prometheus/tsdb/head_append.go
Ganesh Vernekar 85e6686f84
Add unit test for counter reset header
Signed-off-by: Ganesh Vernekar <ganeshvern@gmail.com>
2021-10-13 15:57:42 +05:30

814 lines
22 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tsdb
import (
"context"
"fmt"
"math"
"github.com/go-kit/log/level"
"github.com/pkg/errors"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/pkg/exemplar"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/pkg/value"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/tsdb/chunkenc"
"github.com/prometheus/prometheus/tsdb/chunks"
"github.com/prometheus/prometheus/tsdb/record"
)
// initAppender is a helper to initialize the time bounds of the head
// upon the first sample it receives.
type initAppender struct {
app storage.Appender
head *Head
}
var _ storage.GetRef = &initAppender{}
func (a *initAppender) Append(ref uint64, lset labels.Labels, t int64, v float64) (uint64, error) {
if a.app != nil {
return a.app.Append(ref, lset, t, v)
}
a.head.initTime(t)
a.app = a.head.appender()
return a.app.Append(ref, lset, t, v)
}
func (a *initAppender) AppendExemplar(ref uint64, l labels.Labels, e exemplar.Exemplar) (uint64, error) {
// Check if exemplar storage is enabled.
if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 {
return 0, nil
}
if a.app != nil {
return a.app.AppendExemplar(ref, l, e)
}
// We should never reach here given we would call Append before AppendExemplar
// and we probably want to always base head/WAL min time on sample times.
a.head.initTime(e.Ts)
a.app = a.head.appender()
return a.app.AppendExemplar(ref, l, e)
}
func (a *initAppender) AppendHistogram(ref uint64, l labels.Labels, t int64, h histogram.Histogram) (uint64, error) {
if a.app != nil {
return a.app.AppendHistogram(ref, l, t, h)
}
a.head.initTime(t)
a.app = a.head.appender()
return a.app.AppendHistogram(ref, l, t, h)
}
// initTime initializes a head with the first timestamp. This only needs to be called
// for a completely fresh head with an empty WAL.
func (h *Head) initTime(t int64) {
if !h.minTime.CAS(math.MaxInt64, t) {
return
}
// Ensure that max time is initialized to at least the min time we just set.
// Concurrent appenders may already have set it to a higher value.
h.maxTime.CAS(math.MinInt64, t)
}
func (a *initAppender) GetRef(lset labels.Labels) (uint64, labels.Labels) {
if g, ok := a.app.(storage.GetRef); ok {
return g.GetRef(lset)
}
return 0, nil
}
func (a *initAppender) Commit() error {
if a.app == nil {
a.head.metrics.activeAppenders.Dec()
return nil
}
return a.app.Commit()
}
func (a *initAppender) Rollback() error {
if a.app == nil {
a.head.metrics.activeAppenders.Dec()
return nil
}
return a.app.Rollback()
}
// Appender returns a new Appender on the database.
func (h *Head) Appender(_ context.Context) storage.Appender {
h.metrics.activeAppenders.Inc()
// The head cache might not have a starting point yet. The init appender
// picks up the first appended timestamp as the base.
if h.MinTime() == math.MaxInt64 {
return &initAppender{
head: h,
}
}
return h.appender()
}
func (h *Head) appender() *headAppender {
appendID, cleanupAppendIDsBelow := h.iso.newAppendID()
// Allocate the exemplars buffer only if exemplars are enabled.
var exemplarsBuf []exemplarWithSeriesRef
if h.opts.EnableExemplarStorage {
exemplarsBuf = h.getExemplarBuffer()
}
return &headAppender{
head: h,
minValidTime: h.appendableMinValidTime(),
mint: math.MaxInt64,
maxt: math.MinInt64,
samples: h.getAppendBuffer(),
sampleSeries: h.getSeriesBuffer(),
exemplars: exemplarsBuf,
appendID: appendID,
cleanupAppendIDsBelow: cleanupAppendIDsBelow,
}
}
func (h *Head) appendableMinValidTime() int64 {
// Setting the minimum valid time to whichever is greater, the head min valid time or the compaction window,
// ensures that no samples will be added within the compaction window to avoid races.
return max(h.minValidTime.Load(), h.MaxTime()-h.chunkRange.Load()/2)
}
func max(a, b int64) int64 {
if a > b {
return a
}
return b
}
func (h *Head) getAppendBuffer() []record.RefSample {
b := h.appendPool.Get()
if b == nil {
return make([]record.RefSample, 0, 512)
}
return b.([]record.RefSample)
}
func (h *Head) putAppendBuffer(b []record.RefSample) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.appendPool.Put(b[:0])
}
func (h *Head) getExemplarBuffer() []exemplarWithSeriesRef {
b := h.exemplarsPool.Get()
if b == nil {
return make([]exemplarWithSeriesRef, 0, 512)
}
return b.([]exemplarWithSeriesRef)
}
func (h *Head) putExemplarBuffer(b []exemplarWithSeriesRef) {
if b == nil {
return
}
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.exemplarsPool.Put(b[:0])
}
func (h *Head) getSeriesBuffer() []*memSeries {
b := h.seriesPool.Get()
if b == nil {
return make([]*memSeries, 0, 512)
}
return b.([]*memSeries)
}
func (h *Head) putSeriesBuffer(b []*memSeries) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.seriesPool.Put(b[:0])
}
func (h *Head) getBytesBuffer() []byte {
b := h.bytesPool.Get()
if b == nil {
return make([]byte, 0, 1024)
}
return b.([]byte)
}
func (h *Head) putBytesBuffer(b []byte) {
//nolint:staticcheck // Ignore SA6002 safe to ignore and actually fixing it has some performance penalty.
h.bytesPool.Put(b[:0])
}
type exemplarWithSeriesRef struct {
ref uint64
exemplar exemplar.Exemplar
}
type headAppender struct {
head *Head
minValidTime int64 // No samples below this timestamp are allowed.
mint, maxt int64
series []record.RefSeries
samples []record.RefSample
exemplars []exemplarWithSeriesRef
sampleSeries []*memSeries
histograms []record.RefHistogram
histogramSeries []*memSeries
appendID, cleanupAppendIDsBelow uint64
closed bool
}
func (a *headAppender) Append(ref uint64, lset labels.Labels, t int64, v float64) (uint64, error) {
if t < a.minValidTime {
a.head.metrics.outOfBoundSamples.Inc()
return 0, storage.ErrOutOfBounds
}
s := a.head.series.getByID(ref)
if s == nil {
// Ensure no empty labels have gotten through.
lset = lset.WithoutEmpty()
if len(lset) == 0 {
return 0, errors.Wrap(ErrInvalidSample, "empty labelset")
}
if l, dup := lset.HasDuplicateLabelNames(); dup {
return 0, errors.Wrap(ErrInvalidSample, fmt.Sprintf(`label name "%s" is not unique`, l))
}
var created bool
var err error
s, created, err = a.head.getOrCreate(lset.Hash(), lset)
if err != nil {
return 0, err
}
if created {
a.series = append(a.series, record.RefSeries{
Ref: s.ref,
Labels: lset,
})
}
}
if value.IsStaleNaN(v) && s.histogramSeries {
return a.AppendHistogram(ref, lset, t, histogram.Histogram{Sum: v})
}
s.Lock()
if err := s.appendable(t, v); err != nil {
s.Unlock()
if err == storage.ErrOutOfOrderSample {
a.head.metrics.outOfOrderSamples.Inc()
}
return 0, err
}
s.pendingCommit = true
s.Unlock()
if t < a.mint {
a.mint = t
}
if t > a.maxt {
a.maxt = t
}
a.samples = append(a.samples, record.RefSample{
Ref: s.ref,
T: t,
V: v,
})
a.sampleSeries = append(a.sampleSeries, s)
return s.ref, nil
}
// appendable checks whether the given sample is valid for appending to the series.
func (s *memSeries) appendable(t int64, v float64) error {
c := s.head()
if c == nil {
return nil
}
if t > c.maxTime {
return nil
}
if t < c.maxTime {
return storage.ErrOutOfOrderSample
}
// We are allowing exact duplicates as we can encounter them in valid cases
// like federation and erroring out at that time would be extremely noisy.
if math.Float64bits(s.sampleBuf[3].v) != math.Float64bits(v) {
return storage.ErrDuplicateSampleForTimestamp
}
return nil
}
// appendableHistogram checks whether the given sample is valid for appending to the series.
func (s *memSeries) appendableHistogram(t int64, sh histogram.Histogram) error {
c := s.head()
if c == nil {
return nil
}
if t > c.maxTime {
return nil
}
if t < c.maxTime {
return storage.ErrOutOfOrderSample
}
// TODO: do it for histogram.
// We are allowing exact duplicates as we can encounter them in valid cases
// like federation and erroring out at that time would be extremely noisy.
//if math.Float64bits(s.sampleBuf[3].v) != math.Float64bits(v) {
// return storage.ErrDuplicateSampleForTimestamp
//}
return nil
}
// AppendExemplar for headAppender assumes the series ref already exists, and so it doesn't
// use getOrCreate or make any of the lset sanity checks that Append does.
func (a *headAppender) AppendExemplar(ref uint64, _ labels.Labels, e exemplar.Exemplar) (uint64, error) {
// Check if exemplar storage is enabled.
if !a.head.opts.EnableExemplarStorage || a.head.opts.MaxExemplars.Load() <= 0 {
return 0, nil
}
s := a.head.series.getByID(ref)
if s == nil {
return 0, fmt.Errorf("unknown series ref. when trying to add exemplar: %d", ref)
}
// Ensure no empty labels have gotten through.
e.Labels = e.Labels.WithoutEmpty()
err := a.head.exemplars.ValidateExemplar(s.lset, e)
if err != nil {
if err == storage.ErrDuplicateExemplar || err == storage.ErrExemplarsDisabled {
// Duplicate, don't return an error but don't accept the exemplar.
return 0, nil
}
return 0, err
}
a.exemplars = append(a.exemplars, exemplarWithSeriesRef{ref, e})
return s.ref, nil
}
func (a *headAppender) AppendHistogram(ref uint64, lset labels.Labels, t int64, h histogram.Histogram) (uint64, error) {
if t < a.minValidTime {
a.head.metrics.outOfBoundSamples.Inc()
return 0, storage.ErrOutOfBounds
}
s := a.head.series.getByID(ref)
if s == nil {
// Ensure no empty labels have gotten through.
lset = lset.WithoutEmpty()
if len(lset) == 0 {
return 0, errors.Wrap(ErrInvalidSample, "empty labelset")
}
if l, dup := lset.HasDuplicateLabelNames(); dup {
return 0, errors.Wrap(ErrInvalidSample, fmt.Sprintf(`label name "%s" is not unique`, l))
}
var created bool
var err error
s, created, err = a.head.getOrCreate(lset.Hash(), lset)
if err != nil {
return 0, err
}
s.histogramSeries = true
if created {
a.head.metrics.histogramSeries.Inc()
a.series = append(a.series, record.RefSeries{
Ref: s.ref,
Labels: lset,
})
}
}
s.Lock()
if err := s.appendableHistogram(t, h); err != nil {
s.Unlock()
if err == storage.ErrOutOfOrderSample {
a.head.metrics.outOfOrderSamples.Inc()
}
return 0, err
}
s.pendingCommit = true
s.Unlock()
if t < a.mint {
a.mint = t
}
if t > a.maxt {
a.maxt = t
}
a.histograms = append(a.histograms, record.RefHistogram{
Ref: s.ref,
T: t,
H: h,
})
a.histogramSeries = append(a.histogramSeries, s)
return s.ref, nil
}
var _ storage.GetRef = &headAppender{}
func (a *headAppender) GetRef(lset labels.Labels) (uint64, labels.Labels) {
s := a.head.series.getByHash(lset.Hash(), lset)
if s == nil {
return 0, nil
}
// returned labels must be suitable to pass to Append()
return s.ref, s.lset
}
func (a *headAppender) log() error {
if a.head.wal == nil {
return nil
}
buf := a.head.getBytesBuffer()
defer func() { a.head.putBytesBuffer(buf) }()
var rec []byte
var enc record.Encoder
if len(a.series) > 0 {
rec = enc.Series(a.series, buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log series")
}
}
if len(a.samples) > 0 {
rec = enc.Samples(a.samples, buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log samples")
}
}
if len(a.exemplars) > 0 {
rec = enc.Exemplars(exemplarsForEncoding(a.exemplars), buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log exemplars")
}
}
if len(a.histograms) > 0 {
rec = enc.Histograms(a.histograms, buf)
buf = rec[:0]
if err := a.head.wal.Log(rec); err != nil {
return errors.Wrap(err, "log histograms")
}
}
return nil
}
func exemplarsForEncoding(es []exemplarWithSeriesRef) []record.RefExemplar {
ret := make([]record.RefExemplar, 0, len(es))
for _, e := range es {
ret = append(ret, record.RefExemplar{
Ref: e.ref,
T: e.exemplar.Ts,
V: e.exemplar.Value,
Labels: e.exemplar.Labels,
})
}
return ret
}
func (a *headAppender) Commit() (err error) {
if a.closed {
return ErrAppenderClosed
}
defer func() { a.closed = true }()
if err := a.log(); err != nil {
_ = a.Rollback() // Most likely the same error will happen again.
return errors.Wrap(err, "write to WAL")
}
// No errors logging to WAL, so pass the exemplars along to the in memory storage.
for _, e := range a.exemplars {
s := a.head.series.getByID(e.ref)
// We don't instrument exemplar appends here, all is instrumented by storage.
if err := a.head.exemplars.AddExemplar(s.lset, e.exemplar); err != nil {
if err == storage.ErrOutOfOrderExemplar {
continue
}
level.Debug(a.head.logger).Log("msg", "Unknown error while adding exemplar", "err", err)
}
}
defer a.head.metrics.activeAppenders.Dec()
defer a.head.putAppendBuffer(a.samples)
defer a.head.putSeriesBuffer(a.sampleSeries)
defer a.head.putExemplarBuffer(a.exemplars)
defer a.head.iso.closeAppend(a.appendID)
total := len(a.samples)
var series *memSeries
for i, s := range a.samples {
series = a.sampleSeries[i]
series.Lock()
ok, chunkCreated := series.append(s.T, s.V, a.appendID, a.head.chunkDiskMapper)
series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow)
series.pendingCommit = false
series.Unlock()
if !ok {
total--
a.head.metrics.outOfOrderSamples.Inc()
}
if chunkCreated {
a.head.metrics.chunks.Inc()
a.head.metrics.chunksCreated.Inc()
}
}
total += len(a.histograms) // TODO: different metric?
for i, s := range a.histograms {
series = a.histogramSeries[i]
series.Lock()
ok, chunkCreated := series.appendHistogram(s.T, s.H, a.appendID, a.head.chunkDiskMapper)
series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow)
series.pendingCommit = false
series.Unlock()
if ok {
a.head.metrics.histogramSamplesTotal.Inc()
} else {
total--
a.head.metrics.outOfOrderSamples.Inc()
}
if chunkCreated {
a.head.metrics.chunks.Inc()
a.head.metrics.chunksCreated.Inc()
}
}
a.head.metrics.samplesAppended.Add(float64(total))
a.head.updateMinMaxTime(a.mint, a.maxt)
return nil
}
// append adds the sample (t, v) to the series. The caller also has to provide
// the appendID for isolation. (The appendID can be zero, which results in no
// isolation for this append.)
// It is unsafe to call this concurrently with s.iterator(...) without holding the series lock.
func (s *memSeries) append(t int64, v float64, appendID uint64, chunkDiskMapper *chunks.ChunkDiskMapper) (sampleInOrder, chunkCreated bool) {
c, sampleInOrder, chunkCreated := s.appendPreprocessor(t, chunkenc.EncXOR, chunkDiskMapper)
if !sampleInOrder {
return sampleInOrder, chunkCreated
}
s.app.Append(t, v)
c.maxTime = t
s.sampleBuf[0] = s.sampleBuf[1]
s.sampleBuf[1] = s.sampleBuf[2]
s.sampleBuf[2] = s.sampleBuf[3]
s.sampleBuf[3] = sample{t: t, v: v}
if appendID > 0 {
s.txs.add(appendID)
}
return true, chunkCreated
}
// appendHistogram adds the histogram.
// It is unsafe to call this concurrently with s.iterator(...) without holding the series lock.
func (s *memSeries) appendHistogram(t int64, h histogram.Histogram, appendID uint64, chunkDiskMapper *chunks.ChunkDiskMapper) (sampleInOrder, chunkCreated bool) {
// Head controls the execution of recoding, so that we own the proper chunk reference afterwards.
// We check for Appendable before appendPreprocessor because in case it ends up creating a new chunk,
// we need to know if there was also a counter reset or not to set the meta properly.
app, _ := s.app.(*chunkenc.HistogramAppender)
var (
positiveInterjections, negativeInterjections []chunkenc.Interjection
okToAppend, counterReset bool
)
if app != nil {
positiveInterjections, negativeInterjections, okToAppend, counterReset = app.Appendable(h)
}
c, sampleInOrder, chunkCreated := s.appendPreprocessor(t, chunkenc.EncHistogram, chunkDiskMapper)
if !sampleInOrder {
return sampleInOrder, chunkCreated
}
if !chunkCreated {
// We have 3 cases here
// - !okToAppend -> We need to cut a new chunk.
// - okToAppend but we have interjections -> Existing chunk needs recoding before we can append our histogram.
// - okToAppend and no interjections -> Chunk is ready to support our histogram.
if !okToAppend || counterReset {
c = s.cutNewHeadChunk(t, chunkenc.EncHistogram, chunkDiskMapper)
chunkCreated = true
} else if len(positiveInterjections) > 0 || len(negativeInterjections) > 0 {
// New buckets have appeared. We need to recode all
// prior histogram samples within the chunk before we
// can process this one.
chunk, app := app.Recode(positiveInterjections, negativeInterjections, h.PositiveSpans, h.NegativeSpans)
s.headChunk = &memChunk{
minTime: s.headChunk.minTime,
maxTime: s.headChunk.maxTime,
chunk: chunk,
}
s.app = app
}
}
if chunkCreated {
hc := s.headChunk.chunk.(*chunkenc.HistogramChunk)
header := chunkenc.UnknownCounterReset
if counterReset {
header = chunkenc.CounterReset
} else if okToAppend {
header = chunkenc.NotCounterReset
}
hc.SetCounterResetHeader(header)
}
s.app.AppendHistogram(t, h)
s.histogramSeries = true
c.maxTime = t
s.histogramBuf[0] = s.histogramBuf[1]
s.histogramBuf[1] = s.histogramBuf[2]
s.histogramBuf[2] = s.histogramBuf[3]
s.histogramBuf[3] = histogramSample{t: t, h: h}
if appendID > 0 {
s.txs.add(appendID)
}
return true, chunkCreated
}
// appendPreprocessor takes care of cutting new chunks and m-mapping old chunks.
// It is unsafe to call this concurrently with s.iterator(...) without holding the series lock.
// This should be called only when appending data.
func (s *memSeries) appendPreprocessor(t int64, e chunkenc.Encoding, chunkDiskMapper *chunks.ChunkDiskMapper) (c *memChunk, sampleInOrder, chunkCreated bool) {
// Based on Gorilla white papers this offers near-optimal compression ratio
// so anything bigger that this has diminishing returns and increases
// the time range within which we have to decompress all samples.
const samplesPerChunk = 120
c = s.head()
if c == nil {
if len(s.mmappedChunks) > 0 && s.mmappedChunks[len(s.mmappedChunks)-1].maxTime >= t {
// Out of order sample. Sample timestamp is already in the mmaped chunks, so ignore it.
return c, false, false
}
// There is no chunk in this series yet, create the first chunk for the sample.
c = s.cutNewHeadChunk(t, e, chunkDiskMapper)
chunkCreated = true
}
// Out of order sample.
if c.maxTime >= t {
return c, false, chunkCreated
}
numSamples := c.chunk.NumSamples()
if numSamples == 0 {
// It could be the new chunk created after reading the chunk snapshot,
// hence we fix the minTime of the chunk here.
c.minTime = t
s.nextAt = rangeForTimestamp(c.minTime, s.chunkRange)
}
// If we reach 25% of a chunk's desired sample count, predict an end time
// for this chunk that will try to make samples equally distributed within
// the remaining chunks in the current chunk range.
// At latest it must happen at the timestamp set when the chunk was cut.
if numSamples == samplesPerChunk/4 {
s.nextAt = computeChunkEndTime(c.minTime, c.maxTime, s.nextAt)
}
if t >= s.nextAt {
c = s.cutNewHeadChunk(t, e, chunkDiskMapper)
chunkCreated = true
}
return c, true, chunkCreated
}
// computeChunkEndTime estimates the end timestamp based the beginning of a
// chunk, its current timestamp and the upper bound up to which we insert data.
// It assumes that the time range is 1/4 full.
// Assuming that the samples will keep arriving at the same rate, it will make the
// remaining n chunks within this chunk range (before max) equally sized.
func computeChunkEndTime(start, cur, max int64) int64 {
n := (max - start) / ((cur - start + 1) * 4)
if n <= 1 {
return max
}
return start + (max-start)/n
}
func (s *memSeries) cutNewHeadChunk(mint int64, e chunkenc.Encoding, chunkDiskMapper *chunks.ChunkDiskMapper) *memChunk {
s.mmapCurrentHeadChunk(chunkDiskMapper)
s.headChunk = &memChunk{
minTime: mint,
maxTime: math.MinInt64,
}
if chunkenc.IsValidEncoding(e) {
var err error
s.headChunk.chunk, err = chunkenc.NewEmptyChunk(e)
if err != nil {
panic(err) // This should never happen.
}
} else {
s.headChunk.chunk = chunkenc.NewXORChunk()
}
// Set upper bound on when the next chunk must be started. An earlier timestamp
// may be chosen dynamically at a later point.
s.nextAt = rangeForTimestamp(mint, s.chunkRange)
app, err := s.headChunk.chunk.Appender()
if err != nil {
panic(err)
}
s.app = app
return s.headChunk
}
func (s *memSeries) mmapCurrentHeadChunk(chunkDiskMapper *chunks.ChunkDiskMapper) {
if s.headChunk == nil || s.headChunk.chunk.NumSamples() == 0 {
// There is no head chunk, so nothing to m-map here.
return
}
chunkRef, err := chunkDiskMapper.WriteChunk(s.ref, s.headChunk.minTime, s.headChunk.maxTime, s.headChunk.chunk)
if err != nil {
if err != chunks.ErrChunkDiskMapperClosed {
panic(err)
}
}
s.mmappedChunks = append(s.mmappedChunks, &mmappedChunk{
ref: chunkRef,
numSamples: uint16(s.headChunk.chunk.NumSamples()),
minTime: s.headChunk.minTime,
maxTime: s.headChunk.maxTime,
})
}
func (a *headAppender) Rollback() (err error) {
if a.closed {
return ErrAppenderClosed
}
defer func() { a.closed = true }()
defer a.head.metrics.activeAppenders.Dec()
defer a.head.iso.closeAppend(a.appendID)
defer a.head.putSeriesBuffer(a.sampleSeries)
var series *memSeries
for i := range a.samples {
series = a.sampleSeries[i]
series.Lock()
series.cleanupAppendIDsBelow(a.cleanupAppendIDsBelow)
series.pendingCommit = false
series.Unlock()
}
a.head.putAppendBuffer(a.samples)
a.head.putExemplarBuffer(a.exemplars)
a.samples = nil
a.exemplars = nil
// Series are created in the head memory regardless of rollback. Thus we have
// to log them to the WAL in any case.
return a.log()
}