 0, make(labels.Labels, 0, len(ls)+len(externalLabels))
|
|
for i < len(ls) && j < len(externalLabels) {
|
|
if ls[i].Name < externalLabels[j].Name {
|
|
result = append(result, labels.Label{
|
|
Name: ls[i].Name,
|
|
Value: ls[i].Value,
|
|
})
|
|
i++
|
|
} else if ls[i].Name > externalLabels[j].Name {
|
|
result = append(result, externalLabels[j])
|
|
j++
|
|
} else {
|
|
result = append(result, labels.Label{
|
|
Name: ls[i].Name,
|
|
Value: ls[i].Value,
|
|
})
|
|
i++
|
|
j++
|
|
}
|
|
}
|
|
for ; i < len(ls); i++ {
|
|
result = append(result, labels.Label{
|
|
Name: ls[i].Name,
|
|
Value: ls[i].Value,
|
|
})
|
|
}
|
|
result = append(result, externalLabels[j:]...)
|
|
return result
|
|
}
|
|
|
|
func (t *QueueManager) updateShardsLoop() {
|
|
defer t.wg.Done()
|
|
|
|
ticker := time.NewTicker(shardUpdateDuration)
|
|
defer ticker.Stop()
|
|
for {
|
|
select {
|
|
case <-ticker.C:
|
|
t.calculateDesiredShards()
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) calculateDesiredShards() {
|
|
t.samplesOut.tick()
|
|
t.samplesDropped.tick()
|
|
t.samplesOutDuration.tick()
|
|
|
|
// We use the number of incoming samples as a prediction of how much work we
|
|
// will need to do next iteration. We add to this any pending samples
|
|
// (received - send) so we can catch up with any backlog. We use the average
|
|
// outgoing batch latency to work out how many shards we need.
|
|
var (
|
|
samplesInRate = t.samplesIn.rate()
|
|
samplesOutRate = t.samplesOut.rate()
|
|
samplesKeptRatio = samplesOutRate / (t.samplesDropped.rate() + samplesOutRate)
|
|
samplesOutDuration = t.samplesOutDuration.rate() / float64(time.Second)
|
|
samplesPendingRate = samplesInRate*samplesKeptRatio - samplesOutRate
|
|
highestSent = t.highestSentTimestampMetric.Get()
|
|
highestRecv = highestTimestamp.Get()
|
|
samplesPending = (highestRecv - highestSent) * samplesInRate * samplesKeptRatio
|
|
)
|
|
|
|
if samplesOutRate <= 0 {
|
|
return
|
|
}
|
|
|
|
// We use an integral accumulator, like in a PID, to help dampen
|
|
// oscillation. The accumulator will correct for any errors not accounted
|
|
// for in the desired shard calculation by adjusting for pending samples.
|
|
const integralGain = 0.2
|
|
// Initialise the integral accumulator as the average rate of samples
|
|
// pending. This accounts for pending samples that were created while the
|
|
// WALWatcher starts up.
|
|
if t.integralAccumulator == 0 {
|
|
elapsed := time.Since(t.startedAt) / time.Second
|
|
t.integralAccumulator = integralGain * samplesPending / float64(elapsed)
|
|
}
|
|
t.integralAccumulator += samplesPendingRate * integralGain
|
|
|
|
var (
|
|
timePerSample = samplesOutDuration / samplesOutRate
|
|
desiredShards = timePerSample * (samplesInRate + t.integralAccumulator)
|
|
)
|
|
level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards",
|
|
"samplesInRate", samplesInRate,
|
|
"samplesOutRate", samplesOutRate,
|
|
"samplesKeptRatio", samplesKeptRatio,
|
|
"samplesPendingRate", samplesPendingRate,
|
|
"samplesPending", samplesPending,
|
|
"samplesOutDuration", samplesOutDuration,
|
|
"timePerSample", timePerSample,
|
|
"desiredShards", desiredShards,
|
|
"highestSent", highestSent,
|
|
"highestRecv", highestRecv,
|
|
"integralAccumulator", t.integralAccumulator,
|
|
)
|
|
|
|
// Changes in the number of shards must be greater than shardToleranceFraction.
|
|
var (
|
|
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
|
|
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
|
|
)
|
|
level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop",
|
|
"lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound)
|
|
if lowerBound <= desiredShards && desiredShards <= upperBound {
|
|
return
|
|
}
|
|
|
|
numShards := int(math.Ceil(desiredShards))
|
|
t.desiredNumShards.Set(float64(numShards))
|
|
if numShards > t.cfg.MaxShards {
|
|
numShards = t.cfg.MaxShards
|
|
} else if numShards < t.cfg.MinShards {
|
|
numShards = t.cfg.MinShards
|
|
}
|
|
if numShards == t.numShards {
|
|
return
|
|
}
|
|
|
|
// Resharding can take some time, and we want this loop
|
|
// to stay close to shardUpdateDuration.
|
|
select {
|
|
case t.reshardChan <- numShards:
|
|
level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", numShards)
|
|
t.numShards = numShards
|
|
default:
|
|
level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) reshardLoop() {
|
|
defer t.wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case numShards := <-t.reshardChan:
|
|
// We start the newShards after we have stopped (the therefore completely
|
|
// flushed) the oldShards, to guarantee we only every deliver samples in
|
|
// order.
|
|
t.shards.stop()
|
|
t.shards.start(numShards)
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) newShards() *shards {
|
|
s := &shards{
|
|
qm: t,
|
|
done: make(chan struct{}),
|
|
}
|
|
return s
|
|
}
|
|
|
|
type sample struct {
|
|
labels labels.Labels
|
|
t int64
|
|
v float64
|
|
}
|
|
|
|
type shards struct {
|
|
mtx sync.RWMutex // With the WAL, this is never actually contended.
|
|
|
|
qm *QueueManager
|
|
queues []chan sample
|
|
|
|
// Emulate a wait group with a channel and an atomic int, as you
|
|
// cannot select on a wait group.
|
|
done chan struct{}
|
|
running int32
|
|
|
|
// Soft shutdown context will prevent new enqueues and deadlocks.
|
|
softShutdown chan struct{}
|
|
|
|
// Hard shutdown context is used to terminate outgoing HTTP connections
|
|
// after giving them a chance to terminate.
|
|
hardShutdown context.CancelFunc
|
|
}
|
|
|
|
// start the shards; must be called before any call to enqueue.
|
|
func (s *shards) start(n int) {
|
|
s.mtx.Lock()
|
|
defer s.mtx.Unlock()
|
|
|
|
newQueues := make([]chan sample, n)
|
|
for i := 0; i < n; i++ {
|
|
newQueues[i] = make(chan sample, s.qm.cfg.Capacity)
|
|
}
|
|
|
|
s.queues = newQueues
|
|
|
|
var hardShutdownCtx context.Context
|
|
hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background())
|
|
s.softShutdown = make(chan struct{})
|
|
s.running = int32(n)
|
|
s.done = make(chan struct{})
|
|
for i := 0; i < n; i++ {
|
|
go s.runShard(hardShutdownCtx, i, newQueues[i])
|
|
}
|
|
s.qm.numShardsMetric.Set(float64(n))
|
|
}
|
|
|
|
// stop the shards; subsequent call to enqueue will return false.
|
|
func (s *shards) stop() {
|
|
// Attempt a clean shutdown, but only wait flushDeadline for all the shards
|
|
// to cleanly exit. As we're doing RPCs, enqueue can block indefinitely.
|
|
// We must be able so call stop concurrently, hence we can only take the
|
|
// RLock here.
|
|
s.mtx.RLock()
|
|
close(s.softShutdown)
|
|
s.mtx.RUnlock()
|
|
|
|
// Enqueue should now be unblocked, so we can take the write lock. This
|
|
// also ensures we don't race with writes to the queues, and get a panic:
|
|
// send on closed channel.
|
|
s.mtx.Lock()
|
|
defer s.mtx.Unlock()
|
|
for _, queue := range s.queues {
|
|
close(queue)
|
|
}
|
|
select {
|
|
case <-s.done:
|
|
return
|
|
case <-time.After(s.qm.flushDeadline):
|
|
level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown")
|
|
}
|
|
|
|
// Force an unclean shutdown.
|
|
s.hardShutdown()
|
|
<-s.done
|
|
}
|
|
|
|
// enqueue a sample. If we are currently in the process of shutting down or resharding,
|
|
// will return false; in this case, you should back off and retry.
|
|
func (s *shards) enqueue(ref uint64, sample sample) bool {
|
|
s.mtx.RLock()
|
|
defer s.mtx.RUnlock()
|
|
|
|
select {
|
|
case <-s.softShutdown:
|
|
return false
|
|
default:
|
|
}
|
|
|
|
shard := uint64(ref) % uint64(len(s.queues))
|
|
select {
|
|
case <-s.softShutdown:
|
|
return false
|
|
case s.queues[shard] <- sample:
|
|
return true
|
|
}
|
|
}
|
|
|
|
func (s *shards) runShard(ctx context.Context, shardID int, queue chan sample) {
|
|
defer func() {
|
|
if atomic.AddInt32(&s.running, -1) == 0 {
|
|
close(s.done)
|
|
}
|
|
}()
|
|
|
|
shardNum := strconv.Itoa(shardID)
|
|
|
|
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
|
|
// If we have fewer samples than that, flush them out after a deadline
|
|
// anyways.
|
|
var (
|
|
max = s.qm.cfg.MaxSamplesPerSend
|
|
nPending = 0
|
|
pendingSamples = allocateTimeSeries(max)
|
|
buf []byte
|
|
)
|
|
|
|
timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline))
|
|
stop := func() {
|
|
if !timer.Stop() {
|
|
select {
|
|
case <-timer.C:
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
defer stop()
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return
|
|
|
|
case sample, ok := <-queue:
|
|
if !ok {
|
|
if nPending > 0 {
|
|
level.Debug(s.qm.logger).Log("msg", "Flushing samples to remote storage...", "count", nPending)
|
|
s.sendSamples(ctx, pendingSamples[:nPending], &buf)
|
|
s.qm.pendingSamplesMetric.Sub(float64(nPending))
|
|
level.Debug(s.qm.logger).Log("msg", "Done flushing.")
|
|
}
|
|
return
|
|
}
|
|
|
|
// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
|
|
// retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll
|
|
// stop reading from the queue. This makes it safe to reference pendingSamples by index.
|
|
pendingSamples[nPending].Labels = labelsToLabelsProto(sample.labels, pendingSamples[nPending].Labels)
|
|
pendingSamples[nPending].Samples[0].Timestamp = sample.t
|
|
pendingSamples[nPending].Samples[0].Value = sample.v
|
|
nPending++
|
|
s.qm.pendingSamplesMetric.Inc()
|
|
|
|
if nPending >= max {
|
|
s.sendSamples(ctx, pendingSamples, &buf)
|
|
nPending = 0
|
|
s.qm.pendingSamplesMetric.Sub(float64(max))
|
|
|
|
stop()
|
|
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
|
|
}
|
|
|
|
case <-timer.C:
|
|
if nPending > 0 {
|
|
level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending samples", "samples", nPending, "shard", shardNum)
|
|
s.sendSamples(ctx, pendingSamples[:nPending], &buf)
|
|
nPending = 0
|
|
s.qm.pendingSamplesMetric.Sub(float64(nPending))
|
|
}
|
|
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) {
|
|
begin := time.Now()
|
|
err := s.sendSamplesWithBackoff(ctx, samples, buf)
|
|
if err != nil {
|
|
level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", len(samples), "err", err)
|
|
s.qm.failedSamplesTotal.Add(float64(len(samples)))
|
|
}
|
|
|
|
// These counters are used to calculate the dynamic sharding, and as such
|
|
// should be maintained irrespective of success or failure.
|
|
s.qm.samplesOut.incr(int64(len(samples)))
|
|
s.qm.samplesOutDuration.incr(int64(time.Since(begin)))
|
|
}
|
|
|
|
// sendSamples to the remote storage with backoff for recoverable errors.
|
|
func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) error {
|
|
backoff := s.qm.cfg.MinBackoff
|
|
req, highest, err := buildWriteRequest(samples, *buf)
|
|
*buf = req
|
|
if err != nil {
|
|
// Failing to build the write request is non-recoverable, since it will
|
|
// only error if marshaling the proto to bytes fails.
|
|
return err
|
|
}
|
|
|
|
for {
|
|
select {
|
|
case <-ctx.Done():
|
|
return ctx.Err()
|
|
default:
|
|
}
|
|
begin := time.Now()
|
|
err := s.qm.client.Store(ctx, req)
|
|
|
|
s.qm.sentBatchDuration.Observe(time.Since(begin).Seconds())
|
|
|
|
if err == nil {
|
|
s.qm.succeededSamplesTotal.Add(float64(len(samples)))
|
|
s.qm.highestSentTimestampMetric.Set(float64(highest / 1000))
|
|
return nil
|
|
}
|
|
|
|
if _, ok := err.(recoverableError); !ok {
|
|
return err
|
|
}
|
|
s.qm.retriedSamplesTotal.Add(float64(len(samples)))
|
|
level.Debug(s.qm.logger).Log("msg", "failed to send batch, retrying", "err", err)
|
|
|
|
time.Sleep(time.Duration(backoff))
|
|
backoff = backoff * 2
|
|
if backoff > s.qm.cfg.MaxBackoff {
|
|
backoff = s.qm.cfg.MaxBackoff
|
|
}
|
|
}
|
|
}
|
|
|
|
func buildWriteRequest(samples []prompb.TimeSeries, buf []byte) ([]byte, int64, error) {
|
|
var highest int64
|
|
for _, ts := range samples {
|
|
// At the moment we only ever append a TimeSeries with a single sample in it.
|
|
if ts.Samples[0].Timestamp > highest {
|
|
highest = ts.Samples[0].Timestamp
|
|
}
|
|
}
|
|
req := &prompb.WriteRequest{
|
|
Timeseries: samples,
|
|
}
|
|
|
|
data, err := proto.Marshal(req)
|
|
if err != nil {
|
|
return nil, highest, err
|
|
}
|
|
|
|
// snappy uses len() to see if it needs to allocate a new slice. Make the
|
|
// buffer as long as possible.
|
|
if buf != nil {
|
|
buf = buf[0:cap(buf)]
|
|
}
|
|
compressed := snappy.Encode(buf, data)
|
|
return compressed, highest, nil
|
|
}
|
|
|
|
func allocateTimeSeries(capacity int) []prompb.TimeSeries {
|
|
timeseries := make([]prompb.TimeSeries, capacity)
|
|
// We only ever send one sample per timeseries, so preallocate with length one.
|
|
for i := range timeseries {
|
|
timeseries[i].Samples = []prompb.Sample{{}}
|
|
}
|
|
return timeseries
|
|
}
|