prometheus/storage/remote/otlptranslator/prometheusremotewrite/helper.go
Goutham a99f48cc9f
Bump OTel Collector dependency to v0.88.0
I initially didn't copy the otlptranslator/prometheus folder because I
assumed it wouldn't get changes. But it did. So this PR fixes that and
updates the Collector version.

Supersedes: https://github.com/prometheus/prometheus/pull/12809

Signed-off-by: Goutham <gouthamve@gmail.com>
2023-11-15 15:18:14 +01:00

586 lines
19 KiB
Go

// DO NOT EDIT. COPIED AS-IS. SEE README.md
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package prometheusremotewrite // import "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheusremotewrite"
import (
"encoding/hex"
"fmt"
"log"
"math"
"sort"
"strconv"
"strings"
"time"
"unicode/utf8"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/model/timestamp"
"github.com/prometheus/prometheus/model/value"
"github.com/prometheus/prometheus/prompb"
"go.opentelemetry.io/collector/pdata/pcommon"
"go.opentelemetry.io/collector/pdata/pmetric"
conventions "go.opentelemetry.io/collector/semconv/v1.6.1"
prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus"
)
const (
nameStr = "__name__"
sumStr = "_sum"
countStr = "_count"
bucketStr = "_bucket"
leStr = "le"
quantileStr = "quantile"
pInfStr = "+Inf"
createdSuffix = "_created"
// maxExemplarRunes is the maximum number of UTF-8 exemplar characters
// according to the prometheus specification
// https://github.com/OpenObservability/OpenMetrics/blob/main/specification/OpenMetrics.md#exemplars
maxExemplarRunes = 128
// Trace and Span id keys are defined as part of the spec:
// https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification%2Fmetrics%2Fdatamodel.md#exemplars-2
traceIDKey = "trace_id"
spanIDKey = "span_id"
infoType = "info"
targetMetricName = "target_info"
)
type bucketBoundsData struct {
sig string
bound float64
}
// byBucketBoundsData enables the usage of sort.Sort() with a slice of bucket bounds
type byBucketBoundsData []bucketBoundsData
func (m byBucketBoundsData) Len() int { return len(m) }
func (m byBucketBoundsData) Less(i, j int) bool { return m[i].bound < m[j].bound }
func (m byBucketBoundsData) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
// ByLabelName enables the usage of sort.Sort() with a slice of labels
type ByLabelName []prompb.Label
func (a ByLabelName) Len() int { return len(a) }
func (a ByLabelName) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a ByLabelName) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// addSample finds a TimeSeries in tsMap that corresponds to the label set labels, and add sample to the TimeSeries; it
// creates a new TimeSeries in the map if not found and returns the time series signature.
// tsMap will be unmodified if either labels or sample is nil, but can still be modified if the exemplar is nil.
func addSample(tsMap map[string]*prompb.TimeSeries, sample *prompb.Sample, labels []prompb.Label,
datatype string) string {
if sample == nil || labels == nil || tsMap == nil {
return ""
}
sig := timeSeriesSignature(datatype, &labels)
ts, ok := tsMap[sig]
if ok {
ts.Samples = append(ts.Samples, *sample)
} else {
newTs := &prompb.TimeSeries{
Labels: labels,
Samples: []prompb.Sample{*sample},
}
tsMap[sig] = newTs
}
return sig
}
// addExemplars finds a bucket bound that corresponds to the exemplars value and add the exemplar to the specific sig;
// we only add exemplars if samples are presents
// tsMap is unmodified if either of its parameters is nil and samples are nil.
func addExemplars(tsMap map[string]*prompb.TimeSeries, exemplars []prompb.Exemplar, bucketBoundsData []bucketBoundsData) {
if tsMap == nil || bucketBoundsData == nil || exemplars == nil {
return
}
sort.Sort(byBucketBoundsData(bucketBoundsData))
for _, exemplar := range exemplars {
addExemplar(tsMap, bucketBoundsData, exemplar)
}
}
func addExemplar(tsMap map[string]*prompb.TimeSeries, bucketBounds []bucketBoundsData, exemplar prompb.Exemplar) {
for _, bucketBound := range bucketBounds {
sig := bucketBound.sig
bound := bucketBound.bound
_, ok := tsMap[sig]
if ok {
if tsMap[sig].Samples != nil {
if exemplar.Value <= bound {
tsMap[sig].Exemplars = append(tsMap[sig].Exemplars, exemplar)
return
}
}
}
}
}
// timeSeries return a string signature in the form of:
//
// TYPE-label1-value1- ... -labelN-valueN
//
// the label slice should not contain duplicate label names; this method sorts the slice by label name before creating
// the signature.
func timeSeriesSignature(datatype string, labels *[]prompb.Label) string {
length := len(datatype)
for _, lb := range *labels {
length += 2 + len(lb.GetName()) + len(lb.GetValue())
}
b := strings.Builder{}
b.Grow(length)
b.WriteString(datatype)
sort.Sort(ByLabelName(*labels))
for _, lb := range *labels {
b.WriteString("-")
b.WriteString(lb.GetName())
b.WriteString("-")
b.WriteString(lb.GetValue())
}
return b.String()
}
// createAttributes creates a slice of Cortex Label with OTLP attributes and pairs of string values.
// Unpaired string value is ignored. String pairs overwrites OTLP labels if collision happens, and the overwrite is
// logged. Resultant label names are sanitized.
func createAttributes(resource pcommon.Resource, attributes pcommon.Map, externalLabels map[string]string, extras ...string) []prompb.Label {
serviceName, haveServiceName := resource.Attributes().Get(conventions.AttributeServiceName)
instance, haveInstanceID := resource.Attributes().Get(conventions.AttributeServiceInstanceID)
// Calculate the maximum possible number of labels we could return so we can preallocate l
maxLabelCount := attributes.Len() + len(externalLabels) + len(extras)/2
if haveServiceName {
maxLabelCount++
}
if haveInstanceID {
maxLabelCount++
}
// map ensures no duplicate label name
l := make(map[string]string, maxLabelCount)
// Ensure attributes are sorted by key for consistent merging of keys which
// collide when sanitized.
labels := make([]prompb.Label, 0, attributes.Len())
attributes.Range(func(key string, value pcommon.Value) bool {
labels = append(labels, prompb.Label{Name: key, Value: value.AsString()})
return true
})
sort.Stable(ByLabelName(labels))
for _, label := range labels {
var finalKey = prometheustranslator.NormalizeLabel(label.Name)
if existingLabel, alreadyExists := l[finalKey]; alreadyExists {
l[finalKey] = existingLabel + ";" + label.Value
} else {
l[finalKey] = label.Value
}
}
// Map service.name + service.namespace to job
if haveServiceName {
val := serviceName.AsString()
if serviceNamespace, ok := resource.Attributes().Get(conventions.AttributeServiceNamespace); ok {
val = fmt.Sprintf("%s/%s", serviceNamespace.AsString(), val)
}
l[model.JobLabel] = val
}
// Map service.instance.id to instance
if haveInstanceID {
l[model.InstanceLabel] = instance.AsString()
}
for key, value := range externalLabels {
// External labels have already been sanitized
if _, alreadyExists := l[key]; alreadyExists {
// Skip external labels if they are overridden by metric attributes
continue
}
l[key] = value
}
for i := 0; i < len(extras); i += 2 {
if i+1 >= len(extras) {
break
}
_, found := l[extras[i]]
if found {
log.Println("label " + extras[i] + " is overwritten. Check if Prometheus reserved labels are used.")
}
// internal labels should be maintained
name := extras[i]
if !(len(name) > 4 && name[:2] == "__" && name[len(name)-2:] == "__") {
name = prometheustranslator.NormalizeLabel(name)
}
l[name] = extras[i+1]
}
s := make([]prompb.Label, 0, len(l))
for k, v := range l {
s = append(s, prompb.Label{Name: k, Value: v})
}
return s
}
// isValidAggregationTemporality checks whether an OTel metric has a valid
// aggregation temporality for conversion to a Prometheus metric.
func isValidAggregationTemporality(metric pmetric.Metric) bool {
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge, pmetric.MetricTypeSummary:
return true
case pmetric.MetricTypeSum:
return metric.Sum().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeHistogram:
return metric.Histogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
case pmetric.MetricTypeExponentialHistogram:
return metric.ExponentialHistogram().AggregationTemporality() == pmetric.AggregationTemporalityCumulative
}
return false
}
// addSingleHistogramDataPoint converts pt to 2 + min(len(ExplicitBounds), len(BucketCount)) + 1 samples. It
// ignore extra buckets if len(ExplicitBounds) > len(BucketCounts)
func addSingleHistogramDataPoint(pt pmetric.HistogramDataPoint, resource pcommon.Resource, metric pmetric.Metric, settings Settings, tsMap map[string]*prompb.TimeSeries) {
timestamp := convertTimeStamp(pt.Timestamp())
// sum, count, and buckets of the histogram should append suffix to baseName
baseName := prometheustranslator.BuildCompliantName(metric, settings.Namespace, settings.AddMetricSuffixes)
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels)
createLabels := func(nameSuffix string, extras ...string) []prompb.Label {
extraLabelCount := len(extras) / 2
labels := make([]prompb.Label, len(baseLabels), len(baseLabels)+extraLabelCount+1) // +1 for name
copy(labels, baseLabels)
for extrasIdx := 0; extrasIdx < extraLabelCount; extrasIdx++ {
labels = append(labels, prompb.Label{Name: extras[extrasIdx], Value: extras[extrasIdx+1]})
}
labels = append(labels, prompb.Label{Name: nameStr, Value: baseName + nameSuffix})
return labels
}
// If the sum is unset, it indicates the _sum metric point should be
// omitted
if pt.HasSum() {
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
sumlabels := createLabels(sumStr)
addSample(tsMap, sum, sumlabels, metric.Type().String())
}
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(countStr)
addSample(tsMap, count, countlabels, metric.Type().String())
// cumulative count for conversion to cumulative histogram
var cumulativeCount uint64
promExemplars := getPromExemplars[pmetric.HistogramDataPoint](pt)
var bucketBounds []bucketBoundsData
// process each bound, based on histograms proto definition, # of buckets = # of explicit bounds + 1
for i := 0; i < pt.ExplicitBounds().Len() && i < pt.BucketCounts().Len(); i++ {
bound := pt.ExplicitBounds().At(i)
cumulativeCount += pt.BucketCounts().At(i)
bucket := &prompb.Sample{
Value: float64(cumulativeCount),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
bucket.Value = math.Float64frombits(value.StaleNaN)
}
boundStr := strconv.FormatFloat(bound, 'f', -1, 64)
labels := createLabels(bucketStr, leStr, boundStr)
sig := addSample(tsMap, bucket, labels, metric.Type().String())
bucketBounds = append(bucketBounds, bucketBoundsData{sig: sig, bound: bound})
}
// add le=+Inf bucket
infBucket := &prompb.Sample{
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
infBucket.Value = math.Float64frombits(value.StaleNaN)
} else {
infBucket.Value = float64(pt.Count())
}
infLabels := createLabels(bucketStr, leStr, pInfStr)
sig := addSample(tsMap, infBucket, infLabels, metric.Type().String())
bucketBounds = append(bucketBounds, bucketBoundsData{sig: sig, bound: math.Inf(1)})
addExemplars(tsMap, promExemplars, bucketBounds)
// add _created time series if needed
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
labels := createLabels(createdSuffix)
addCreatedTimeSeriesIfNeeded(tsMap, labels, startTimestamp, metric.Type().String())
}
}
type exemplarType interface {
pmetric.ExponentialHistogramDataPoint | pmetric.HistogramDataPoint | pmetric.NumberDataPoint
Exemplars() pmetric.ExemplarSlice
}
func getPromExemplars[T exemplarType](pt T) []prompb.Exemplar {
var promExemplars []prompb.Exemplar
for i := 0; i < pt.Exemplars().Len(); i++ {
exemplar := pt.Exemplars().At(i)
exemplarRunes := 0
promExemplar := &prompb.Exemplar{
Value: exemplar.DoubleValue(),
Timestamp: timestamp.FromTime(exemplar.Timestamp().AsTime()),
}
if traceID := exemplar.TraceID(); !traceID.IsEmpty() {
val := hex.EncodeToString(traceID[:])
exemplarRunes += utf8.RuneCountInString(traceIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: traceIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
if spanID := exemplar.SpanID(); !spanID.IsEmpty() {
val := hex.EncodeToString(spanID[:])
exemplarRunes += utf8.RuneCountInString(spanIDKey) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: spanIDKey,
Value: val,
}
promExemplar.Labels = append(promExemplar.Labels, promLabel)
}
var labelsFromAttributes []prompb.Label
exemplar.FilteredAttributes().Range(func(key string, value pcommon.Value) bool {
val := value.AsString()
exemplarRunes += utf8.RuneCountInString(key) + utf8.RuneCountInString(val)
promLabel := prompb.Label{
Name: key,
Value: val,
}
labelsFromAttributes = append(labelsFromAttributes, promLabel)
return true
})
if exemplarRunes <= maxExemplarRunes {
// only append filtered attributes if it does not cause exemplar
// labels to exceed the max number of runes
promExemplar.Labels = append(promExemplar.Labels, labelsFromAttributes...)
}
promExemplars = append(promExemplars, *promExemplar)
}
return promExemplars
}
// mostRecentTimestampInMetric returns the latest timestamp in a batch of metrics
func mostRecentTimestampInMetric(metric pmetric.Metric) pcommon.Timestamp {
var ts pcommon.Timestamp
// handle individual metric based on type
//exhaustive:enforce
switch metric.Type() {
case pmetric.MetricTypeGauge:
dataPoints := metric.Gauge().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSum:
dataPoints := metric.Sum().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeHistogram:
dataPoints := metric.Histogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeExponentialHistogram:
dataPoints := metric.ExponentialHistogram().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
case pmetric.MetricTypeSummary:
dataPoints := metric.Summary().DataPoints()
for x := 0; x < dataPoints.Len(); x++ {
ts = maxTimestamp(ts, dataPoints.At(x).Timestamp())
}
}
return ts
}
func maxTimestamp(a, b pcommon.Timestamp) pcommon.Timestamp {
if a > b {
return a
}
return b
}
// addSingleSummaryDataPoint converts pt to len(QuantileValues) + 2 samples.
func addSingleSummaryDataPoint(pt pmetric.SummaryDataPoint, resource pcommon.Resource, metric pmetric.Metric, settings Settings,
tsMap map[string]*prompb.TimeSeries) {
timestamp := convertTimeStamp(pt.Timestamp())
// sum and count of the summary should append suffix to baseName
baseName := prometheustranslator.BuildCompliantName(metric, settings.Namespace, settings.AddMetricSuffixes)
baseLabels := createAttributes(resource, pt.Attributes(), settings.ExternalLabels)
createLabels := func(name string, extras ...string) []prompb.Label {
extraLabelCount := len(extras) / 2
labels := make([]prompb.Label, len(baseLabels), len(baseLabels)+extraLabelCount+1) // +1 for name
copy(labels, baseLabels)
for extrasIdx := 0; extrasIdx < extraLabelCount; extrasIdx++ {
labels = append(labels, prompb.Label{Name: extras[extrasIdx], Value: extras[extrasIdx+1]})
}
labels = append(labels, prompb.Label{Name: nameStr, Value: name})
return labels
}
// treat sum as a sample in an individual TimeSeries
sum := &prompb.Sample{
Value: pt.Sum(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
sum.Value = math.Float64frombits(value.StaleNaN)
}
sumlabels := createLabels(baseName + sumStr)
addSample(tsMap, sum, sumlabels, metric.Type().String())
// treat count as a sample in an individual TimeSeries
count := &prompb.Sample{
Value: float64(pt.Count()),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
count.Value = math.Float64frombits(value.StaleNaN)
}
countlabels := createLabels(baseName + countStr)
addSample(tsMap, count, countlabels, metric.Type().String())
// process each percentile/quantile
for i := 0; i < pt.QuantileValues().Len(); i++ {
qt := pt.QuantileValues().At(i)
quantile := &prompb.Sample{
Value: qt.Value(),
Timestamp: timestamp,
}
if pt.Flags().NoRecordedValue() {
quantile.Value = math.Float64frombits(value.StaleNaN)
}
percentileStr := strconv.FormatFloat(qt.Quantile(), 'f', -1, 64)
qtlabels := createLabels(baseName, quantileStr, percentileStr)
addSample(tsMap, quantile, qtlabels, metric.Type().String())
}
// add _created time series if needed
startTimestamp := pt.StartTimestamp()
if settings.ExportCreatedMetric && startTimestamp != 0 {
createdLabels := createLabels(baseName + createdSuffix)
addCreatedTimeSeriesIfNeeded(tsMap, createdLabels, startTimestamp, metric.Type().String())
}
}
// addCreatedTimeSeriesIfNeeded adds {name}_created time series with a single
// sample. If the series exists, then new samples won't be added.
func addCreatedTimeSeriesIfNeeded(
series map[string]*prompb.TimeSeries,
labels []prompb.Label,
startTimestamp pcommon.Timestamp,
metricType string,
) {
sig := timeSeriesSignature(metricType, &labels)
if _, ok := series[sig]; !ok {
series[sig] = &prompb.TimeSeries{
Labels: labels,
Samples: []prompb.Sample{
{ // convert ns to ms
Value: float64(convertTimeStamp(startTimestamp)),
},
},
}
}
}
// addResourceTargetInfo converts the resource to the target info metric
func addResourceTargetInfo(resource pcommon.Resource, settings Settings, timestamp pcommon.Timestamp, tsMap map[string]*prompb.TimeSeries) {
if settings.DisableTargetInfo {
return
}
// Use resource attributes (other than those used for job+instance) as the
// metric labels for the target info metric
attributes := pcommon.NewMap()
resource.Attributes().CopyTo(attributes)
attributes.RemoveIf(func(k string, _ pcommon.Value) bool {
switch k {
case conventions.AttributeServiceName, conventions.AttributeServiceNamespace, conventions.AttributeServiceInstanceID:
// Remove resource attributes used for job + instance
return true
default:
return false
}
})
if attributes.Len() == 0 {
// If we only have job + instance, then target_info isn't useful, so don't add it.
return
}
// create parameters for addSample
name := targetMetricName
if len(settings.Namespace) > 0 {
name = settings.Namespace + "_" + name
}
labels := createAttributes(resource, attributes, settings.ExternalLabels, nameStr, name)
sample := &prompb.Sample{
Value: float64(1),
// convert ns to ms
Timestamp: convertTimeStamp(timestamp),
}
addSample(tsMap, sample, labels, infoType)
}
// convertTimeStamp converts OTLP timestamp in ns to timestamp in ms
func convertTimeStamp(timestamp pcommon.Timestamp) int64 {
return timestamp.AsTime().UnixNano() / (int64(time.Millisecond) / int64(time.Nanosecond))
}