prometheus/promql/functions.go
Brian Brazil f08abdb48b promql: Add irate() function
irate is a rate function that only looks at the most
recent two data points, and calucaltes a per-second value
from that. This produces much more granular graphs for
fast moving data, and works sanely across many scrape intervals.

It doesn't do so well for slowly moving data.
2015-10-09 21:44:35 +01:00

961 lines
26 KiB
Go

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"container/heap"
"math"
"regexp"
"sort"
"strconv"
"time"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/storage/metric"
)
// Function represents a function of the expression language and is
// used by function nodes.
type Function struct {
Name string
ArgTypes []model.ValueType
OptionalArgs int
ReturnType model.ValueType
Call func(ev *evaluator, args Expressions) model.Value
}
// === time() model.SampleValue ===
func funcTime(ev *evaluator, args Expressions) model.Value {
return &model.Scalar{
Value: model.SampleValue(ev.Timestamp.Unix()),
Timestamp: ev.Timestamp,
}
}
// === delta(matrix model.ValMatrix, isCounter=0 model.ValScalar) Vector ===
func funcDelta(ev *evaluator, args Expressions) model.Value {
isCounter := len(args) >= 2 && ev.evalInt(args[1]) > 0
resultVector := vector{}
// If we treat these metrics as counters, we need to fetch all values
// in the interval to find breaks in the timeseries' monotonicity.
// I.e. if a counter resets, we want to ignore that reset.
var matrixValue matrix
if isCounter {
matrixValue = ev.evalMatrix(args[0])
} else {
matrixValue = ev.evalMatrixBounds(args[0])
}
for _, samples := range matrixValue {
// No sense in trying to compute a delta without at least two points. Drop
// this vector element.
if len(samples.Values) < 2 {
continue
}
var (
counterCorrection model.SampleValue
lastValue model.SampleValue
)
for _, sample := range samples.Values {
currentValue := sample.Value
if isCounter && currentValue < lastValue {
counterCorrection += lastValue - currentValue
}
lastValue = currentValue
}
resultValue := lastValue - samples.Values[0].Value + counterCorrection
targetInterval := args[0].(*MatrixSelector).Range
sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp)
if sampledInterval == 0 {
// Only found one sample. Cannot compute a rate from this.
continue
}
// Correct for differences in target vs. actual delta interval.
//
// Above, we didn't actually calculate the delta for the specified target
// interval, but for an interval between the first and last found samples
// under the target interval, which will usually have less time between
// them. Depending on how many samples are found under a target interval,
// the delta results are distorted and temporal aliasing occurs (ugly
// bumps). This effect is corrected for below.
intervalCorrection := model.SampleValue(targetInterval) / model.SampleValue(sampledInterval)
resultValue *= intervalCorrection
resultSample := &sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: ev.Timestamp,
}
resultSample.Metric.Del(model.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === rate(node model.ValMatrix) Vector ===
func funcRate(ev *evaluator, args Expressions) model.Value {
args = append(args, &NumberLiteral{1})
vector := funcDelta(ev, args).(vector)
// TODO: could be other type of model.ValMatrix in the future (right now, only
// MatrixSelector exists). Find a better way of getting the duration of a
// matrix, such as looking at the samples themselves.
interval := args[0].(*MatrixSelector).Range
for i := range vector {
vector[i].Value /= model.SampleValue(interval / time.Second)
}
return vector
}
// === increase(node model.ValMatrix) Vector ===
func funcIncrease(ev *evaluator, args Expressions) model.Value {
args = append(args, &NumberLiteral{1})
return funcDelta(ev, args).(vector)
}
// === irate(node model.ValMatrix) Vector ===
func funcIrate(ev *evaluator, args Expressions) model.Value {
resultVector := vector{}
for _, samples := range ev.evalMatrix(args[0]) {
// No sense in trying to compute a rate without at least two points. Drop
// this vector element.
if len(samples.Values) < 2 {
continue
}
lastSample := samples.Values[len(samples.Values)-1]
previousSample := samples.Values[len(samples.Values)-2]
var resultValue model.SampleValue
if lastSample.Value < previousSample.Value {
// Counter reset.
resultValue = lastSample.Value
} else {
resultValue = lastSample.Value - previousSample.Value
}
sampledInterval := lastSample.Timestamp.Sub(previousSample.Timestamp)
if sampledInterval == 0 {
// Avoid dividing by 0.
continue
}
// Convert to per-second.
resultValue /= model.SampleValue(sampledInterval.Seconds())
resultSample := &sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: ev.Timestamp,
}
resultSample.Metric.Del(model.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === sort(node model.ValVector) Vector ===
func funcSort(ev *evaluator, args Expressions) model.Value {
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
sort.Sort(byValueSorter)
return vector(byValueSorter)
}
// === sortDesc(node model.ValVector) Vector ===
func funcSortDesc(ev *evaluator, args Expressions) model.Value {
byValueSorter := vectorByValueHeap(ev.evalVector(args[0]))
sort.Sort(sort.Reverse(byValueSorter))
return vector(byValueSorter)
}
// === topk(k model.ValScalar, node model.ValVector) Vector ===
func funcTopk(ev *evaluator, args Expressions) model.Value {
k := ev.evalInt(args[0])
if k < 1 {
return vector{}
}
vec := ev.evalVector(args[1])
topk := make(vectorByValueHeap, 0, k)
for _, el := range vec {
if len(topk) < k || topk[0].Value < el.Value {
if len(topk) == k {
heap.Pop(&topk)
}
heap.Push(&topk, el)
}
}
sort.Sort(sort.Reverse(topk))
return vector(topk)
}
// === bottomk(k model.ValScalar, node model.ValVector) Vector ===
func funcBottomk(ev *evaluator, args Expressions) model.Value {
k := ev.evalInt(args[0])
if k < 1 {
return vector{}
}
vec := ev.evalVector(args[1])
bottomk := make(vectorByValueHeap, 0, k)
bkHeap := reverseHeap{Interface: &bottomk}
for _, el := range vec {
if len(bottomk) < k || bottomk[0].Value > el.Value {
if len(bottomk) == k {
heap.Pop(&bkHeap)
}
heap.Push(&bkHeap, el)
}
}
sort.Sort(bottomk)
return vector(bottomk)
}
// === drop_common_labels(node model.ValVector) Vector ===
func funcDropCommonLabels(ev *evaluator, args Expressions) model.Value {
vec := ev.evalVector(args[0])
if len(vec) < 1 {
return vector{}
}
common := model.LabelSet{}
for k, v := range vec[0].Metric.Metric {
// TODO(julius): Should we also drop common metric names?
if k == model.MetricNameLabel {
continue
}
common[k] = v
}
for _, el := range vec[1:] {
for k, v := range common {
if el.Metric.Metric[k] != v {
// Deletion of map entries while iterating over them is safe.
// From http://golang.org/ref/spec#For_statements:
// "If map entries that have not yet been reached are deleted during
// iteration, the corresponding iteration values will not be produced."
delete(common, k)
}
}
}
for _, el := range vec {
for k := range el.Metric.Metric {
if _, ok := common[k]; ok {
el.Metric.Del(k)
}
}
}
return vec
}
// === round(vector model.ValVector, toNearest=1 Scalar) Vector ===
func funcRound(ev *evaluator, args Expressions) model.Value {
// round returns a number rounded to toNearest.
// Ties are solved by rounding up.
toNearest := float64(1)
if len(args) >= 2 {
toNearest = ev.evalFloat(args[1])
}
// Invert as it seems to cause fewer floating point accuracy issues.
toNearestInverse := 1.0 / toNearest
vec := ev.evalVector(args[0])
for _, el := range vec {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Floor(float64(el.Value)*toNearestInverse+0.5) / toNearestInverse)
}
return vec
}
// === scalar(node model.ValVector) Scalar ===
func funcScalar(ev *evaluator, args Expressions) model.Value {
v := ev.evalVector(args[0])
if len(v) != 1 {
return &model.Scalar{
Value: model.SampleValue(math.NaN()),
Timestamp: ev.Timestamp,
}
}
return &model.Scalar{
Value: model.SampleValue(v[0].Value),
Timestamp: ev.Timestamp,
}
}
// === count_scalar(vector model.ValVector) model.SampleValue ===
func funcCountScalar(ev *evaluator, args Expressions) model.Value {
return &model.Scalar{
Value: model.SampleValue(len(ev.evalVector(args[0]))),
Timestamp: ev.Timestamp,
}
}
func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]model.SamplePair) model.SampleValue) model.Value {
mat := ev.evalMatrix(args[0])
resultVector := vector{}
for _, el := range mat {
if len(el.Values) == 0 {
continue
}
el.Metric.Del(model.MetricNameLabel)
resultVector = append(resultVector, &sample{
Metric: el.Metric,
Value: aggrFn(el.Values),
Timestamp: ev.Timestamp,
})
}
return resultVector
}
// === avg_over_time(matrix model.ValMatrix) Vector ===
func funcAvgOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
var sum model.SampleValue
for _, v := range values {
sum += v.Value
}
return sum / model.SampleValue(len(values))
})
}
// === count_over_time(matrix model.ValMatrix) Vector ===
func funcCountOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
return model.SampleValue(len(values))
})
}
// === floor(vector model.ValVector) Vector ===
func funcFloor(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Floor(float64(el.Value)))
}
return vector
}
// === max_over_time(matrix model.ValMatrix) Vector ===
func funcMaxOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
max := math.Inf(-1)
for _, v := range values {
max = math.Max(max, float64(v.Value))
}
return model.SampleValue(max)
})
}
// === min_over_time(matrix model.ValMatrix) Vector ===
func funcMinOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
min := math.Inf(1)
for _, v := range values {
min = math.Min(min, float64(v.Value))
}
return model.SampleValue(min)
})
}
// === sum_over_time(matrix model.ValMatrix) Vector ===
func funcSumOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
var sum model.SampleValue
for _, v := range values {
sum += v.Value
}
return sum
})
}
// === abs(vector model.ValVector) Vector ===
func funcAbs(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Abs(float64(el.Value)))
}
return vector
}
// === absent(vector model.ValVector) Vector ===
func funcAbsent(ev *evaluator, args Expressions) model.Value {
if len(ev.evalVector(args[0])) > 0 {
return vector{}
}
m := model.Metric{}
if vs, ok := args[0].(*VectorSelector); ok {
for _, matcher := range vs.LabelMatchers {
if matcher.Type == metric.Equal && matcher.Name != model.MetricNameLabel {
m[matcher.Name] = matcher.Value
}
}
}
return vector{
&sample{
Metric: metric.Metric{
Metric: m,
Copied: true,
},
Value: 1,
Timestamp: ev.Timestamp,
},
}
}
// === ceil(vector model.ValVector) Vector ===
func funcCeil(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Ceil(float64(el.Value)))
}
return vector
}
// === exp(vector model.ValVector) Vector ===
func funcExp(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Exp(float64(el.Value)))
}
return vector
}
// === sqrt(vector VectorNode) Vector ===
func funcSqrt(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Sqrt(float64(el.Value)))
}
return vector
}
// === ln(vector model.ValVector) Vector ===
func funcLn(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Log(float64(el.Value)))
}
return vector
}
// === log2(vector model.ValVector) Vector ===
func funcLog2(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Log2(float64(el.Value)))
}
return vector
}
// === log10(vector model.ValVector) Vector ===
func funcLog10(ev *evaluator, args Expressions) model.Value {
vector := ev.evalVector(args[0])
for _, el := range vector {
el.Metric.Del(model.MetricNameLabel)
el.Value = model.SampleValue(math.Log10(float64(el.Value)))
}
return vector
}
// === deriv(node model.ValMatrix) Vector ===
func funcDeriv(ev *evaluator, args Expressions) model.Value {
resultVector := vector{}
mat := ev.evalMatrix(args[0])
for _, samples := range mat {
// No sense in trying to compute a derivative without at least two points.
// Drop this vector element.
if len(samples.Values) < 2 {
continue
}
// Least squares.
var (
n model.SampleValue
sumX, sumY model.SampleValue
sumXY, sumX2 model.SampleValue
)
for _, sample := range samples.Values {
x := model.SampleValue(sample.Timestamp.UnixNano() / 1e9)
n += 1.0
sumY += sample.Value
sumX += x
sumXY += x * sample.Value
sumX2 += x * x
}
numerator := sumXY - sumX*sumY/n
denominator := sumX2 - (sumX*sumX)/n
resultValue := numerator / denominator
resultSample := &sample{
Metric: samples.Metric,
Value: resultValue,
Timestamp: ev.Timestamp,
}
resultSample.Metric.Del(model.MetricNameLabel)
resultVector = append(resultVector, resultSample)
}
return resultVector
}
// === predict_linear(node model.ValMatrix, k model.ValScalar) Vector ===
func funcPredictLinear(ev *evaluator, args Expressions) model.Value {
vec := funcDeriv(ev, args[0:1]).(vector)
duration := model.SampleValue(model.SampleValue(ev.evalFloat(args[1])))
excludedLabels := map[model.LabelName]struct{}{
model.MetricNameLabel: {},
}
// Calculate predicted delta over the duration.
signatureToDelta := map[uint64]model.SampleValue{}
for _, el := range vec {
signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels)
signatureToDelta[signature] = el.Value * duration
}
// add predicted delta to last value.
matrixBounds := ev.evalMatrixBounds(args[0])
outVec := make(vector, 0, len(signatureToDelta))
for _, samples := range matrixBounds {
if len(samples.Values) < 2 {
continue
}
signature := model.SignatureWithoutLabels(samples.Metric.Metric, excludedLabels)
delta, ok := signatureToDelta[signature]
if ok {
samples.Metric.Del(model.MetricNameLabel)
outVec = append(outVec, &sample{
Metric: samples.Metric,
Value: delta + samples.Values[1].Value,
Timestamp: ev.Timestamp,
})
}
}
return outVec
}
// === histogram_quantile(k model.ValScalar, vector model.ValVector) Vector ===
func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value {
q := model.SampleValue(ev.evalFloat(args[0]))
inVec := ev.evalVector(args[1])
outVec := vector{}
signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{}
for _, el := range inVec {
upperBound, err := strconv.ParseFloat(
string(el.Metric.Metric[model.BucketLabel]), 64,
)
if err != nil {
// Oops, no bucket label or malformed label value. Skip.
// TODO(beorn7): Issue a warning somehow.
continue
}
signature := model.SignatureWithoutLabels(el.Metric.Metric, excludedLabels)
mb, ok := signatureToMetricWithBuckets[signature]
if !ok {
el.Metric.Del(model.BucketLabel)
el.Metric.Del(model.MetricNameLabel)
mb = &metricWithBuckets{el.Metric, nil}
signatureToMetricWithBuckets[signature] = mb
}
mb.buckets = append(mb.buckets, bucket{upperBound, el.Value})
}
for _, mb := range signatureToMetricWithBuckets {
outVec = append(outVec, &sample{
Metric: mb.metric,
Value: model.SampleValue(quantile(q, mb.buckets)),
Timestamp: ev.Timestamp,
})
}
return outVec
}
// === resets(matrix model.ValMatrix) Vector ===
func funcResets(ev *evaluator, args Expressions) model.Value {
in := ev.evalMatrix(args[0])
out := make(vector, 0, len(in))
for _, samples := range in {
resets := 0
prev := model.SampleValue(samples.Values[0].Value)
for _, sample := range samples.Values[1:] {
current := sample.Value
if current < prev {
resets++
}
prev = current
}
rs := &sample{
Metric: samples.Metric,
Value: model.SampleValue(resets),
Timestamp: ev.Timestamp,
}
rs.Metric.Del(model.MetricNameLabel)
out = append(out, rs)
}
return out
}
// === changes(matrix model.ValMatrix) Vector ===
func funcChanges(ev *evaluator, args Expressions) model.Value {
in := ev.evalMatrix(args[0])
out := make(vector, 0, len(in))
for _, samples := range in {
changes := 0
prev := model.SampleValue(samples.Values[0].Value)
for _, sample := range samples.Values[1:] {
current := sample.Value
if current != prev {
changes++
}
prev = current
}
rs := &sample{
Metric: samples.Metric,
Value: model.SampleValue(changes),
Timestamp: ev.Timestamp,
}
rs.Metric.Del(model.MetricNameLabel)
out = append(out, rs)
}
return out
}
// === label_replace(vector model.ValVector, dst_label, replacement, src_labelname, regex model.ValString) Vector ===
func funcLabelReplace(ev *evaluator, args Expressions) model.Value {
var (
vector = ev.evalVector(args[0])
dst = model.LabelName(ev.evalString(args[1]).Value)
repl = ev.evalString(args[2]).Value
src = model.LabelName(ev.evalString(args[3]).Value)
regexStr = ev.evalString(args[4]).Value
)
regex, err := regexp.Compile("^(?:" + regexStr + ")$")
if err != nil {
ev.errorf("invalid regular expression in label_replace(): %s", regexStr)
}
if !model.LabelNameRE.MatchString(string(dst)) {
ev.errorf("invalid destination label name in label_replace(): %s", dst)
}
outSet := make(map[model.Fingerprint]struct{}, len(vector))
for _, el := range vector {
srcVal := string(el.Metric.Metric[src])
indexes := regex.FindStringSubmatchIndex(srcVal)
// If there is no match, no replacement should take place.
if indexes == nil {
continue
}
res := regex.ExpandString([]byte{}, repl, srcVal, indexes)
if len(res) == 0 {
el.Metric.Del(dst)
} else {
el.Metric.Set(dst, model.LabelValue(res))
}
fp := el.Metric.Metric.Fingerprint()
if _, exists := outSet[fp]; exists {
ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric.Metric)
} else {
outSet[fp] = struct{}{}
}
}
return vector
}
// === vector(s scalar) Vector ===
func funcVector(ev *evaluator, args Expressions) model.Value {
return vector{
&sample{
Metric: metric.Metric{},
Value: model.SampleValue(ev.evalFloat(args[0])),
Timestamp: ev.Timestamp,
},
}
}
var functions = map[string]*Function{
"abs": {
Name: "abs",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcAbs,
},
"absent": {
Name: "absent",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcAbsent,
},
"increase": {
Name: "increase",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcIncrease,
},
"avg_over_time": {
Name: "avg_over_time",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcAvgOverTime,
},
"bottomk": {
Name: "bottomk",
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector},
ReturnType: model.ValVector,
Call: funcBottomk,
},
"ceil": {
Name: "ceil",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcCeil,
},
"changes": {
Name: "changes",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcChanges,
},
"count_over_time": {
Name: "count_over_time",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcCountOverTime,
},
"count_scalar": {
Name: "count_scalar",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValScalar,
Call: funcCountScalar,
},
"delta": {
Name: "delta",
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar},
OptionalArgs: 1, // The 2nd argument is deprecated.
ReturnType: model.ValVector,
Call: funcDelta,
},
"deriv": {
Name: "deriv",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcDeriv,
},
"drop_common_labels": {
Name: "drop_common_labels",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcDropCommonLabels,
},
"exp": {
Name: "exp",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcExp,
},
"floor": {
Name: "floor",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcFloor,
},
"histogram_quantile": {
Name: "histogram_quantile",
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector},
ReturnType: model.ValVector,
Call: funcHistogramQuantile,
},
"irate": {
Name: "irate",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcIrate,
},
"label_replace": {
Name: "label_replace",
ArgTypes: []model.ValueType{model.ValVector, model.ValString, model.ValString, model.ValString, model.ValString},
ReturnType: model.ValVector,
Call: funcLabelReplace,
},
"ln": {
Name: "ln",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcLn,
},
"log10": {
Name: "log10",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcLog10,
},
"log2": {
Name: "log2",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcLog2,
},
"max_over_time": {
Name: "max_over_time",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcMaxOverTime,
},
"min_over_time": {
Name: "min_over_time",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcMinOverTime,
},
"predict_linear": {
Name: "predict_linear",
ArgTypes: []model.ValueType{model.ValMatrix, model.ValScalar},
ReturnType: model.ValVector,
Call: funcPredictLinear,
},
"rate": {
Name: "rate",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcRate,
},
"resets": {
Name: "resets",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcResets,
},
"round": {
Name: "round",
ArgTypes: []model.ValueType{model.ValVector, model.ValScalar},
OptionalArgs: 1,
ReturnType: model.ValVector,
Call: funcRound,
},
"scalar": {
Name: "scalar",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValScalar,
Call: funcScalar,
},
"sort": {
Name: "sort",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcSort,
},
"sort_desc": {
Name: "sort_desc",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcSortDesc,
},
"sqrt": {
Name: "sqrt",
ArgTypes: []model.ValueType{model.ValVector},
ReturnType: model.ValVector,
Call: funcSqrt,
},
"sum_over_time": {
Name: "sum_over_time",
ArgTypes: []model.ValueType{model.ValMatrix},
ReturnType: model.ValVector,
Call: funcSumOverTime,
},
"time": {
Name: "time",
ArgTypes: []model.ValueType{},
ReturnType: model.ValScalar,
Call: funcTime,
},
"topk": {
Name: "topk",
ArgTypes: []model.ValueType{model.ValScalar, model.ValVector},
ReturnType: model.ValVector,
Call: funcTopk,
},
"vector": {
Name: "vector",
ArgTypes: []model.ValueType{model.ValScalar},
ReturnType: model.ValVector,
Call: funcVector,
},
}
// getFunction returns a predefined Function object for the given name.
func getFunction(name string) (*Function, bool) {
function, ok := functions[name]
return function, ok
}
type vectorByValueHeap vector
func (s vectorByValueHeap) Len() int {
return len(s)
}
func (s vectorByValueHeap) Less(i, j int) bool {
if math.IsNaN(float64(s[i].Value)) {
return true
}
return s[i].Value < s[j].Value
}
func (s vectorByValueHeap) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (s *vectorByValueHeap) Push(x interface{}) {
*s = append(*s, x.(*sample))
}
func (s *vectorByValueHeap) Pop() interface{} {
old := *s
n := len(old)
el := old[n-1]
*s = old[0 : n-1]
return el
}
type reverseHeap struct {
heap.Interface
}
func (s reverseHeap) Less(i, j int) bool {
return s.Interface.Less(j, i)
}