prometheus/storage/remote/otlptranslator/prometheusremotewrite/helper.go
Jesus Vazquez 7554384dac
otlp: Prometheus to own its own copy of the otlptranslator package (#13991)
After a lot of productive discussion between the Prometheus and
OpenTelemetry community we decided that it made sense for Prometheus to
own its own copy of the code in charge for handling OTLP ingestion
traffic.

This commit is removing the README and update-copy.sh files that had the
previous steps to update the code.

Also it is updating the licensing of all the files to make sure the
OpenTelemetry provenance is explicit and to state the new ownership.

Signed-off-by: Jesus Vazquez <jesusvzpg@gmail.com>
Co-authored-by: Arve Knudsen <arve.knudsen@gmail.com>
2024-04-30 11:29:52 +02:00

582 lines
19 KiB
Go

// Copyright 2024 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/95e8f8fdc2a9dc87230406c9a3cf02be4fd68bea/pkg/translator/prometheusremotewrite/helper.go
// Provenance-includes-license: Apache-2.0
// Provenance-includes-copyright: Copyright The OpenTelemetry Authors.
package prometheusremotewrite
import (
"encoding/hex"
"fmt"
"log"
"math"
"slices"
"sort"
"strconv"
"time"
"unicode/utf8"
"github.com/cespare/xxhash/v2"
"github.com/prometheus/common/model"
"go.opentelemetry.io/collector/pdata/pcommon"
"go.opentelemetry.io/collector/pdata/pmetric"
conventions "go.opentelemetry.io/collector/semconv/v1.6.1"
"github.com/prometheus/prometheus/model/timestamp"
"github.com/prometheus/prometheus/model/value"
"github.com/prometheus/prometheus/prompb"
prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus"
)
const (
sumStr = "_sum"
countStr = "_count"
bucketStr = "_bucket"
leStr = "le"
quantileStr = "quantile"
pInfStr = "+Inf"
createdSuffix = "_created"
// maxExemplarRunes is the maximum number of UTF-8 exemplar characters
// according to the prometheus specification
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
maxExemplarRunes = 128
// Trace and Span id keys are defined as part of the spec:
// https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification%2Fmetrics%2Fdatamodel.md#exemplars-2
traceIDKey = "trace_id"
spanIDKey = "span_id"
infoType = "info"
targetMetricName = "target_info"
)
type bucketBoundsData struct {
ts *prompb.TimeSeries
bound float64
}
// byBucketBoundsData enables the usage of sort.Sort() with a slice of bucket bounds
type byBucketBoundsData []bucketBoundsData
func (m byBucketBoundsData) Len() int { return len(m) }
func (m byBucketBoundsData) Less(i, j int) bool { return m[i].bound < m[j].bound }
func (m byBucketBoundsData) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
// ByLabelName enables the usage of sort.Sort() with a slice of labels
type ByLabelName []prompb.Label
func (a ByLabelName) Len() int { return len(a) }
func (a ByLabelName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a ByLabelName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// timeSeriesSignature returns a hashed label set signature.
// The label slice should not contain duplicate label names; this method sorts the slice by label name before creating
// the signature.
// The algorithm is the same as in Prometheus' labels.StableHash function.
func timeSeriesSignature(labels []prompb.Label) uint64 {
sort.Sort(ByLabelName(labels))
// Use xxhash.Sum64(b) for fast path as it's faster.
b := make([]byte, 0, 1024)
for i, v := range labels {
if len(b)+len(v.Name)+len(v.Value)+2 >= cap(b) {
// If labels entry is 1KB+ do not allocate whole entry.
h := xxhash.New()
_, _ = h.Write(b)
for _, v := range labels[i:] {
_, _ = h.WriteString(v.Name)
_, _ = h.Write(seps)
_, _ = h.WriteString(v.Value)
_, _ = h.Write(seps)
}
return h.Sum64()
}
b = append(b, v.Name...)
b = append(b, seps[0])
b = append(b, v.Value...)
b = append(b, seps[0])
}
return xxhash.Sum64(b)
}
var seps = []byte{'\xff'}
// createAttributes creates a slice of Prometheus Labels with OTLP attributes and pairs of string values.
// Unpaired string values are ignored. String pairs overwrite OTLP labels if collisions happen and
// if logOnOverwrite is true, the overwrite is logged. Resulting label names are sanitized.
func createAttributes(resource pcommon.Resource, attributes pcommon.Map, externalLabels map[string]string,
ignoreAttrs []string, logOnOverwrite bool, extras ...string) []prompb.Label {
resourceAttrs := resource.Attributes()
serviceName, haveServiceName := resourceAttrs.Get(conventions.AttributeServiceName)
instance, haveInstanceID := resourceAttrs.Get(conventions.AttributeServiceInstanceID)
// Calculate the maximum possible number of labels we could return so we can preallocate l
maxLabelCount := attributes.Len() + len(externalLabels) + len(extras)/2
if haveServiceName {
maxLabelCount++
}
if haveInstanceID {
maxLabelCount++
}
// map ensures no duplicate label name
l := make(map[string]string, maxLabelCount)
// Ensure attributes are sorted by key for consistent merging of keys which
// collide when sanitized.
labels := make([]prompb.Label, 0, maxLabelCount)
// XXX: Should we always drop service namespace/service name/service instance ID from the labels
// (as they get mapped to other Prometheus labels)?
attributes.Range(func(key string, value pcommon.Value) bool {
if !slices.Contains(ignoreAttrs, key) {
labels = append(labels, prompb.Label{Name: key, Value: value.AsString()})
}
return true
})
sort.Stable(ByLabelName(labels))
for _, label := range labels {
var finalKey = prometheustranslator.NormalizeLabel(label.Name)
if existingValue, alreadyExists := l[finalKey]; alreadyExists {
l[finalKey] = existingValue + ";" + label.Value
} else {
l[finalKey] = label.Value
}
}
// Map service.name + service.namespace to job
if haveServiceName {
val := serviceName.AsString()
if serviceNamespace, ok := resourceAttrs.Get(conventions.AttributeServiceNamespace); ok {
val = fmt.Sprintf("%s/%s", serviceNamespace.AsString(), val)
}
l[model.JobLabel] = val
}
// Map service.instance.id to instance
if haveInstanceID {
l[model.InstanceLabel] = instance.AsString()
}
for key, value := range externalLabels {
// External labels have already been sanitized
if _, alreadyExists := l[key]; alreadyExists {
// Skip external labels if they are overridden by metric attributes
continue
}
l[key] = value
}
for i := 0; i < len(extras); i += 2 {
if i+1 >= len(extras) {
break
}
_, found := l[extras[i]]
if found && logOnOverwrite {
log.Println("label " + extras[i] + " is overwritten. Check if Prometheus reserved labels are used.")
}
// internal labels should be maintained
name := extras[i]
if !(len(name) > 4 && name[:2] == "__" && name[len(name)-2:] == "__") {
name = prometheustranslator.NormalizeLabel(name)
}
l[name] = extras[i+1]
}
labels = labels[:0]
for k, v := range l {
labels = append(labels, prompb.Label{Name: k, Value: v})
}
return labels
}
// isValidAggregationTemporality checks whether an OTel metric has a valid
// aggregation temporality for conversion to a Prometheus metric.
func isValidAggregationTemporality(metric pmetric.Metric) bool {
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge, pmetric.MetricTypeSummary:
return true
case pmetric.MetricTypeSum:
return metric.Sum().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeHistogram:
return metric.Histogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeExponentialHistogram:
return metric.ExponentialHistogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
}
return false
}
func (c *prometheusConverter) addHistogramDataPoints(dataPoints pmetric.HistogramDataPointSlice,
resource pcommon.Resource, settings Settings, baseName string) {
for x := 0; x < dataPoints.Len(); x++ {
pt := dataPoints.At(x)
timestamp := convertTimeStamp(pt.Timestamp())
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
// If the sum is unset, it indicates the _sum metric point should be
// omitted
if pt.HasSum() {
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
sumlabels := createLabels(baseName+sumStr, baseLabels)
c.addSample(sum, sumlabels)
}
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(baseName+countStr, baseLabels)
c.addSample(count, countlabels)
// cumulative count for conversion to cumulative histogram
var cumulativeCount uint64
var bucketBounds []bucketBoundsData
// process each bound, based on histograms proto definition, # of buckets = # of explicit bounds + 1
for i := 0; i < pt.ExplicitBounds().Len() && i < pt.BucketCounts().Len(); i++ {
bound := pt.ExplicitBounds().At(i)
cumulativeCount += pt.BucketCounts().At(i)
bucket := &prompb.Sample{
Value: float64(cumulativeCount),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
bucket.Value = math.Float64frombits(value.StaleNaN)
}
boundStr := strconv.FormatFloat(bound, 'f', -1, 64)
labels := createLabels(baseName+bucketStr, baseLabels, leStr, boundStr)
ts := c.addSample(bucket, labels)
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: bound})
}
// add le=+Inf bucket
infBucket := &prompb.Sample{
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
infBucket.Value = math.Float64frombits(value.StaleNaN)
} else {
infBucket.Value = float64(pt.Count())
}
infLabels := createLabels(baseName+bucketStr, baseLabels, leStr, pInfStr)
ts := c.addSample(infBucket, infLabels)
bucketBounds = append(bucketBounds, bucketBoundsData{ts: ts, bound: math.Inf(1)})
c.addExemplars(pt, bucketBounds)
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
labels := createLabels(baseName+createdSuffix, baseLabels)
c.addTimeSeriesIfNeeded(labels, startTimestamp, pt.Timestamp())
}
}
}
type exemplarType interface {
pmetric.ExponentialHistogramDataPoint | pmetric.HistogramDataPoint | pmetric.NumberDataPoint
Exemplars() pmetric.ExemplarSlice
}
func getPromExemplars[T exemplarType](pt T) []prompb.Exemplar {
promExemplars := make([]prompb.Exemplar, 0, pt.Exemplars().Len())
for i := 0; i < pt.Exemplars().Len(); i++ {
exemplar := pt.Exemplars().At(i)
exemplarRunes := 0
promExemplar := prompb.Exemplar{
Value: exemplar.DoubleValue(),
Timestamp: timestamp.FromTime(exemplar.Timestamp().AsTime()),
}
if traceID := exemplar.TraceID(); !traceID.IsEmpty() {
val := hex.EncodeToString(traceID[:])
exemplarRunes += utf8.RuneCountInString(traceIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: traceIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
if spanID := exemplar.SpanID(); !spanID.IsEmpty() {
val := hex.EncodeToString(spanID[:])
exemplarRunes += utf8.RuneCountInString(spanIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: spanIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
attrs := exemplar.FilteredAttributes()
labelsFromAttributes := make([]prompb.Label, 0, attrs.Len())
attrs.Range(func(key string, value pcommon.Value) bool {
val := value.AsString()
exemplarRunes += utf8.RuneCountInString(key) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: key,
Value: val,
}
labelsFromAttributes = append(labelsFromAttributes, promLabel)
return true
})
if exemplarRunes <= maxExemplarRunes {
// only append filtered attributes if it does not cause exemplar
// labels to exceed the max number of runes
promExemplar.Labels = append(promExemplar.Labels, labelsFromAttributes...)
}
promExemplars = append(promExemplars, promExemplar)
}
return promExemplars
}
// mostRecentTimestampInMetric returns the latest timestamp in a batch of metrics
func mostRecentTimestampInMetric(metric pmetric.Metric) pcommon.Timestamp {
var ts pcommon.Timestamp
// handle individual metric based on type
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge:
dataPoints := metric.Gauge().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSum:
dataPoints := metric.Sum().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeHistogram:
dataPoints := metric.Histogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeExponentialHistogram:
dataPoints := metric.ExponentialHistogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSummary:
dataPoints := metric.Summary().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
}
return ts
}
func maxTimestamp(a, b pcommon.Timestamp) pcommon.Timestamp {
if a > b {
return a
}
return b
}
func (c *prometheusConverter) addSummaryDataPoints(dataPoints pmetric.SummaryDataPointSlice, resource pcommon.Resource,
settings Settings, baseName string) {
for x := 0; x < dataPoints.Len(); x++ {
pt := dataPoints.At(x)
timestamp := convertTimeStamp(pt.Timestamp())
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels, nil, false)
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
// sum and count of the summary should append suffix to baseName
sumlabels := createLabels(baseName+sumStr, baseLabels)
c.addSample(sum, sumlabels)
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(baseName+countStr, baseLabels)
c.addSample(count, countlabels)
// process each percentile/quantile
for i := 0; i < pt.QuantileValues().Len(); i++ {
qt := pt.QuantileValues().At(i)
quantile := &prompb.Sample{
Value: qt.Value(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
quantile.Value = math.Float64frombits(value.StaleNaN)
}
percentileStr := strconv.FormatFloat(qt.Quantile(), 'f', -1, 64)
qtlabels := createLabels(baseName, baseLabels, quantileStr, percentileStr)
c.addSample(quantile, qtlabels)
}
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
createdLabels := createLabels(baseName+createdSuffix, baseLabels)
c.addTimeSeriesIfNeeded(createdLabels, startTimestamp, pt.Timestamp())
}
}
}
// createLabels returns a copy of baseLabels, adding to it the pair model.MetricNameLabel=name.
// If extras are provided, corresponding label pairs are also added to the returned slice.
// If extras is uneven length, the last (unpaired) extra will be ignored.
func createLabels(name string, baseLabels []prompb.Label, extras ...string) []prompb.Label {
extraLabelCount := len(extras) / 2
labels := make([]prompb.Label, len(baseLabels), len(baseLabels)+extraLabelCount+1) // +1 for name
copy(labels, baseLabels)
n := len(extras)
n -= n % 2
for extrasIdx := 0; extrasIdx < n; extrasIdx += 2 {
labels = append(labels, prompb.Label{Name: extras[extrasIdx], Value: extras[extrasIdx+1]})
}
labels = append(labels, prompb.Label{Name: model.MetricNameLabel, Value: name})
return labels
}
// getOrCreateTimeSeries returns the time series corresponding to the label set if existent, and false.
// Otherwise it creates a new one and returns that, and true.
func (c *prometheusConverter) getOrCreateTimeSeries(lbls []prompb.Label) (*prompb.TimeSeries, bool) {
h := timeSeriesSignature(lbls)
ts := c.unique[h]
if ts != nil {
if isSameMetric(ts, lbls) {
// We already have this metric
return ts, false
}
// Look for a matching conflict
for _, cTS := range c.conflicts[h] {
if isSameMetric(cTS, lbls) {
// We already have this metric
return cTS, false
}
}
// New conflict
ts = &prompb.TimeSeries{
Labels: lbls,
}
c.conflicts[h] = append(c.conflicts[h], ts)
return ts, true
}
// This metric is new
ts = &prompb.TimeSeries{
Labels: lbls,
}
c.unique[h] = ts
return ts, true
}
// addTimeSeriesIfNeeded adds a corresponding time series if it doesn't already exist.
// If the time series doesn't already exist, it gets added with startTimestamp for its value and timestamp for its timestamp,
// both converted to milliseconds.
func (c *prometheusConverter) addTimeSeriesIfNeeded(lbls []prompb.Label, startTimestamp pcommon.Timestamp, timestamp pcommon.Timestamp) {
ts, created := c.getOrCreateTimeSeries(lbls)
if created {
ts.Samples = []prompb.Sample{
{
// convert ns to ms
Value: float64(convertTimeStamp(startTimestamp)),
Timestamp: convertTimeStamp(timestamp),
},
}
}
}
// addResourceTargetInfo converts the resource to the target info metric.
func addResourceTargetInfo(resource pcommon.Resource, settings Settings, timestamp pcommon.Timestamp, converter *prometheusConverter) {
if settings.DisableTargetInfo || timestamp == 0 {
return
}
attributes := resource.Attributes()
identifyingAttrs := []string{
conventions.AttributeServiceNamespace,
conventions.AttributeServiceName,
conventions.AttributeServiceInstanceID,
}
nonIdentifyingAttrsCount := attributes.Len()
for _, a := range identifyingAttrs {
_, haveAttr := attributes.Get(a)
if haveAttr {
nonIdentifyingAttrsCount--
}
}
if nonIdentifyingAttrsCount == 0 {
// If we only have job + instance, then target_info isn't useful, so don't add it.
return
}
name := targetMetricName
if len(settings.Namespace) > 0 {
name = settings.Namespace + "_" + name
}
labels := createAttributes(resource, attributes, settings.ExternalLabels, identifyingAttrs, false, model.MetricNameLabel, name)
haveIdentifier := false
for _, l := range labels {
if l.Name == model.JobLabel || l.Name == model.InstanceLabel {
haveIdentifier = true
break
}
}
if !haveIdentifier {
// We need at least one identifying label to generate target_info.
return
}
sample := &prompb.Sample{
Value: float64(1),
// convert ns to ms
Timestamp: convertTimeStamp(timestamp),
}
converter.addSample(sample, labels)
}
// convertTimeStamp converts OTLP timestamp in ns to timestamp in ms
func convertTimeStamp(timestamp pcommon.Timestamp) int64 {
return timestamp.AsTime().UnixNano() / (int64(time.Millisecond) / int64(time.Nanosecond))
}