prometheus/tsdb/chunkenc/chunk.go
Arve Knudsen 108a6bc9f6 tsdb/chunkenc.Pool: Refactor Get and Put
Signed-off-by: Arve Knudsen <arve.knudsen@gmail.com>
2024-05-08 13:37:25 +02:00

380 lines
12 KiB
Go

// Copyright 2017 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunkenc
import (
"fmt"
"math"
"sync"
"github.com/prometheus/prometheus/model/histogram"
)
// Encoding is the identifier for a chunk encoding.
type Encoding uint8
// The different available chunk encodings.
const (
EncNone Encoding = iota
EncXOR
EncHistogram
EncFloatHistogram
)
func (e Encoding) String() string {
switch e {
case EncNone:
return "none"
case EncXOR:
return "XOR"
case EncHistogram:
return "histogram"
case EncFloatHistogram:
return "floathistogram"
}
return "<unknown>"
}
// IsValidEncoding returns true for supported encodings.
func IsValidEncoding(e Encoding) bool {
return e == EncXOR || e == EncHistogram || e == EncFloatHistogram
}
const (
// MaxBytesPerXORChunk is the maximum size an XOR chunk can be.
MaxBytesPerXORChunk = 1024
// TargetBytesPerHistogramChunk sets a size target for each histogram chunk.
TargetBytesPerHistogramChunk = 1024
// MinSamplesPerHistogramChunk sets a minimum sample count for histogram chunks. This is desirable because a single
// histogram sample can be larger than TargetBytesPerHistogramChunk but we want to avoid too-small sample count
// chunks so we can achieve some measure of compression advantage even while dealing with really large histograms.
// Note that this minimum sample count is not enforced across chunk range boundaries (for example, if the chunk
// range is 100 and the first sample in the chunk range is 99, the next sample will be included in a new chunk
// resulting in the old chunk containing only a single sample).
MinSamplesPerHistogramChunk = 10
)
// Chunk holds a sequence of sample pairs that can be iterated over and appended to.
type Chunk interface {
Iterable
// Bytes returns the underlying byte slice of the chunk.
Bytes() []byte
// Encoding returns the encoding type of the chunk.
Encoding() Encoding
// Appender returns an appender to append samples to the chunk.
Appender() (Appender, error)
// NumSamples returns the number of samples in the chunk.
NumSamples() int
// Compact is called whenever a chunk is expected to be complete (no more
// samples appended) and the underlying implementation can eventually
// optimize the chunk.
// There's no strong guarantee that no samples will be appended once
// Compact() is called. Implementing this function is optional.
Compact()
// Reset resets the chunk given stream.
Reset(stream []byte)
}
type Iterable interface {
// The iterator passed as argument is for re-use.
// Depending on implementation, the iterator can
// be re-used or a new iterator can be allocated.
Iterator(Iterator) Iterator
}
// Appender adds sample pairs to a chunk.
type Appender interface {
Append(int64, float64)
// AppendHistogram and AppendFloatHistogram append a histogram sample to a histogram or float histogram chunk.
// Appending a histogram may require creating a completely new chunk or recoding (changing) the current chunk.
// The Appender prev is used to determine if there is a counter reset between the previous Appender and the current Appender.
// The Appender prev is optional and only taken into account when the first sample is being appended.
// The bool appendOnly governs what happens when a sample cannot be appended to the current chunk. If appendOnly is true, then
// in such case an error is returned without modifying the chunk. If appendOnly is false, then a new chunk is created or the
// current chunk is recoded to accommodate the sample.
// The returned Chunk c is nil if sample could be appended to the current Chunk, otherwise c is the new Chunk.
// The returned bool isRecoded can be used to distinguish between the new Chunk c being a completely new Chunk
// or the current Chunk recoded to a new Chunk.
// The Appender app that can be used for the next append is always returned.
AppendHistogram(prev *HistogramAppender, t int64, h *histogram.Histogram, appendOnly bool) (c Chunk, isRecoded bool, app Appender, err error)
AppendFloatHistogram(prev *FloatHistogramAppender, t int64, h *histogram.FloatHistogram, appendOnly bool) (c Chunk, isRecoded bool, app Appender, err error)
}
// Iterator is a simple iterator that can only get the next value.
// Iterator iterates over the samples of a time series, in timestamp-increasing order.
type Iterator interface {
// Next advances the iterator by one and returns the type of the value
// at the new position (or ValNone if the iterator is exhausted).
Next() ValueType
// Seek advances the iterator forward to the first sample with a
// timestamp equal or greater than t. If the current sample found by a
// previous `Next` or `Seek` operation already has this property, Seek
// has no effect. If a sample has been found, Seek returns the type of
// its value. Otherwise, it returns ValNone, after which the iterator is
// exhausted.
Seek(t int64) ValueType
// At returns the current timestamp/value pair if the value is a float.
// Before the iterator has advanced, the behaviour is unspecified.
At() (int64, float64)
// AtHistogram returns the current timestamp/value pair if the value is a
// histogram with integer counts. Before the iterator has advanced, the behaviour
// is unspecified.
// The method accepts an optional Histogram object which will be
// reused when not nil. Otherwise, a new Histogram object will be allocated.
AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram)
// AtFloatHistogram returns the current timestamp/value pair if the
// value is a histogram with floating-point counts. It also works if the
// value is a histogram with integer counts, in which case a
// FloatHistogram copy of the histogram is returned. Before the iterator
// has advanced, the behaviour is unspecified.
// The method accepts an optional FloatHistogram object which will be
// reused when not nil. Otherwise, a new FloatHistogram object will be allocated.
AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram)
// AtT returns the current timestamp.
// Before the iterator has advanced, the behaviour is unspecified.
AtT() int64
// Err returns the current error. It should be used only after the
// iterator is exhausted, i.e. `Next` or `Seek` have returned ValNone.
Err() error
}
// ValueType defines the type of a value an Iterator points to.
type ValueType uint8
// Possible values for ValueType.
const (
ValNone ValueType = iota // No value at the current position.
ValFloat // A simple float, retrieved with At.
ValHistogram // A histogram, retrieve with AtHistogram, but AtFloatHistogram works, too.
ValFloatHistogram // A floating-point histogram, retrieve with AtFloatHistogram.
)
func (v ValueType) String() string {
switch v {
case ValNone:
return "none"
case ValFloat:
return "float"
case ValHistogram:
return "histogram"
case ValFloatHistogram:
return "floathistogram"
default:
return "unknown"
}
}
func (v ValueType) ChunkEncoding() Encoding {
switch v {
case ValFloat:
return EncXOR
case ValHistogram:
return EncHistogram
case ValFloatHistogram:
return EncFloatHistogram
default:
return EncNone
}
}
func (v ValueType) NewChunk() (Chunk, error) {
switch v {
case ValFloat:
return NewXORChunk(), nil
case ValHistogram:
return NewHistogramChunk(), nil
case ValFloatHistogram:
return NewFloatHistogramChunk(), nil
default:
return nil, fmt.Errorf("value type %v unsupported", v)
}
}
// MockSeriesIterator returns an iterator for a mock series with custom timeStamps and values.
func MockSeriesIterator(timestamps []int64, values []float64) Iterator {
return &mockSeriesIterator{
timeStamps: timestamps,
values: values,
currIndex: 0,
}
}
type mockSeriesIterator struct {
timeStamps []int64
values []float64
currIndex int
}
func (it *mockSeriesIterator) Seek(int64) ValueType { return ValNone }
func (it *mockSeriesIterator) At() (int64, float64) {
return it.timeStamps[it.currIndex], it.values[it.currIndex]
}
func (it *mockSeriesIterator) AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram) {
return math.MinInt64, nil
}
func (it *mockSeriesIterator) AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
return math.MinInt64, nil
}
func (it *mockSeriesIterator) AtT() int64 {
return it.timeStamps[it.currIndex]
}
func (it *mockSeriesIterator) Next() ValueType {
if it.currIndex < len(it.timeStamps)-1 {
it.currIndex++
return ValFloat
}
return ValNone
}
func (it *mockSeriesIterator) Err() error { return nil }
// NewNopIterator returns a new chunk iterator that does not hold any data.
func NewNopIterator() Iterator {
return nopIterator{}
}
type nopIterator struct{}
func (nopIterator) Next() ValueType { return ValNone }
func (nopIterator) Seek(int64) ValueType { return ValNone }
func (nopIterator) At() (int64, float64) { return math.MinInt64, 0 }
func (nopIterator) AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram) {
return math.MinInt64, nil
}
func (nopIterator) AtFloatHistogram(*histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
return math.MinInt64, nil
}
func (nopIterator) AtT() int64 { return math.MinInt64 }
func (nopIterator) Err() error { return nil }
// Pool is used to create and reuse chunk references to avoid allocations.
type Pool interface {
Put(Chunk) error
Get(e Encoding, b []byte) (Chunk, error)
}
// pool is a memory pool of chunk objects.
type pool struct {
xor sync.Pool
histogram sync.Pool
floatHistogram sync.Pool
}
// NewPool returns a new pool.
func NewPool() Pool {
return &pool{
xor: sync.Pool{
New: func() interface{} {
return &XORChunk{b: bstream{}}
},
},
histogram: sync.Pool{
New: func() interface{} {
return &HistogramChunk{b: bstream{}}
},
},
floatHistogram: sync.Pool{
New: func() interface{} {
return &FloatHistogramChunk{b: bstream{}}
},
},
}
}
func (p *pool) Get(e Encoding, b []byte) (Chunk, error) {
var c Chunk
switch e {
case EncXOR:
c = p.xor.Get().(*XORChunk)
case EncHistogram:
c = p.histogram.Get().(*HistogramChunk)
case EncFloatHistogram:
c = p.floatHistogram.Get().(*FloatHistogramChunk)
default:
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}
c.Reset(b)
return c, nil
}
func (p *pool) Put(c Chunk) error {
var sp *sync.Pool
var ok bool
switch c.Encoding() {
case EncXOR:
_, ok = c.(*XORChunk)
sp = &p.xor
case EncHistogram:
_, ok = c.(*HistogramChunk)
sp = &p.histogram
case EncFloatHistogram:
_, ok = c.(*FloatHistogramChunk)
sp = &p.floatHistogram
default:
return fmt.Errorf("invalid chunk encoding %q", c.Encoding())
}
if !ok {
// This may happen often with wrapped chunks. Nothing we can really do about
// it but returning an error would cause a lot of allocations again. Thus,
// we just skip it.
return nil
}
c.Reset(nil)
sp.Put(c)
return nil
}
// FromData returns a chunk from a byte slice of chunk data.
// This is there so that users of the library can easily create chunks from
// bytes.
func FromData(e Encoding, d []byte) (Chunk, error) {
switch e {
case EncXOR:
return &XORChunk{b: bstream{count: 0, stream: d}}, nil
case EncHistogram:
return &HistogramChunk{b: bstream{count: 0, stream: d}}, nil
case EncFloatHistogram:
return &FloatHistogramChunk{b: bstream{count: 0, stream: d}}, nil
}
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}
// NewEmptyChunk returns an empty chunk for the given encoding.
func NewEmptyChunk(e Encoding) (Chunk, error) {
switch e {
case EncXOR:
return NewXORChunk(), nil
case EncHistogram:
return NewHistogramChunk(), nil
case EncFloatHistogram:
return NewFloatHistogramChunk(), nil
}
return nil, fmt.Errorf("invalid chunk encoding %q", e)
}