prometheus/tsdb/chunkenc/chunk.go
Filip Petkovski 583f3e587c
Optimize histogram iterators (#13340)
Optimize histogram iterators

Histogram iterators allocate new objects in the AtHistogram and
AtFloatHistogram methods, which makes calculating rates over long
ranges expensive.

In #13215 we allowed an existing object to be reused
when converting an integer histogram to a float histogram. This commit follows
the same idea and allows injecting an existing object in the AtHistogram and
AtFloatHistogram methods. When the injected value is nil, iterators allocate
new histograms, otherwise they populate and return the injected object.

The commit also adds a CopyTo method to Histogram and FloatHistogram which
is used in the BufferedIterator to overwrite items in the ring instead of making
new copies.

Note that a specialized HPoint pool is needed for all of this to work 
(`matrixSelectorHPool`).

---------

Signed-off-by: Filip Petkovski <filip.petkovsky@gmail.com>
Co-authored-by: George Krajcsovits <krajorama@users.noreply.github.com>
2024-01-23 17:02:14 +01:00

394 lines
13 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunkenc
import (
"fmt"
"math"
"sync"
"github.com/prometheus/prometheus/model/histogram"
)
// Encoding is the identifier for a chunk encoding.
type Encoding uint8
// The different available chunk encodings.
const (
EncNone Encoding = iota
EncXOR
EncHistogram
EncFloatHistogram
)
func (e Encoding) String() string {
switch e {
case EncNone:
return "none"
case EncXOR:
return "XOR"
case EncHistogram:
return "histogram"
case EncFloatHistogram:
return "floathistogram"
}
return "<unknown>"
}
// IsValidEncoding returns true for supported encodings.
func IsValidEncoding(e Encoding) bool {
return e == EncXOR || e == EncHistogram || e == EncFloatHistogram
}
const (
// MaxBytesPerXORChunk is the maximum size an XOR chunk can be.
MaxBytesPerXORChunk = 1024
// TargetBytesPerHistogramChunk sets a size target for each histogram chunk.
TargetBytesPerHistogramChunk = 1024
// MinSamplesPerHistogramChunk sets a minimum sample count for histogram chunks. This is desirable because a single
// histogram sample can be larger than TargetBytesPerHistogramChunk but we want to avoid too-small sample count
// chunks so we can achieve some measure of compression advantage even while dealing with really large histograms.
// Note that this minimum sample count is not enforced across chunk range boundaries (for example, if the chunk
// range is 100 and the first sample in the chunk range is 99, the next sample will be included in a new chunk
// resulting in the old chunk containing only a single sample).
MinSamplesPerHistogramChunk = 10
)
// Chunk holds a sequence of sample pairs that can be iterated over and appended to.
type Chunk interface {
Iterable
// Bytes returns the underlying byte slice of the chunk.
Bytes() []byte
// Encoding returns the encoding type of the chunk.
Encoding() Encoding
// Appender returns an appender to append samples to the chunk.
Appender() (Appender, error)
// NumSamples returns the number of samples in the chunk.
NumSamples() int
// Compact is called whenever a chunk is expected to be complete (no more
// samples appended) and the underlying implementation can eventually
// optimize the chunk.
// There's no strong guarantee that no samples will be appended once
// Compact() is called. Implementing this function is optional.
Compact()
}
type Iterable interface {
// The iterator passed as argument is for re-use.
// Depending on implementation, the iterator can
// be re-used or a new iterator can be allocated.
Iterator(Iterator) Iterator
}
// Appender adds sample pairs to a chunk.
type Appender interface {
Append(int64, float64)
// AppendHistogram and AppendFloatHistogram append a histogram sample to a histogram or float histogram chunk.
// Appending a histogram may require creating a completely new chunk or recoding (changing) the current chunk.
// The Appender prev is used to determine if there is a counter reset between the previous Appender and the current Appender.
// The Appender prev is optional and only taken into account when the first sample is being appended.
// The bool appendOnly governs what happens when a sample cannot be appended to the current chunk. If appendOnly is true, then
// in such case an error is returned without modifying the chunk. If appendOnly is false, then a new chunk is created or the
// current chunk is recoded to accommodate the sample.
// The returned Chunk c is nil if sample could be appended to the current Chunk, otherwise c is the new Chunk.
// The returned bool isRecoded can be used to distinguish between the new Chunk c being a completely new Chunk
// or the current Chunk recoded to a new Chunk.
// The Appender app that can be used for the next append is always returned.
AppendHistogram(prev *HistogramAppender, t int64, h *histogram.Histogram, appendOnly bool) (c Chunk, isRecoded bool, app Appender, err error)
AppendFloatHistogram(prev *FloatHistogramAppender, t int64, h *histogram.FloatHistogram, appendOnly bool) (c Chunk, isRecoded bool, app Appender, err error)
}
// Iterator is a simple iterator that can only get the next value.
// Iterator iterates over the samples of a time series, in timestamp-increasing order.
type Iterator interface {
// Next advances the iterator by one and returns the type of the value
// at the new position (or ValNone if the iterator is exhausted).
Next() ValueType
// Seek advances the iterator forward to the first sample with a
// timestamp equal or greater than t. If the current sample found by a
// previous `Next` or `Seek` operation already has this property, Seek
// has no effect. If a sample has been found, Seek returns the type of
// its value. Otherwise, it returns ValNone, after which the iterator is
// exhausted.
Seek(t int64) ValueType
// At returns the current timestamp/value pair if the value is a float.
// Before the iterator has advanced, the behaviour is unspecified.
At() (int64, float64)
// AtHistogram returns the current timestamp/value pair if the value is a
// histogram with integer counts. Before the iterator has advanced, the behaviour
// is unspecified.
// The method accepts an optional Histogram object which will be
// reused when not nil. Otherwise, a new Histogram object will be allocated.
AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram)
// AtFloatHistogram returns the current timestamp/value pair if the
// value is a histogram with floating-point counts. It also works if the
// value is a histogram with integer counts, in which case a
// FloatHistogram copy of the histogram is returned. Before the iterator
// has advanced, the behaviour is unspecified.
// The method accepts an optional FloatHistogram object which will be
// reused when not nil. Otherwise, a new FloatHistogram object will be allocated.
AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram)
// AtT returns the current timestamp.
// Before the iterator has advanced, the behaviour is unspecified.
AtT() int64
// Err returns the current error. It should be used only after the
// iterator is exhausted, i.e. `Next` or `Seek` have returned ValNone.
Err() error
}
// ValueType defines the type of a value an Iterator points to.
type ValueType uint8
// Possible values for ValueType.
const (
ValNone ValueType = iota // No value at the current position.
ValFloat // A simple float, retrieved with At.
ValHistogram // A histogram, retrieve with AtHistogram, but AtFloatHistogram works, too.
ValFloatHistogram // A floating-point histogram, retrieve with AtFloatHistogram.
)
func (v ValueType) String() string {
switch v {
case ValNone:
return "none"
case ValFloat:
return "float"
case ValHistogram:
return "histogram"
case ValFloatHistogram:
return "floathistogram"
default:
return "unknown"
}
}
func (v ValueType) ChunkEncoding() Encoding {
switch v {
case ValFloat:
return EncXOR
case ValHistogram:
return EncHistogram
case ValFloatHistogram:
return EncFloatHistogram
default:
return EncNone
}
}
func (v ValueType) NewChunk() (Chunk, error) {
switch v {
case ValFloat:
return NewXORChunk(), nil
case ValHistogram:
return NewHistogramChunk(), nil
case ValFloatHistogram:
return NewFloatHistogramChunk(), nil
default:
return nil, fmt.Errorf("value type %v unsupported", v)
}
}
// MockSeriesIterator returns an iterator for a mock series with custom timeStamps and values.
func MockSeriesIterator(timestamps []int64, values []float64) Iterator {
return &mockSeriesIterator{
timeStamps: timestamps,
values: values,
currIndex: 0,
}
}
type mockSeriesIterator struct {
timeStamps []int64
values []float64
currIndex int
}
func (it *mockSeriesIterator) Seek(int64) ValueType { return ValNone }
func (it *mockSeriesIterator) At() (int64, float64) {
return it.timeStamps[it.currIndex], it.values[it.currIndex]
}
func (it *mockSeriesIterator) AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram) {
return math.MinInt64, nil
}
func (it *mockSeriesIterator) AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
return math.MinInt64, nil
}
func (it *mockSeriesIterator) AtT() int64 {
return it.timeStamps[it.currIndex]
}
func (it *mockSeriesIterator) Next() ValueType {
if it.currIndex < len(it.timeStamps)-1 {
it.currIndex++
return ValFloat
}
return ValNone
}
func (it *mockSeriesIterator) Err() error { return nil }
// NewNopIterator returns a new chunk iterator that does not hold any data.
func NewNopIterator() Iterator {
return nopIterator{}
}
type nopIterator struct{}
func (nopIterator) Next() ValueType { return ValNone }
func (nopIterator) Seek(int64) ValueType { return ValNone }
func (nopIterator) At() (int64, float64) { return math.MinInt64, 0 }
func (nopIterator) AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram) {
return math.MinInt64, nil
}
func (nopIterator) AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
return math.MinInt64, nil
}
func (nopIterator) AtT() int64 { return math.MinInt64 }
func (nopIterator) Err() error { return nil }
// Pool is used to create and reuse chunk references to avoid allocations.
type Pool interface {
Put(Chunk) error
Get(e Encoding, b []byte) (Chunk, error)
}
// pool is a memory pool of chunk objects.
type pool struct {
xor sync.Pool
histogram sync.Pool
floatHistogram sync.Pool
}
// NewPool returns a new pool.
func NewPool() Pool {
return &pool{
xor: sync.Pool{
New: func() interface{} {
return &XORChunk{b: bstream{}}
},
},
histogram: sync.Pool{
New: func() interface{} {
return &HistogramChunk{b: bstream{}}
},
},
floatHistogram: sync.Pool{
New: func() interface{} {
return &FloatHistogramChunk{b: bstream{}}
},
},
}
}
func (p *pool) Get(e Encoding, b []byte) (Chunk, error) {
switch e {
case EncXOR:
c := p.xor.Get().(*XORChunk)
c.b.stream = b
c.b.count = 0
return c, nil
case EncHistogram:
c := p.histogram.Get().(*HistogramChunk)
c.b.stream = b
c.b.count = 0
return c, nil
case EncFloatHistogram:
c := p.floatHistogram.Get().(*FloatHistogramChunk)
c.b.stream = b
c.b.count = 0
return c, nil
}
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}
func (p *pool) Put(c Chunk) error {
switch c.Encoding() {
case EncXOR:
xc, ok := c.(*XORChunk)
// This may happen often with wrapped chunks. Nothing we can really do about
// it but returning an error would cause a lot of allocations again. Thus,
// we just skip it.
if !ok {
return nil
}
xc.b.stream = nil
xc.b.count = 0
p.xor.Put(c)
case EncHistogram:
sh, ok := c.(*HistogramChunk)
// This may happen often with wrapped chunks. Nothing we can really do about
// it but returning an error would cause a lot of allocations again. Thus,
// we just skip it.
if !ok {
return nil
}
sh.b.stream = nil
sh.b.count = 0
p.histogram.Put(c)
case EncFloatHistogram:
sh, ok := c.(*FloatHistogramChunk)
// This may happen often with wrapped chunks. Nothing we can really do about
// it but returning an error would cause a lot of allocations again. Thus,
// we just skip it.
if !ok {
return nil
}
sh.b.stream = nil
sh.b.count = 0
p.floatHistogram.Put(c)
default:
return fmt.Errorf("invalid chunk encoding %q", c.Encoding())
}
return nil
}
// FromData returns a chunk from a byte slice of chunk data.
// This is there so that users of the library can easily create chunks from
// bytes.
func FromData(e Encoding, d []byte) (Chunk, error) {
switch e {
case EncXOR:
return &XORChunk{b: bstream{count: 0, stream: d}}, nil
case EncHistogram:
return &HistogramChunk{b: bstream{count: 0, stream: d}}, nil
case EncFloatHistogram:
return &FloatHistogramChunk{b: bstream{count: 0, stream: d}}, nil
}
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}
// NewEmptyChunk returns an empty chunk for the given encoding.
func NewEmptyChunk(e Encoding) (Chunk, error) {
switch e {
case EncXOR:
return NewXORChunk(), nil
case EncHistogram:
return NewHistogramChunk(), nil
case EncFloatHistogram:
return NewFloatHistogramChunk(), nil
}
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}