prometheus/storage/remote/queue_manager.go
Callum Styan 6f69e31398 Tail the TSDB WAL for remote_write
This change switches the remote_write API to use the TSDB WAL.  This should reduce memory usage and prevent sample loss when the remote end point is down.

We use the new LiveReader from TSDB to tail WAL segments.  Logic for finding the tracking segment is included in this PR.  The WAL is tailed once for each remote_write endpoint specified. Reading from the segment is based on a ticker rather than relying on fsnotify write events, which were found to be complicated and unreliable in early prototypes.

Enqueuing a sample for sending via remote_write can now block, to provide back pressure.  Queues are still required to acheive parallelism and batching.  We have updated the queue config based on new defaults for queue capacity and pending samples values - much smaller values are now possible.  The remote_write resharding code has been updated to prevent deadlocks, and extra tests have been added for these cases.

As part of this change, we attempt to guarantee that samples are not lost; however this initial version doesn't guarantee this across Prometheus restarts or non-retryable errors from the remote end (eg 400s).

This changes also includes the following optimisations:
- only marshal the proto request once, not once per retry
- maintain a single copy of the labels for given series to reduce GC pressure

Other minor tweaks:
- only reshard if we've also successfully sent recently
- add pending samples, latest sent timestamp, WAL events processed metrics

Co-authored-by: Chris Marchbanks <csmarchbanks.com> (initial prototype)
Co-authored-by: Tom Wilkie <tom.wilkie@gmail.com> (sharding changes)
Signed-off-by: Callum Styan <callumstyan@gmail.com>
2019-02-12 11:39:13 +00:00

793 lines
23 KiB
Go

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package remote
import (
"context"
"math"
"strconv"
"sync"
"sync/atomic"
"time"
"golang.org/x/time/rate"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"github.com/gogo/protobuf/proto"
"github.com/golang/snappy"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/config"
pkgrelabel "github.com/prometheus/prometheus/pkg/relabel"
"github.com/prometheus/prometheus/prompb"
"github.com/prometheus/prometheus/relabel"
"github.com/prometheus/tsdb"
)
// String constants for instrumentation.
const (
namespace = "prometheus"
subsystem = "remote_storage"
queue = "queue"
// We track samples in/out and how long pushes take using an Exponentially
// Weighted Moving Average.
ewmaWeight = 0.2
shardUpdateDuration = 10 * time.Second
// Allow 30% too many shards before scaling down.
shardToleranceFraction = 0.3
// Limit to 1 log event every 10s
logRateLimit = 0.1
logBurst = 10
)
var (
succeededSamplesTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "succeeded_samples_total",
Help: "Total number of samples successfully sent to remote storage.",
},
[]string{queue},
)
failedSamplesTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "failed_samples_total",
Help: "Total number of samples which failed on send to remote storage, non-recoverable errors.",
},
[]string{queue},
)
retriedSamplesTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "retried_samples_total",
Help: "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.",
},
[]string{queue},
)
droppedSamplesTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "dropped_samples_total",
Help: "Total number of samples which were dropped after being read from the WAL before being sent via remote write.",
},
[]string{queue},
)
enqueueRetriesTotal = prometheus.NewCounterVec(
prometheus.CounterOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "enqueue_retries_total",
Help: "Total number of times enqueue has failed because a shards queue was full.",
},
[]string{queue},
)
sentBatchDuration = prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "sent_batch_duration_seconds",
Help: "Duration of sample batch send calls to the remote storage.",
Buckets: prometheus.DefBuckets,
},
[]string{queue},
)
queueLastSendTimestamp = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queue_last_send_timestamp",
Help: "Timestamp of the last successful send by this queue.",
},
[]string{queue},
)
queueHighestSentTimestamp = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queue_highest_sent_timestamp",
Help: "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue.",
},
[]string{queue},
)
queuePendingSamples = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "pending_samples",
Help: "The number of samples pending in the queues shards to be sent to the remote storage.",
},
[]string{queue},
)
shardCapacity = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shard_capacity",
Help: "The capacity of each shard of the queue used for parallel sending to the remote storage.",
},
[]string{queue},
)
numShards = prometheus.NewGaugeVec(
prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "shards",
Help: "The number of shards used for parallel sending to the remote storage.",
},
[]string{queue},
)
)
func init() {
prometheus.MustRegister(succeededSamplesTotal)
prometheus.MustRegister(failedSamplesTotal)
prometheus.MustRegister(retriedSamplesTotal)
prometheus.MustRegister(droppedSamplesTotal)
prometheus.MustRegister(enqueueRetriesTotal)
prometheus.MustRegister(sentBatchDuration)
prometheus.MustRegister(queueLastSendTimestamp)
prometheus.MustRegister(queueHighestSentTimestamp)
prometheus.MustRegister(queuePendingSamples)
prometheus.MustRegister(shardCapacity)
prometheus.MustRegister(numShards)
}
// StorageClient defines an interface for sending a batch of samples to an
// external timeseries database.
type StorageClient interface {
// Store stores the given samples in the remote storage.
Store(context.Context, []byte) error
// Name identifies the remote storage implementation.
Name() string
}
// QueueManager manages a queue of samples to be sent to the Storage
// indicated by the provided StorageClient. Implements writeTo interface
// used by WAL Watcher.
type QueueManager struct {
logger log.Logger
flushDeadline time.Duration
cfg config.QueueConfig
externalLabels model.LabelSet
relabelConfigs []*pkgrelabel.Config
client StorageClient
queueName string
logLimiter *rate.Limiter
watcher *WALWatcher
lastSendTimestampMetric prometheus.Gauge
highestSentTimestampMetric prometheus.Gauge
pendingSamplesMetric prometheus.Gauge
enqueueRetriesMetric prometheus.Counter
lastSendTimestamp int64
highestSentTimestamp int64
timestampLock sync.Mutex
highestTimestampIn *int64 // highest timestamp of any sample ingested by remote storage via scrape (Appender)
seriesMtx sync.Mutex
seriesLabels map[uint64][]prompb.Label
seriesSegmentIndexes map[uint64]int
droppedSeries map[uint64]struct{}
shards *shards
numShards int
reshardChan chan int
quit chan struct{}
wg sync.WaitGroup
samplesIn, samplesOut, samplesOutDuration *ewmaRate
integralAccumulator float64
}
// NewQueueManager builds a new QueueManager.
func NewQueueManager(logger log.Logger, walDir string, samplesIn *ewmaRate, highestTimestampIn *int64, cfg config.QueueConfig, externalLabels model.LabelSet, relabelConfigs []*pkgrelabel.Config, client StorageClient, flushDeadline time.Duration, startTime int64) *QueueManager {
if logger == nil {
logger = log.NewNopLogger()
} else {
logger = log.With(logger, "queue", client.Name())
}
t := &QueueManager{
logger: logger,
flushDeadline: flushDeadline,
cfg: cfg,
externalLabels: externalLabels,
relabelConfigs: relabelConfigs,
client: client,
queueName: client.Name(),
highestTimestampIn: highestTimestampIn,
seriesLabels: make(map[uint64][]prompb.Label),
seriesSegmentIndexes: make(map[uint64]int),
droppedSeries: make(map[uint64]struct{}),
logLimiter: rate.NewLimiter(logRateLimit, logBurst),
numShards: cfg.MinShards,
reshardChan: make(chan int),
quit: make(chan struct{}),
samplesIn: samplesIn,
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
}
t.lastSendTimestampMetric = queueLastSendTimestamp.WithLabelValues(t.queueName)
t.highestSentTimestampMetric = queueHighestSentTimestamp.WithLabelValues(t.queueName)
t.pendingSamplesMetric = queuePendingSamples.WithLabelValues(t.queueName)
t.enqueueRetriesMetric = enqueueRetriesTotal.WithLabelValues(t.queueName)
t.watcher = NewWALWatcher(logger, t, walDir, startTime)
t.shards = t.newShards()
numShards.WithLabelValues(t.queueName).Set(float64(t.numShards))
shardCapacity.WithLabelValues(t.queueName).Set(float64(t.cfg.Capacity))
// Initialize counter labels to zero.
sentBatchDuration.WithLabelValues(t.queueName)
succeededSamplesTotal.WithLabelValues(t.queueName)
failedSamplesTotal.WithLabelValues(t.queueName)
retriedSamplesTotal.WithLabelValues(t.queueName)
// Reset pending samples metric to 0.
t.pendingSamplesMetric.Set(0)
return t
}
// Append queues a sample to be sent to the remote storage. Blocks until all samples are
// enqueued on their shards or a shutdown signal is received.
func (t *QueueManager) Append(s []tsdb.RefSample) bool {
type enqueuable struct {
ts prompb.TimeSeries
ref uint64
}
tempSamples := make([]enqueuable, 0, len(s))
t.seriesMtx.Lock()
for _, sample := range s {
// If we have no labels for the series, due to relabelling or otherwise, don't send the sample.
if _, ok := t.seriesLabels[sample.Ref]; !ok {
droppedSamplesTotal.WithLabelValues(t.queueName).Inc()
if _, ok := t.droppedSeries[sample.Ref]; !ok && t.logLimiter.Allow() {
level.Info(t.logger).Log("msg", "dropped sample for series that was not explicitly dropped via relabelling", "ref", sample.Ref)
}
continue
}
tempSamples = append(tempSamples, enqueuable{
ts: prompb.TimeSeries{
Labels: t.seriesLabels[sample.Ref],
Samples: []prompb.Sample{
prompb.Sample{
Value: float64(sample.V),
Timestamp: sample.T,
},
},
},
ref: sample.Ref,
})
}
t.seriesMtx.Unlock()
backoff := t.cfg.MinBackoff
outer:
for _, sample := range tempSamples {
// This will result in spin/busy waiting if the queues are being resharded
// or shutting down. TODO backoff.
for {
select {
case <-t.quit:
return false
default:
}
if t.shards.enqueue(sample.ref, sample.ts) {
continue outer
}
t.enqueueRetriesMetric.Inc()
time.Sleep(time.Duration(backoff))
backoff = backoff * 2
if backoff > t.cfg.MaxBackoff {
backoff = t.cfg.MaxBackoff
}
}
}
return true
}
// Start the queue manager sending samples to the remote storage.
// Does not block.
func (t *QueueManager) Start() {
t.shards.start(t.numShards)
t.watcher.Start()
t.wg.Add(2)
go t.updateShardsLoop()
go t.reshardLoop()
}
// Stop stops sending samples to the remote storage and waits for pending
// sends to complete.
func (t *QueueManager) Stop() {
level.Info(t.logger).Log("msg", "Stopping remote storage...")
defer level.Info(t.logger).Log("msg", "Remote storage stopped.")
close(t.quit)
t.shards.stop()
t.watcher.Stop()
t.wg.Wait()
}
func (t *QueueManager) Name() string {
return t.queueName
}
// Find out which series are dropped after relabelling and make sure we have a metric label for them.
func (t *QueueManager) diffKeys(ref uint64, original, relabelled model.LabelSet) {
numDropped := len(original) - len(relabelled)
if numDropped == 0 {
return
}
}
// StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
func (t *QueueManager) StoreSeries(series []tsdb.RefSeries, index int) {
temp := make(map[uint64][]prompb.Label, len(series))
for _, s := range series {
ls := make(model.LabelSet, len(s.Labels))
for _, label := range s.Labels {
ls[model.LabelName(label.Name)] = model.LabelValue(label.Value)
}
t.processExternalLabels(ls)
rl := relabel.Process(ls, t.relabelConfigs...)
t.diffKeys(s.Ref, ls, rl)
if len(rl) == 0 {
t.droppedSeries[s.Ref] = struct{}{}
continue
}
temp[s.Ref] = labelsetToLabelsProto(rl)
}
t.seriesMtx.Lock()
defer t.seriesMtx.Unlock()
for ref, labels := range temp {
t.seriesLabels[ref] = labels
t.seriesSegmentIndexes[ref] = index
}
}
// SeriesReset is used when reading a checkpoint. WAL Watcher should have
// stored series records with the checkpoints index number, so we can now
// delete any ref ID's lower than that # from the two maps.
func (t *QueueManager) SeriesReset(index int) {
t.seriesMtx.Lock()
defer t.seriesMtx.Unlock()
// Check for series that are in segments older than the checkpoint
// that were not also present in the checkpoint.
for k, v := range t.seriesSegmentIndexes {
if v < index {
delete(t.seriesLabels, k)
delete(t.seriesSegmentIndexes, k)
}
}
}
func (t *QueueManager) processExternalLabels(ls model.LabelSet) {
for ln, lv := range t.externalLabels {
if _, ok := ls[ln]; !ok {
ls[ln] = lv
}
}
}
func (t *QueueManager) updateShardsLoop() {
defer t.wg.Done()
ticker := time.NewTicker(shardUpdateDuration)
defer ticker.Stop()
for {
select {
case <-ticker.C:
now := time.Now().Unix()
threshold := int64(time.Duration(2 * t.cfg.BatchSendDeadline).Seconds())
if now-t.lastSendTimestamp > threshold {
level.Debug(t.logger).Log("msg", "Skipping resharding, last successful send was beyond threshold")
continue
}
t.calculateDesiredShards()
case <-t.quit:
return
}
}
}
func (t *QueueManager) calculateDesiredShards() {
t.samplesIn.tick()
t.samplesOut.tick()
t.samplesOutDuration.tick()
// We use the number of incoming samples as a prediction of how much work we
// will need to do next iteration. We add to this any pending samples
// (received - send) so we can catch up with any backlog. We use the average
// outgoing batch latency to work out how many shards we need.
var (
samplesIn = t.samplesIn.rate()
samplesOut = t.samplesOut.rate()
samplesPending = samplesIn - samplesOut
samplesOutDuration = t.samplesOutDuration.rate()
)
// We use an integral accumulator, like in a PID, to help dampen oscillation.
t.integralAccumulator = t.integralAccumulator + (samplesPending * 0.1)
if samplesOut <= 0 {
return
}
var (
timePerSample = samplesOutDuration / samplesOut
desiredShards = (timePerSample * (samplesIn + samplesPending + t.integralAccumulator)) / float64(time.Second)
)
level.Debug(t.logger).Log("msg", "QueueManager.caclulateDesiredShards",
"samplesIn", samplesIn, "samplesOut", samplesOut,
"samplesPending", samplesPending, "desiredShards", desiredShards)
// Changes in the number of shards must be greater than shardToleranceFraction.
var (
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
)
level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop",
"lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound)
if lowerBound <= desiredShards && desiredShards <= upperBound {
return
}
numShards := int(math.Ceil(desiredShards))
if numShards > t.cfg.MaxShards {
numShards = t.cfg.MaxShards
} else if numShards < t.cfg.MinShards {
numShards = t.cfg.MinShards
}
if numShards == t.numShards {
return
}
// Resharding can take some time, and we want this loop
// to stay close to shardUpdateDuration.
select {
case t.reshardChan <- numShards:
level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", numShards)
t.numShards = numShards
default:
level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
}
}
func (t *QueueManager) reshardLoop() {
defer t.wg.Done()
for {
select {
case numShards := <-t.reshardChan:
// We start the newShards after we have stopped (the therefore completely
// flushed) the oldShards, to guarantee we only every deliver samples in
// order.
t.shards.stop()
t.shards.start(numShards)
case <-t.quit:
return
}
}
}
func (t *QueueManager) newShards() *shards {
s := &shards{
qm: t,
done: make(chan struct{}),
}
return s
}
// Check and set highestSentTimestamp
func (t *QueueManager) setHighestSentTimestamp(highest int64) {
t.timestampLock.Lock()
defer t.timestampLock.Unlock()
if highest > t.highestSentTimestamp {
t.highestSentTimestamp = highest
t.highestSentTimestampMetric.Set(float64(t.highestSentTimestamp))
}
}
func (t *QueueManager) setLastSendTimestamp(now time.Time) {
t.timestampLock.Lock()
defer t.timestampLock.Unlock()
t.lastSendTimestampMetric.Set(float64(now.UnixNano()) / 1e9)
t.lastSendTimestamp = now.Unix()
}
type shards struct {
mtx sync.RWMutex // With the WAL, this is never actually contended.
qm *QueueManager
queues []chan prompb.TimeSeries
// Emulate a wait group with a channel and an atomic int, as you
// cannot select on a wait group.
done chan struct{}
running int32
// Soft shutdown context will prevent new enqueues and deadlocks.
softShutdown chan struct{}
// Hard shutdown context is used to terminate outgoing HTTP connections
// after giving them a chance to terminate.
hardShutdown context.CancelFunc
}
// start the shards; must be called before any call to enqueue.
func (s *shards) start(n int) {
s.mtx.Lock()
defer s.mtx.Unlock()
newQueues := make([]chan prompb.TimeSeries, n)
for i := 0; i < n; i++ {
newQueues[i] = make(chan prompb.TimeSeries, s.qm.cfg.Capacity)
}
s.queues = newQueues
var hardShutdownCtx context.Context
hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background())
s.softShutdown = make(chan struct{})
s.running = int32(n)
s.done = make(chan struct{})
for i := 0; i < n; i++ {
go s.runShard(hardShutdownCtx, i, newQueues[i])
}
numShards.WithLabelValues(s.qm.queueName).Set(float64(n))
}
// stop the shards; subsequent call to enqueue will return false.
func (s *shards) stop() {
// Attempt a clean shutdown, but only wait flushDeadline for all the shards
// to cleanly exit. As we're doing RPCs, enqueue can block indefinately.
// We must be able so call stop concurrently, hence we can only take the
// RLock here.
s.mtx.RLock()
close(s.softShutdown)
s.mtx.RUnlock()
// Enqueue should now be unblocked, so we can take the write lock. This
// also ensures we don't race with writes to the queues, and get a panic:
// send on closed channel.
s.mtx.Lock()
defer s.mtx.Unlock()
for _, queue := range s.queues {
close(queue)
}
select {
case <-s.done:
return
case <-time.After(s.qm.flushDeadline):
level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown")
}
// Force an unclean shutdown.
s.hardShutdown()
<-s.done
}
// enqueue a sample. If we are currently in the process of shutting down or resharding,
// will return false; in this case, you should back off and retry.
func (s *shards) enqueue(ref uint64, sample prompb.TimeSeries) bool {
s.mtx.RLock()
defer s.mtx.RUnlock()
select {
case <-s.softShutdown:
return false
default:
}
shard := uint64(ref) % uint64(len(s.queues))
select {
case <-s.softShutdown:
return false
case s.queues[shard] <- sample:
return true
}
}
func (s *shards) runShard(ctx context.Context, i int, queue chan prompb.TimeSeries) {
defer func() {
if atomic.AddInt32(&s.running, -1) == 0 {
close(s.done)
}
}()
shardNum := strconv.Itoa(i)
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
// If we have fewer samples than that, flush them out after a deadline
// anyways.
pendingSamples := []prompb.TimeSeries{}
max := s.qm.cfg.MaxSamplesPerSend
timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline))
stop := func() {
if !timer.Stop() {
select {
case <-timer.C:
default:
}
}
}
defer stop()
for {
select {
case <-ctx.Done():
return
case sample, ok := <-queue:
if !ok {
if len(pendingSamples) > 0 {
level.Debug(s.qm.logger).Log("msg", "Flushing samples to remote storage...", "count", len(pendingSamples))
s.sendSamples(ctx, pendingSamples)
level.Debug(s.qm.logger).Log("msg", "Done flushing.")
}
return
}
// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
// retries endlessly, so once we reach > 100 samples, if we can never send to the endpoint we'll
// stop reading from the queue (which has a size of 10).
pendingSamples = append(pendingSamples, sample)
s.qm.pendingSamplesMetric.Inc()
if len(pendingSamples) >= max {
s.sendSamples(ctx, pendingSamples[:max])
pendingSamples = pendingSamples[max:]
s.qm.pendingSamplesMetric.Sub(float64(max))
stop()
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
}
case <-timer.C:
if len(pendingSamples) > 0 {
level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending samples", "samples", len(pendingSamples), "shard", shardNum)
n := len(pendingSamples)
s.sendSamples(ctx, pendingSamples)
pendingSamples = pendingSamples[:0]
s.qm.pendingSamplesMetric.Sub(float64(n))
}
timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
}
}
}
func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries) {
begin := time.Now()
err := s.sendSamplesWithBackoff(ctx, samples)
if err != nil && s.qm.logLimiter.Allow() {
level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", len(samples), "err", err)
failedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
}
// These counters are used to calculate the dynamic sharding, and as such
// should be maintained irrespective of success or failure.
s.qm.samplesOut.incr(int64(len(samples)))
s.qm.samplesOutDuration.incr(int64(time.Since(begin)))
}
// sendSamples to the remote storage with backoff for recoverable errors.
func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries) error {
backoff := s.qm.cfg.MinBackoff
req, highest, err := buildWriteRequest(samples)
// Failing to build the write request is non-recoverable, since it will
// only error if marshaling the proto to bytes fails.
if err != nil {
return err
}
for {
select {
case <-ctx.Done():
return ctx.Err()
default:
}
begin := time.Now()
err := s.qm.client.Store(ctx, req)
sentBatchDuration.WithLabelValues(s.qm.queueName).Observe(time.Since(begin).Seconds())
if err == nil {
succeededSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
now := time.Now()
s.qm.setLastSendTimestamp(now)
s.qm.setHighestSentTimestamp(highest)
return nil
}
if _, ok := err.(recoverableError); !ok {
return err
}
retriedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
if s.qm.logLimiter.Allow() {
level.Error(s.qm.logger).Log("err", err)
}
time.Sleep(time.Duration(backoff))
backoff = backoff * 2
if backoff > s.qm.cfg.MaxBackoff {
backoff = s.qm.cfg.MaxBackoff
}
}
}
func buildWriteRequest(samples []prompb.TimeSeries) ([]byte, int64, error) {
var highest int64
for _, ts := range samples {
// At the moment we only ever append a TimeSeries with a single sample in it.
if ts.Samples[0].Timestamp > highest {
highest = ts.Samples[0].Timestamp
}
}
req := &prompb.WriteRequest{
Timeseries: samples,
}
data, err := proto.Marshal(req)
if err != nil {
return nil, highest, err
}
compressed := snappy.Encode(nil, data)
return compressed, highest, nil
}