mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-16 10:34:06 -08:00
e1c77cdfd4
Make queue manager configurable.
479 lines
13 KiB
Go
479 lines
13 KiB
Go
// Copyright 2013 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package remote
|
|
|
|
import (
|
|
"math"
|
|
"sync"
|
|
"time"
|
|
|
|
"golang.org/x/time/rate"
|
|
|
|
"github.com/prometheus/client_golang/prometheus"
|
|
"github.com/prometheus/common/log"
|
|
"github.com/prometheus/common/model"
|
|
"github.com/prometheus/prometheus/config"
|
|
"github.com/prometheus/prometheus/relabel"
|
|
)
|
|
|
|
// String constants for instrumentation.
|
|
const (
|
|
namespace = "prometheus"
|
|
subsystem = "remote_storage"
|
|
queue = "queue"
|
|
|
|
// We track samples in/out and how long pushes take using an Exponentially
|
|
// Weighted Moving Average.
|
|
ewmaWeight = 0.2
|
|
shardUpdateDuration = 10 * time.Second
|
|
|
|
// Allow 30% too many shards before scaling down.
|
|
shardToleranceFraction = 0.3
|
|
|
|
// Limit to 1 log event every 10s
|
|
logRateLimit = 0.1
|
|
logBurst = 10
|
|
)
|
|
|
|
var (
|
|
succeededSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "succeeded_samples_total",
|
|
Help: "Total number of samples successfully sent to remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
failedSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "failed_samples_total",
|
|
Help: "Total number of samples which failed on send to remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
droppedSamplesTotal = prometheus.NewCounterVec(
|
|
prometheus.CounterOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "dropped_samples_total",
|
|
Help: "Total number of samples which were dropped due to the queue being full.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
sentBatchDuration = prometheus.NewHistogramVec(
|
|
prometheus.HistogramOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "sent_batch_duration_seconds",
|
|
Help: "Duration of sample batch send calls to the remote storage.",
|
|
Buckets: prometheus.DefBuckets,
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queueLength = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queue_length",
|
|
Help: "The number of processed samples queued to be sent to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
queueCapacity = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "queue_capacity",
|
|
Help: "The capacity of the queue of samples to be sent to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
numShards = prometheus.NewGaugeVec(
|
|
prometheus.GaugeOpts{
|
|
Namespace: namespace,
|
|
Subsystem: subsystem,
|
|
Name: "shards",
|
|
Help: "The number of shards used for parallel sending to the remote storage.",
|
|
},
|
|
[]string{queue},
|
|
)
|
|
)
|
|
|
|
func init() {
|
|
prometheus.MustRegister(succeededSamplesTotal)
|
|
prometheus.MustRegister(failedSamplesTotal)
|
|
prometheus.MustRegister(droppedSamplesTotal)
|
|
prometheus.MustRegister(sentBatchDuration)
|
|
prometheus.MustRegister(queueLength)
|
|
prometheus.MustRegister(queueCapacity)
|
|
prometheus.MustRegister(numShards)
|
|
}
|
|
|
|
// StorageClient defines an interface for sending a batch of samples to an
|
|
// external timeseries database.
|
|
type StorageClient interface {
|
|
// Store stores the given samples in the remote storage.
|
|
Store(model.Samples) error
|
|
// Name identifies the remote storage implementation.
|
|
Name() string
|
|
}
|
|
|
|
// QueueManager manages a queue of samples to be sent to the Storage
|
|
// indicated by the provided StorageClient.
|
|
type QueueManager struct {
|
|
cfg config.QueueConfig
|
|
externalLabels model.LabelSet
|
|
relabelConfigs []*config.RelabelConfig
|
|
client StorageClient
|
|
queueName string
|
|
logLimiter *rate.Limiter
|
|
|
|
shardsMtx sync.Mutex
|
|
shards *shards
|
|
numShards int
|
|
reshardChan chan int
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
|
|
samplesIn, samplesOut, samplesOutDuration *ewmaRate
|
|
integralAccumulator float64
|
|
}
|
|
|
|
// NewQueueManager builds a new QueueManager.
|
|
func NewQueueManager(cfg config.QueueConfig, externalLabels model.LabelSet, relabelConfigs []*config.RelabelConfig, client StorageClient) *QueueManager {
|
|
t := &QueueManager{
|
|
cfg: cfg,
|
|
externalLabels: externalLabels,
|
|
relabelConfigs: relabelConfigs,
|
|
client: client,
|
|
queueName: client.Name(),
|
|
|
|
logLimiter: rate.NewLimiter(logRateLimit, logBurst),
|
|
numShards: 1,
|
|
reshardChan: make(chan int),
|
|
quit: make(chan struct{}),
|
|
|
|
samplesIn: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
|
|
}
|
|
t.shards = t.newShards(t.numShards)
|
|
numShards.WithLabelValues(t.queueName).Set(float64(t.numShards))
|
|
queueCapacity.WithLabelValues(t.queueName).Set(float64(t.cfg.Capacity))
|
|
|
|
return t
|
|
}
|
|
|
|
// Append queues a sample to be sent to the remote storage. It drops the
|
|
// sample on the floor if the queue is full.
|
|
// Always returns nil.
|
|
func (t *QueueManager) Append(s *model.Sample) error {
|
|
var snew model.Sample
|
|
snew = *s
|
|
snew.Metric = s.Metric.Clone()
|
|
|
|
for ln, lv := range t.externalLabels {
|
|
if _, ok := s.Metric[ln]; !ok {
|
|
snew.Metric[ln] = lv
|
|
}
|
|
}
|
|
|
|
snew.Metric = model.Metric(
|
|
relabel.Process(model.LabelSet(snew.Metric), t.relabelConfigs...))
|
|
|
|
if snew.Metric == nil {
|
|
return nil
|
|
}
|
|
|
|
t.shardsMtx.Lock()
|
|
enqueued := t.shards.enqueue(&snew)
|
|
t.shardsMtx.Unlock()
|
|
|
|
if enqueued {
|
|
queueLength.WithLabelValues(t.queueName).Inc()
|
|
} else {
|
|
droppedSamplesTotal.WithLabelValues(t.queueName).Inc()
|
|
if t.logLimiter.Allow() {
|
|
log.Warn("Remote storage queue full, discarding sample. Multiple subsequent messages of this kind may be suppressed.")
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// NeedsThrottling implements storage.SampleAppender. It will always return
|
|
// false as a remote storage drops samples on the floor if backlogging instead
|
|
// of asking for throttling.
|
|
func (*QueueManager) NeedsThrottling() bool {
|
|
return false
|
|
}
|
|
|
|
// Start the queue manager sending samples to the remote storage.
|
|
// Does not block.
|
|
func (t *QueueManager) Start() {
|
|
t.wg.Add(2)
|
|
go t.updateShardsLoop()
|
|
go t.reshardLoop()
|
|
|
|
t.shardsMtx.Lock()
|
|
defer t.shardsMtx.Unlock()
|
|
t.shards.start()
|
|
}
|
|
|
|
// Stop stops sending samples to the remote storage and waits for pending
|
|
// sends to complete.
|
|
func (t *QueueManager) Stop() {
|
|
log.Infof("Stopping remote storage...")
|
|
close(t.quit)
|
|
t.wg.Wait()
|
|
|
|
t.shardsMtx.Lock()
|
|
defer t.shardsMtx.Unlock()
|
|
t.shards.stop()
|
|
log.Info("Remote storage stopped.")
|
|
}
|
|
|
|
func (t *QueueManager) updateShardsLoop() {
|
|
defer t.wg.Done()
|
|
|
|
ticker := time.Tick(shardUpdateDuration)
|
|
for {
|
|
select {
|
|
case <-ticker:
|
|
t.calculateDesiredShards()
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) calculateDesiredShards() {
|
|
t.samplesIn.tick()
|
|
t.samplesOut.tick()
|
|
t.samplesOutDuration.tick()
|
|
|
|
// We use the number of incoming samples as a prediction of how much work we
|
|
// will need to do next iteration. We add to this any pending samples
|
|
// (received - sent) so we can catch up with any backlog. We use the average
|
|
// outgoing batch latency to work out how many shards we need.
|
|
var (
|
|
samplesIn = t.samplesIn.rate()
|
|
samplesOut = t.samplesOut.rate()
|
|
samplesPending = samplesIn - samplesOut
|
|
samplesOutDuration = t.samplesOutDuration.rate()
|
|
)
|
|
|
|
// We use an integral accumulator, like in a PID, to help dampen oscillation.
|
|
t.integralAccumulator = t.integralAccumulator + (samplesPending * 0.1)
|
|
|
|
if samplesOut <= 0 {
|
|
return
|
|
}
|
|
|
|
var (
|
|
timePerSample = samplesOutDuration / samplesOut
|
|
desiredShards = (timePerSample * (samplesIn + samplesPending + t.integralAccumulator)) / float64(time.Second)
|
|
)
|
|
log.Debugf("QueueManager.calculateDesiredShards samplesIn=%f, samplesOut=%f, samplesPending=%f, desiredShards=%f",
|
|
samplesIn, samplesOut, samplesPending, desiredShards)
|
|
|
|
// Changes in the number of shards must be greater than shardToleranceFraction.
|
|
var (
|
|
lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
|
|
upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
|
|
)
|
|
log.Debugf("QueueManager.updateShardsLoop %f <= %f <= %f", lowerBound, desiredShards, upperBound)
|
|
if lowerBound <= desiredShards && desiredShards <= upperBound {
|
|
return
|
|
}
|
|
|
|
numShards := int(math.Ceil(desiredShards))
|
|
if numShards > t.cfg.MaxShards {
|
|
numShards = t.cfg.MaxShards
|
|
} else if numShards < 1 {
|
|
numShards = 1
|
|
}
|
|
if numShards == t.numShards {
|
|
return
|
|
}
|
|
|
|
// Resharding can take some time, and we want this loop
|
|
// to stay close to shardUpdateDuration.
|
|
select {
|
|
case t.reshardChan <- numShards:
|
|
log.Infof("Remote storage resharding from %d to %d shards.", t.numShards, numShards)
|
|
t.numShards = numShards
|
|
default:
|
|
log.Infof("Currently resharding, skipping.")
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) reshardLoop() {
|
|
defer t.wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case numShards := <-t.reshardChan:
|
|
t.reshard(numShards)
|
|
case <-t.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
func (t *QueueManager) reshard(n int) {
|
|
numShards.WithLabelValues(t.queueName).Set(float64(n))
|
|
|
|
t.shardsMtx.Lock()
|
|
newShards := t.newShards(n)
|
|
oldShards := t.shards
|
|
t.shards = newShards
|
|
t.shardsMtx.Unlock()
|
|
|
|
oldShards.stop()
|
|
|
|
// We start the newShards after we have stopped (the therefore completely
|
|
// flushed) the oldShards, to guarantee we only every deliver samples in
|
|
// order.
|
|
newShards.start()
|
|
}
|
|
|
|
type shards struct {
|
|
qm *QueueManager
|
|
queues []chan *model.Sample
|
|
done chan struct{}
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
func (t *QueueManager) newShards(numShards int) *shards {
|
|
queues := make([]chan *model.Sample, numShards)
|
|
for i := 0; i < numShards; i++ {
|
|
queues[i] = make(chan *model.Sample, t.cfg.Capacity)
|
|
}
|
|
s := &shards{
|
|
qm: t,
|
|
queues: queues,
|
|
done: make(chan struct{}),
|
|
}
|
|
s.wg.Add(numShards)
|
|
return s
|
|
}
|
|
|
|
func (s *shards) len() int {
|
|
return len(s.queues)
|
|
}
|
|
|
|
func (s *shards) start() {
|
|
for i := 0; i < len(s.queues); i++ {
|
|
go s.runShard(i)
|
|
}
|
|
}
|
|
|
|
func (s *shards) stop() {
|
|
for _, shard := range s.queues {
|
|
close(shard)
|
|
}
|
|
s.wg.Wait()
|
|
}
|
|
|
|
func (s *shards) enqueue(sample *model.Sample) bool {
|
|
s.qm.samplesIn.incr(1)
|
|
|
|
fp := sample.Metric.FastFingerprint()
|
|
shard := uint64(fp) % uint64(len(s.queues))
|
|
|
|
select {
|
|
case s.queues[shard] <- sample:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
func (s *shards) runShard(i int) {
|
|
defer s.wg.Done()
|
|
queue := s.queues[i]
|
|
|
|
// Send batches of at most MaxSamplesPerSend samples to the remote storage.
|
|
// If we have fewer samples than that, flush them out after a deadline
|
|
// anyways.
|
|
pendingSamples := model.Samples{}
|
|
|
|
for {
|
|
select {
|
|
case sample, ok := <-queue:
|
|
if !ok {
|
|
if len(pendingSamples) > 0 {
|
|
log.Debugf("Flushing %d samples to remote storage...", len(pendingSamples))
|
|
s.sendSamples(pendingSamples)
|
|
log.Debugf("Done flushing.")
|
|
}
|
|
return
|
|
}
|
|
|
|
queueLength.WithLabelValues(s.qm.queueName).Dec()
|
|
pendingSamples = append(pendingSamples, sample)
|
|
|
|
for len(pendingSamples) >= s.qm.cfg.MaxSamplesPerSend {
|
|
s.sendSamples(pendingSamples[:s.qm.cfg.MaxSamplesPerSend])
|
|
pendingSamples = pendingSamples[s.qm.cfg.MaxSamplesPerSend:]
|
|
}
|
|
case <-time.After(s.qm.cfg.BatchSendDeadline):
|
|
if len(pendingSamples) > 0 {
|
|
s.sendSamples(pendingSamples)
|
|
pendingSamples = pendingSamples[:0]
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func (s *shards) sendSamples(samples model.Samples) {
|
|
begin := time.Now()
|
|
s.sendSamplesWithBackoff(samples)
|
|
|
|
// These counters are used to calculate the dynamic sharding, and as such
|
|
// should be maintained irrespective of success or failure.
|
|
s.qm.samplesOut.incr(int64(len(samples)))
|
|
s.qm.samplesOutDuration.incr(int64(time.Since(begin)))
|
|
}
|
|
|
|
// sendSamples to the remote storage with backoff for recoverable errors.
|
|
func (s *shards) sendSamplesWithBackoff(samples model.Samples) {
|
|
backoff := s.qm.cfg.MinBackoff
|
|
for retries := s.qm.cfg.MaxRetries; retries > 0; retries-- {
|
|
begin := time.Now()
|
|
err := s.qm.client.Store(samples)
|
|
|
|
sentBatchDuration.WithLabelValues(s.qm.queueName).Observe(time.Since(begin).Seconds())
|
|
if err == nil {
|
|
succeededSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
|
return
|
|
}
|
|
|
|
log.Warnf("Error sending %d samples to remote storage: %s", len(samples), err)
|
|
if _, ok := err.(recoverableError); !ok {
|
|
break
|
|
}
|
|
time.Sleep(backoff)
|
|
backoff = backoff * 2
|
|
if backoff > s.qm.cfg.MaxBackoff {
|
|
backoff = s.qm.cfg.MaxBackoff
|
|
}
|
|
}
|
|
|
|
failedSamplesTotal.WithLabelValues(s.qm.queueName).Add(float64(len(samples)))
|
|
}
|