prometheus/storage/metric/operation.go
Julius Volz 7a577b86b7 Fix interval op special case.
In the case that a getValuesAtIntervalOp's ExtractSamples() is called
with a current time after the last chunk time, we return without
extracting any further values beyond the last one in the chunk
(correct), but also without advancing the op's time (incorrect). This
leads to an infinite loop in renderView(), since the op is called
repeatedly without ever being advanced and consumed.

This adds handling for this special case. When detecting this case, we
immediately set the op to be consumed, since we would always get a value
after the current time passed in if there was one.

Change-Id: Id99149e07b5188d655331382b8b6a461b677005c
2014-03-26 13:29:03 +01:00

343 lines
9.7 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"sort"
"time"
clientmodel "github.com/prometheus/client_golang/model"
)
// op encapsulates a primitive query operation.
type op interface {
// Fingerprint returns the fingerprint of the metric this operation
// operates on.
Fingerprint() *clientmodel.Fingerprint
// ExtractSamples extracts samples from a stream of values and advances
// the operation time.
ExtractSamples(Values) Values
// Consumed returns whether the operator has consumed all data it needs.
Consumed() bool
// CurrentTime gets the current operation time. In a newly created op,
// this is the starting time of the operation. During ongoing execution
// of the op, the current time is advanced accordingly. Once no
// subsequent work associated with the operation remains, nil is
// returned.
CurrentTime() clientmodel.Timestamp
}
// durationOperator encapsulates a general operation that occurs over a
// duration.
type durationOperator interface {
op
Through() clientmodel.Timestamp
}
// ops is a heap of operations, primary sorting key is the fingerprint.
type ops []op
// Len implements sort.Interface and heap.Interface.
func (o ops) Len() int {
return len(o)
}
// Less implements sort.Interface and heap.Interface. It compares the
// fingerprints. If they are equal, the comparison is delegated to
// currentTimeSort.
func (o ops) Less(i, j int) bool {
fpi := o[i].Fingerprint()
fpj := o[j].Fingerprint()
if fpi.Equal(fpj) {
return currentTimeSort{o}.Less(i, j)
}
return fpi.Less(fpj)
}
// Swap implements sort.Interface and heap.Interface.
func (o ops) Swap(i, j int) {
o[i], o[j] = o[j], o[i]
}
// Push implements heap.Interface.
func (o *ops) Push(x interface{}) {
// Push and Pop use pointer receivers because they modify the slice's
// length, not just its contents.
*o = append(*o, x.(op))
}
// Push implements heap.Interface.
func (o *ops) Pop() interface{} {
old := *o
n := len(old)
x := old[n-1]
*o = old[0 : n-1]
return x
}
// currentTimeSort is a wrapper for ops with customized sorting order.
type currentTimeSort struct {
ops
}
// currentTimeSort implements sort.Interface and sorts the operations in
// chronological order by their current time.
func (s currentTimeSort) Less(i, j int) bool {
return s.ops[i].CurrentTime().Before(s.ops[j].CurrentTime())
}
// baseOp contains the implementations and fields shared between different op
// types.
type baseOp struct {
fp clientmodel.Fingerprint
current clientmodel.Timestamp
}
func (g *baseOp) Fingerprint() *clientmodel.Fingerprint {
return &g.fp
}
func (g *baseOp) CurrentTime() clientmodel.Timestamp {
return g.current
}
// getValuesAtTimeOp encapsulates getting values at or adjacent to a specific
// time.
type getValuesAtTimeOp struct {
baseOp
consumed bool
}
func (g *getValuesAtTimeOp) String() string {
return fmt.Sprintf("getValuesAtTimeOp at %s", g.current)
}
func (g *getValuesAtTimeOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
out = extractValuesAroundTime(g.current, in)
g.consumed = true
return
}
func (g getValuesAtTimeOp) Consumed() bool {
return g.consumed
}
// getValuesAlongRangeOp encapsulates getting all values in a given range.
type getValuesAlongRangeOp struct {
baseOp
through clientmodel.Timestamp
}
func (g *getValuesAlongRangeOp) String() string {
return fmt.Sprintf("getValuesAlongRangeOp from %s through %s", g.current, g.through)
}
func (g *getValuesAlongRangeOp) Through() clientmodel.Timestamp {
return g.through
}
func (g *getValuesAlongRangeOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
// Find the first sample where time >= g.current.
firstIdx := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(g.current)
})
if firstIdx == len(in) {
// No samples at or after operator start time. This can only
// happen if we try applying the operator to a time after the
// last recorded sample. In this case, we're finished.
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
// Find the first sample where time > g.through.
lastIdx := sort.Search(len(in), func(i int) bool {
return in[i].Timestamp.After(g.through)
})
if lastIdx == firstIdx {
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
lastSampleTime := in[lastIdx-1].Timestamp
// Sample times are stored with a maximum time resolution of one second,
// so we have to add exactly that to target the next chunk on the next
// op iteration.
g.current = lastSampleTime.Add(time.Second)
return in[firstIdx:lastIdx]
}
func (g *getValuesAlongRangeOp) Consumed() bool {
return g.current.After(g.through)
}
// getValuesAtIntervalOp encapsulates getting values at a given interval over a
// duration.
type getValuesAtIntervalOp struct {
getValuesAlongRangeOp
interval time.Duration
}
func (g *getValuesAtIntervalOp) String() string {
return fmt.Sprintf("getValuesAtIntervalOp from %s each %s through %s", g.current, g.interval, g.through)
}
func (g *getValuesAtIntervalOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
lastChunkTime := in[len(in)-1].Timestamp
if g.current.After(lastChunkTime) {
g.current = g.through.Add(clientmodel.MinimumTick)
return Values{in[len(in)-1]}
}
for len(in) > 0 {
out = append(out, extractValuesAroundTime(g.current, in)...)
if g.current.After(lastChunkTime) {
break
}
lastExtractedTime := out[len(out)-1].Timestamp
in = in.TruncateBefore(lastExtractedTime.Add(
clientmodel.MinimumTick))
g.current = g.current.Add(g.interval)
for !g.current.After(lastExtractedTime) {
g.current = g.current.Add(g.interval)
}
if lastExtractedTime.Equal(lastChunkTime) {
break
}
if g.current.After(g.through) {
break
}
}
return
}
// getValueRangeAtIntervalOp encapsulates getting all values from ranges along
// intervals.
//
// Works just like getValuesAlongRangeOp, but when from > through, through is
// incremented by interval and from is reset to through-rangeDuration. Returns
// current time nil when from > totalThrough.
type getValueRangeAtIntervalOp struct {
getValuesAtIntervalOp
rangeThrough clientmodel.Timestamp
rangeDuration time.Duration
}
func (g *getValueRangeAtIntervalOp) String() string {
return fmt.Sprintf("getValueRangeAtIntervalOp range %s from %s each %s through %s", g.rangeDuration, g.current, g.interval, g.through)
}
// Through panics because the notion of 'through' is ambiguous for this op.
func (g *getValueRangeAtIntervalOp) Through() clientmodel.Timestamp {
panic("not implemented")
}
func (g *getValueRangeAtIntervalOp) advanceToNextInterval() {
g.rangeThrough = g.rangeThrough.Add(g.interval)
g.current = g.rangeThrough.Add(-g.rangeDuration)
}
func (g *getValueRangeAtIntervalOp) ExtractSamples(in Values) (out Values) {
if len(in) == 0 {
return
}
// Find the first sample where time >= g.current.
firstIdx := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(g.current)
})
if firstIdx == len(in) {
// No samples at or after operator start time. This can only
// happen if we try applying the operator to a time after the
// last recorded sample. In this case, we're finished.
g.current = g.through.Add(clientmodel.MinimumTick)
return
}
// Find the first sample where time > g.rangeThrough.
lastIdx := sort.Search(len(in), func(i int) bool {
return in[i].Timestamp.After(g.rangeThrough)
})
// This only happens when there is only one sample and it is both after
// g.current and after g.rangeThrough. In this case, both indexes are 0.
if lastIdx == firstIdx {
g.advanceToNextInterval()
return
}
lastSampleTime := in[lastIdx-1].Timestamp
// Sample times are stored with a maximum time resolution of one second,
// so we have to add exactly that to target the next chunk on the next
// op iteration.
g.current = lastSampleTime.Add(time.Second)
if g.current.After(g.rangeThrough) {
g.advanceToNextInterval()
}
return in[firstIdx:lastIdx]
}
// getValuesAtIntervalOps contains getValuesAtIntervalOp operations. It
// implements sort.Interface and sorts the operations in ascending order by
// their frequency.
type getValuesAtIntervalOps []*getValuesAtIntervalOp
func (s getValuesAtIntervalOps) Len() int {
return len(s)
}
func (s getValuesAtIntervalOps) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s getValuesAtIntervalOps) Less(i, j int) bool {
return s[i].interval < s[j].interval
}
// extractValuesAroundTime searches for the provided time in the list of
// available samples and emits a slice containing the data points that
// are adjacent to it.
//
// An assumption of this is that the provided samples are already sorted!
func extractValuesAroundTime(t clientmodel.Timestamp, in Values) Values {
i := sort.Search(len(in), func(i int) bool {
return !in[i].Timestamp.Before(t)
})
if i == len(in) {
// Target time is past the end, return only the last sample.
return in[len(in)-1:]
}
if in[i].Timestamp.Equal(t) && len(in) > i+1 {
// We hit exactly the current sample time. Very unlikely in
// practice. Return only the current sample.
return in[i : i+1]
}
if i == 0 {
// We hit before the first sample time. Return only the first
// sample.
return in[0:1]
}
// We hit between two samples. Return both surrounding samples.
return in[i-1 : i+1]
}