prometheus/tsdb/chunkenc/histogram.go
beorn7 7093b089f2 Use more varbit in histogram chunks
This adds bit buckets for larger numbers to varbit encoding and also
an unsigned version of varbit encoding.

Then, varbit encoding is used for all the histogram chunk data instead
of varint.

Signed-off-by: beorn7 <beorn@grafana.com>
2021-10-13 20:03:35 +02:00

944 lines
25 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunkenc
import (
"encoding/binary"
"math"
"math/bits"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/pkg/value"
)
const ()
// HistogramChunk holds encoded sample data for a sparse, high-resolution
// histogram.
//
// TODO(beorn7): Document the layout of chunk metadata.
//
// Each sample has multiple "fields", stored in the following way (raw = store
// number directly, delta = store delta to the previous number, dod = store
// delta of the delta to the previous number, xor = what we do for regular
// sample values):
//
// field → ts count zeroCount sum []posbuckets []negbuckets
// sample 1 raw raw raw raw []raw []raw
// sample 2 delta delta delta xor []delta []delta
// sample >2 dod dod dod xor []dod []dod
type HistogramChunk struct {
b bstream
}
// NewHistogramChunk returns a new chunk with histogram encoding of the given
// size.
func NewHistogramChunk() *HistogramChunk {
b := make([]byte, 3, 128)
return &HistogramChunk{b: bstream{stream: b, count: 0}}
}
// Encoding returns the encoding type.
func (c *HistogramChunk) Encoding() Encoding {
return EncHistogram
}
// Bytes returns the underlying byte slice of the chunk.
func (c *HistogramChunk) Bytes() []byte {
return c.b.bytes()
}
// NumSamples returns the number of samples in the chunk.
func (c *HistogramChunk) NumSamples() int {
return int(binary.BigEndian.Uint16(c.Bytes()))
}
// Layout returns the histogram layout. Only call this on chunks that have at
// least one sample.
func (c *HistogramChunk) Layout() (
schema int32, zeroThreshold float64,
negativeSpans, positiveSpans []histogram.Span,
err error,
) {
if c.NumSamples() == 0 {
panic("HistoChunk.Layout() called on an empty chunk")
}
b := newBReader(c.Bytes()[2:])
return readHistogramChunkLayout(&b)
}
// CounterResetHeader defines the first 2 bits of the chunk header.
type CounterResetHeader byte
const (
// CounterReset means there was definitely a counter reset that resulted in this chunk.
CounterReset CounterResetHeader = 0b10000000
// NotCounterReset means there was definitely no counter reset when cutting this chunk.
NotCounterReset CounterResetHeader = 0b01000000
// GaugeType means this chunk contains a gauge histogram, where counter resets do not happen.
GaugeType CounterResetHeader = 0b11000000
// UnknownCounterReset means we cannot say if this chunk was created due to a counter reset or not.
// An explicit counter reset detection needs to happen during query time.
UnknownCounterReset CounterResetHeader = 0b00000000
)
// SetCounterResetHeader sets the counter reset header.
func (c *HistogramChunk) SetCounterResetHeader(h CounterResetHeader) {
switch h {
case CounterReset, NotCounterReset, GaugeType, UnknownCounterReset:
bytes := c.Bytes()
bytes[2] = (bytes[2] & 0b00111111) | byte(h)
default:
panic("invalid CounterResetHeader type")
}
}
// GetCounterResetHeader returns the info about the first 2 bits of the chunk
// header.
func (c *HistogramChunk) GetCounterResetHeader() CounterResetHeader {
return CounterResetHeader(c.Bytes()[2] & 0b11000000)
}
// Compact implements the Chunk interface.
func (c *HistogramChunk) Compact() {
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold {
buf := make([]byte, l)
copy(buf, c.b.stream)
c.b.stream = buf
}
}
// Appender implements the Chunk interface.
func (c *HistogramChunk) Appender() (Appender, error) {
it := c.iterator(nil)
// To get an appender, we must know the state it would have if we had
// appended all existing data from scratch. We iterate through the end
// and populate via the iterator's state.
for it.Next() {
}
if err := it.Err(); err != nil {
return nil, err
}
a := &HistogramAppender{
b: &c.b,
schema: it.schema,
zThreshold: it.zThreshold,
pSpans: it.pSpans,
nSpans: it.nSpans,
t: it.t,
cnt: it.cnt,
zCnt: it.zCnt,
tDelta: it.tDelta,
cntDelta: it.cntDelta,
zCntDelta: it.zCntDelta,
pBuckets: it.pBuckets,
nBuckets: it.nBuckets,
pBucketsDelta: it.pBucketsDelta,
nBucketsDelta: it.nBucketsDelta,
sum: it.sum,
leading: it.leading,
trailing: it.trailing,
}
if binary.BigEndian.Uint16(a.b.bytes()) == 0 {
a.leading = 0xff
}
return a, nil
}
func countSpans(spans []histogram.Span) int {
var cnt int
for _, s := range spans {
cnt += int(s.Length)
}
return cnt
}
func newHistogramIterator(b []byte) *histogramIterator {
it := &histogramIterator{
br: newBReader(b),
numTotal: binary.BigEndian.Uint16(b),
t: math.MinInt64,
}
// The first 3 bytes contain chunk headers.
// We skip that for actual samples.
_, _ = it.br.readBits(24)
return it
}
func (c *HistogramChunk) iterator(it Iterator) *histogramIterator {
// This commet is copied from XORChunk.iterator:
// Should iterators guarantee to act on a copy of the data so it doesn't lock append?
// When using striped locks to guard access to chunks, probably yes.
// Could only copy data if the chunk is not completed yet.
if histogramIter, ok := it.(*histogramIterator); ok {
histogramIter.Reset(c.b.bytes())
return histogramIter
}
return newHistogramIterator(c.b.bytes())
}
// Iterator implements the Chunk interface.
func (c *HistogramChunk) Iterator(it Iterator) Iterator {
return c.iterator(it)
}
// HistogramAppender is an Appender implementation for sparse histograms.
type HistogramAppender struct {
b *bstream
// Layout:
schema int32
zThreshold float64
pSpans, nSpans []histogram.Span
// Although we intend to start new chunks on counter resets, we still
// have to handle negative deltas for gauge histograms. Therefore, even
// deltas are signed types here (even for tDelta to not treat that one
// specially).
t int64
cnt, zCnt uint64
tDelta, cntDelta, zCntDelta int64
pBuckets, nBuckets []int64
pBucketsDelta, nBucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
}
// Append implements Appender. This implementation panics because normal float
// samples must never be appended to a histogram chunk.
func (a *HistogramAppender) Append(int64, float64) {
panic("appended a float sample to a histogram chunk")
}
// Appendable returns whether the chunk can be appended to, and if so
// whether any recoding needs to happen using the provided interjections
// (in case of any new buckets, positive or negative range, respectively).
//
// The chunk is not appendable in the following cases:
//
// • The schema has changed.
//
// • The threshold for the zero bucket has changed.
//
// • Any buckets have disappeared.
//
// • There was a counter reset in the count of observations or in any bucket,
// including the zero bucket.
//
// • The last sample in the chunk was stale while the current sample is not stale.
//
// The method returns an additional boolean set to true if it is not appendable
// because of a counter reset. If the given sample is stale, it is always ok to
// append. If counterReset is true, okToAppend is always false.
func (a *HistogramAppender) Appendable(h histogram.Histogram) (
positiveInterjections, negativeInterjections []Interjection,
okToAppend bool, counterReset bool,
) {
if value.IsStaleNaN(h.Sum) {
// This is a stale sample whose buckets and spans don't matter.
okToAppend = true
return
}
if value.IsStaleNaN(a.sum) {
// If the last sample was stale, then we can only accept stale
// samples in this chunk.
return
}
if h.Count < a.cnt {
// There has been a counter reset.
counterReset = true
return
}
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold {
return
}
if h.ZeroCount < a.zCnt {
// There has been a counter reset since ZeroThreshold didn't change.
counterReset = true
return
}
var ok bool
positiveInterjections, ok = compareSpans(a.pSpans, h.PositiveSpans)
if !ok {
counterReset = true
return
}
negativeInterjections, ok = compareSpans(a.nSpans, h.NegativeSpans)
if !ok {
counterReset = true
return
}
if counterResetInAnyBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) ||
counterResetInAnyBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) {
counterReset, positiveInterjections, negativeInterjections = true, nil, nil
return
}
okToAppend = true
return
}
// counterResetInAnyBucket returns true if there was a counter reset for any
// bucket. This should be called only when the bucket layout is the same or new
// buckets were added. It does not handle the case of buckets missing.
func counterResetInAnyBucket(oldBuckets, newBuckets []int64, oldSpans, newSpans []histogram.Span) bool {
if len(oldSpans) == 0 || len(oldBuckets) == 0 {
return false
}
oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices.
oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span.
oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset
oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice.
oldVal, newVal := oldBuckets[0], newBuckets[0]
// Since we assume that new spans won't have missing buckets, there will never be a case
// where the old index will not find a matching new index.
for {
if oldIdx == newIdx {
if newVal < oldVal {
return true
}
}
if oldIdx <= newIdx {
// Moving ahead old bucket and span by 1 index.
if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 {
// Current span is over.
oldSpanSliceIdx++
oldInsideSpanIdx = 0
if oldSpanSliceIdx >= len(oldSpans) {
// All old spans are over.
break
}
oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset
} else {
oldInsideSpanIdx++
oldIdx++
}
oldBucketSliceIdx++
oldVal += oldBuckets[oldBucketSliceIdx]
}
if oldIdx > newIdx {
// Moving ahead new bucket and span by 1 index.
if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 {
// Current span is over.
newSpanSliceIdx++
newInsideSpanIdx = 0
if newSpanSliceIdx >= len(newSpans) {
// All new spans are over.
// This should not happen, old spans above should catch this first.
panic("new spans over before old spans in counterReset")
}
newIdx += 1 + newSpans[newSpanSliceIdx].Offset
} else {
newInsideSpanIdx++
newIdx++
}
newBucketSliceIdx++
newVal += newBuckets[newBucketSliceIdx]
}
}
return false
}
// AppendHistogram appends a histogram to the chunk. The caller must ensure that
// the histogram is properly structured, e.g. the number of buckets used
// corresponds to the number conveyed by the span structures. First call
// Appendable() and act accordingly!
func (a *HistogramAppender) AppendHistogram(t int64, h histogram.Histogram) {
var tDelta, cntDelta, zCntDelta int64
num := binary.BigEndian.Uint16(a.b.bytes())
if value.IsStaleNaN(h.Sum) {
// Emptying out other fields to write no buckets, and an empty
// layout in case of first histogram in the chunk.
h = histogram.Histogram{Sum: h.Sum}
}
switch num {
case 0:
// The first append gets the privilege to dictate the layout
// but it's also responsible for encoding it into the chunk!
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans)
a.schema = h.Schema
a.zThreshold = h.ZeroThreshold
a.pSpans = make([]histogram.Span, len(h.PositiveSpans))
copy(a.pSpans, h.PositiveSpans)
a.nSpans = make([]histogram.Span, len(h.NegativeSpans))
copy(a.nSpans, h.NegativeSpans)
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans)
a.pBuckets = make([]int64, numPBuckets)
a.nBuckets = make([]int64, numNBuckets)
a.pBucketsDelta = make([]int64, numPBuckets)
a.nBucketsDelta = make([]int64, numNBuckets)
// Now store the actual data.
putVarbitInt(a.b, t)
putVarbitUint(a.b, h.Count)
putVarbitUint(a.b, h.ZeroCount) //
a.b.writeBits(math.Float64bits(h.Sum), 64)
for _, b := range h.PositiveBuckets {
putVarbitInt(a.b, b)
}
for _, b := range h.NegativeBuckets {
putVarbitInt(a.b, b)
}
case 1:
tDelta = t - a.t
if tDelta < 0 {
panic("out of order timestamp")
}
cntDelta = int64(h.Count) - int64(a.cnt)
zCntDelta = int64(h.ZeroCount) - int64(a.zCnt)
if value.IsStaleNaN(h.Sum) {
cntDelta, zCntDelta = 0, 0
}
putVarbitUint(a.b, uint64(tDelta))
putVarbitInt(a.b, cntDelta)
putVarbitInt(a.b, zCntDelta)
a.writeSumDelta(h.Sum)
for i, b := range h.PositiveBuckets {
delta := b - a.pBuckets[i]
putVarbitInt(a.b, delta)
a.pBucketsDelta[i] = delta
}
for i, b := range h.NegativeBuckets {
delta := b - a.nBuckets[i]
putVarbitInt(a.b, delta)
a.nBucketsDelta[i] = delta
}
default:
tDelta = t - a.t
cntDelta = int64(h.Count) - int64(a.cnt)
zCntDelta = int64(h.ZeroCount) - int64(a.zCnt)
tDod := tDelta - a.tDelta
cntDod := cntDelta - a.cntDelta
zCntDod := zCntDelta - a.zCntDelta
if value.IsStaleNaN(h.Sum) {
cntDod, zCntDod = 0, 0
}
putVarbitInt(a.b, tDod)
putVarbitInt(a.b, cntDod)
putVarbitInt(a.b, zCntDod)
a.writeSumDelta(h.Sum)
for i, buck := range h.PositiveBuckets {
delta := buck - a.pBuckets[i]
dod := delta - a.pBucketsDelta[i]
putVarbitInt(a.b, dod)
a.pBucketsDelta[i] = delta
}
for i, buck := range h.NegativeBuckets {
delta := buck - a.nBuckets[i]
dod := delta - a.nBucketsDelta[i]
putVarbitInt(a.b, dod)
a.nBucketsDelta[i] = delta
}
}
binary.BigEndian.PutUint16(a.b.bytes(), num+1)
a.t = t
a.cnt = h.Count
a.zCnt = h.ZeroCount
a.tDelta = tDelta
a.cntDelta = cntDelta
a.zCntDelta = zCntDelta
copy(a.pBuckets, h.PositiveBuckets)
copy(a.nBuckets, h.NegativeBuckets)
// Note that the bucket deltas were already updated above.
a.sum = h.Sum
}
// Recode converts the current chunk to accommodate an expansion of the set of
// (positive and/or negative) buckets used, according to the provided
// interjections, resulting in the honoring of the provided new positive and
// negative spans.
func (a *HistogramAppender) Recode(
positiveInterjections, negativeInterjections []Interjection,
positiveSpans, negativeSpans []histogram.Span,
) (Chunk, Appender) {
// TODO(beorn7): This currently just decodes everything and then encodes
// it again with the new span layout. This can probably be done in-place
// by editing the chunk. But let's first see how expensive it is in the
// big picture.
byts := a.b.bytes()
it := newHistogramIterator(byts)
hc := NewHistogramChunk()
app, err := hc.Appender()
if err != nil {
panic(err)
}
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans)
for it.Next() {
tOld, hOld := it.AtHistogram()
// We have to newly allocate slices for the modified buckets
// here because they are kept by the appender until the next
// append.
// TODO(beorn7): We might be able to optimize this.
positiveBuckets := make([]int64, numPositiveBuckets)
negativeBuckets := make([]int64, numNegativeBuckets)
// Save the modified histogram to the new chunk.
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans
if len(positiveInterjections) > 0 {
hOld.PositiveBuckets = interject(hOld.PositiveBuckets, positiveBuckets, positiveInterjections)
}
if len(negativeInterjections) > 0 {
hOld.NegativeBuckets = interject(hOld.NegativeBuckets, negativeBuckets, negativeInterjections)
}
app.AppendHistogram(tOld, hOld)
}
hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000))
return hc, app
}
func (a *HistogramAppender) writeSumDelta(v float64) {
vDelta := math.Float64bits(v) ^ math.Float64bits(a.sum)
if vDelta == 0 {
a.b.writeBit(zero)
return
}
a.b.writeBit(one)
leading := uint8(bits.LeadingZeros64(vDelta))
trailing := uint8(bits.TrailingZeros64(vDelta))
// Clamp number of leading zeros to avoid overflow when encoding.
if leading >= 32 {
leading = 31
}
if a.leading != 0xff && leading >= a.leading && trailing >= a.trailing {
a.b.writeBit(zero)
a.b.writeBits(vDelta>>a.trailing, 64-int(a.leading)-int(a.trailing))
} else {
a.leading, a.trailing = leading, trailing
a.b.writeBit(one)
a.b.writeBits(uint64(leading), 5)
// Note that if leading == trailing == 0, then sigbits == 64.
// But that value doesn't actually fit into the 6 bits we have.
// Luckily, we never need to encode 0 significant bits, since
// that would put us in the other case (vdelta == 0). So
// instead we write out a 0 and adjust it back to 64 on
// unpacking.
sigbits := 64 - leading - trailing
a.b.writeBits(uint64(sigbits), 6)
a.b.writeBits(vDelta>>trailing, int(sigbits))
}
}
type histogramIterator struct {
br bstreamReader
numTotal uint16
numRead uint16
// Layout:
schema int32
zThreshold float64
pSpans, nSpans []histogram.Span
// For the fields that are tracked as deltas and ultimately dod's.
t int64
cnt, zCnt uint64
tDelta, cntDelta, zCntDelta int64
pBuckets, nBuckets []int64
pBucketsDelta, nBucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
err error
}
func (it *histogramIterator) Seek(t int64) bool {
if it.err != nil {
return false
}
for t > it.t || it.numRead == 0 {
if !it.Next() {
return false
}
}
return true
}
func (it *histogramIterator) At() (int64, float64) {
panic("cannot call histogramIterator.At")
}
func (it *histogramIterator) ChunkEncoding() Encoding {
return EncHistogram
}
func (it *histogramIterator) AtHistogram() (int64, histogram.Histogram) {
if value.IsStaleNaN(it.sum) {
return it.t, histogram.Histogram{Sum: it.sum}
}
return it.t, histogram.Histogram{
Count: it.cnt,
ZeroCount: it.zCnt,
Sum: it.sum,
ZeroThreshold: it.zThreshold,
Schema: it.schema,
PositiveSpans: it.pSpans,
NegativeSpans: it.nSpans,
PositiveBuckets: it.pBuckets,
NegativeBuckets: it.nBuckets,
}
}
func (it *histogramIterator) Err() error {
return it.err
}
func (it *histogramIterator) Reset(b []byte) {
// The first 2 bytes contain chunk headers.
// We skip that for actual samples.
it.br = newBReader(b[2:])
it.numTotal = binary.BigEndian.Uint16(b)
it.numRead = 0
it.t, it.cnt, it.zCnt = 0, 0, 0
it.tDelta, it.cntDelta, it.zCntDelta = 0, 0, 0
it.pBuckets = it.pBuckets[:0]
it.pBucketsDelta = it.pBucketsDelta[:0]
it.nBuckets = it.nBuckets[:0]
it.pBucketsDelta = it.pBucketsDelta[:0]
it.sum = 0
it.leading = 0
it.trailing = 0
it.err = nil
}
func (it *histogramIterator) Next() bool {
if it.err != nil || it.numRead == it.numTotal {
return false
}
if it.numRead == 0 {
// The first read is responsible for reading the chunk layout
// and for initializing fields that depend on it. We give
// counter reset info at chunk level, hence we discard it here.
schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br)
if err != nil {
it.err = err
return false
}
it.schema = schema
it.zThreshold = zeroThreshold
it.pSpans, it.nSpans = posSpans, negSpans
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans)
// Allocate bucket slices as needed, recycling existing slices
// in case this iterator was reset and already has slices of a
// sufficient capacity..
if numPBuckets > 0 {
if cap(it.pBuckets) < numPBuckets {
it.pBuckets = make([]int64, numPBuckets)
// If cap(it.pBuckets) isn't sufficient, neither is cap(it.pBucketsDelta).
it.pBucketsDelta = make([]int64, numPBuckets)
} else {
for i := 0; i < numPBuckets; i++ {
it.pBuckets = append(it.pBuckets, 0)
it.pBucketsDelta = append(it.pBucketsDelta, 0)
}
}
}
if numNBuckets > 0 {
if cap(it.nBuckets) < numNBuckets {
it.nBuckets = make([]int64, numNBuckets)
// If cap(it.nBuckets) isn't sufficient, neither is cap(it.nBucketsDelta).
it.nBucketsDelta = make([]int64, numNBuckets)
} else {
for i := 0; i < numNBuckets; i++ {
it.nBuckets = append(it.nBuckets, 0)
it.nBucketsDelta = append(it.nBucketsDelta, 0)
}
}
}
// Now read the actual data.
t, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.t = t
cnt, err := readVarbitUint(&it.br)
if err != nil {
it.err = err
return false
}
it.cnt = cnt
zcnt, err := readVarbitUint(&it.br)
if err != nil {
it.err = err
return false
}
it.zCnt = zcnt
sum, err := it.br.readBits(64)
if err != nil {
it.err = err
return false
}
it.sum = math.Float64frombits(sum)
for i := range it.pBuckets {
v, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.pBuckets[i] = v
}
for i := range it.nBuckets {
v, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.nBuckets[i] = v
}
it.numRead++
return true
}
if it.numRead == 1 {
tDelta, err := readVarbitUint(&it.br)
if err != nil {
it.err = err
return false
}
it.tDelta = int64(tDelta)
it.t += it.tDelta
cntDelta, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.cntDelta = cntDelta
it.cnt = uint64(int64(it.cnt) + it.cntDelta)
zcntDelta, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.zCntDelta = zcntDelta
it.zCnt = uint64(int64(it.zCnt) + it.zCntDelta)
ok := it.readSum()
if !ok {
return false
}
if value.IsStaleNaN(it.sum) {
it.numRead++
return true
}
for i := range it.pBuckets {
delta, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.pBucketsDelta[i] = delta
it.pBuckets[i] = it.pBuckets[i] + delta
}
for i := range it.nBuckets {
delta, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.nBucketsDelta[i] = delta
it.nBuckets[i] = it.nBuckets[i] + delta
}
it.numRead++
return true
}
tDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.tDelta = it.tDelta + tDod
it.t += it.tDelta
cntDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.cntDelta = it.cntDelta + cntDod
it.cnt = uint64(int64(it.cnt) + it.cntDelta)
zcntDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.zCntDelta = it.zCntDelta + zcntDod
it.zCnt = uint64(int64(it.zCnt) + it.zCntDelta)
ok := it.readSum()
if !ok {
return false
}
if value.IsStaleNaN(it.sum) {
it.numRead++
return true
}
for i := range it.pBuckets {
dod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.pBucketsDelta[i] = it.pBucketsDelta[i] + dod
it.pBuckets[i] = it.pBuckets[i] + it.pBucketsDelta[i]
}
for i := range it.nBuckets {
dod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return false
}
it.nBucketsDelta[i] = it.nBucketsDelta[i] + dod
it.nBuckets[i] = it.nBuckets[i] + it.nBucketsDelta[i]
}
it.numRead++
return true
}
func (it *histogramIterator) readSum() bool {
bit, err := it.br.readBitFast()
if err != nil {
bit, err = it.br.readBit()
}
if err != nil {
it.err = err
return false
}
if bit == zero {
return true // it.sum = it.sum
}
bit, err = it.br.readBitFast()
if err != nil {
bit, err = it.br.readBit()
}
if err != nil {
it.err = err
return false
}
if bit == zero {
// Reuse leading/trailing zero bits.
// it.leading, it.trailing = it.leading, it.trailing
} else {
bits, err := it.br.readBitsFast(5)
if err != nil {
bits, err = it.br.readBits(5)
}
if err != nil {
it.err = err
return false
}
it.leading = uint8(bits)
bits, err = it.br.readBitsFast(6)
if err != nil {
bits, err = it.br.readBits(6)
}
if err != nil {
it.err = err
return false
}
mbits := uint8(bits)
// 0 significant bits here means we overflowed and we actually
// need 64; see comment in encoder.
if mbits == 0 {
mbits = 64
}
it.trailing = 64 - it.leading - mbits
}
mbits := 64 - it.leading - it.trailing
bits, err := it.br.readBitsFast(mbits)
if err != nil {
bits, err = it.br.readBits(mbits)
}
if err != nil {
it.err = err
return false
}
vbits := math.Float64bits(it.sum)
vbits ^= bits << it.trailing
it.sum = math.Float64frombits(vbits)
return true
}