prometheus/tsdb/chunkenc/histogram.go
beorn7 5f366e9b62 histograms: Improve tests and fix exposed bugs
This adds negative buckets and access of float histograms to
TestHistogramChunkSameBuckets and TestHistogramChunkBucketChanges.

It also exercises a specific pattern of reusing an iterator (one where
no access has happened).

This exposes two bugs (where entries for positive buckets where used
where the corresponding entries for negative buckets should have been
used). One was fixed in #11627 (not merged), which triggered the work
in this commit.

This commit fixes both issues, so #11627 can be closed.

It also simplifies the code in the histogramIterator.Next method that
aims to recycle existing slice capacity.

Furthermore, this is on top of the release-2.40 branch because we
should probably cut a bugfix release for this.

Signed-off-by: beorn7 <beorn@grafana.com>
2022-12-12 00:08:23 +01:00

858 lines
24 KiB
Go

// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package chunkenc
import (
"encoding/binary"
"math"
"github.com/prometheus/prometheus/model/histogram"
"github.com/prometheus/prometheus/model/value"
)
// HistogramChunk holds encoded sample data for a sparse, high-resolution
// histogram.
//
// Each sample has multiple "fields", stored in the following way (raw = store
// number directly, delta = store delta to the previous number, dod = store
// delta of the delta to the previous number, xor = what we do for regular
// sample values):
//
// field → ts count zeroCount sum []posbuckets []negbuckets
// sample 1 raw raw raw raw []raw []raw
// sample 2 delta delta delta xor []delta []delta
// sample >2 dod dod dod xor []dod []dod
type HistogramChunk struct {
b bstream
}
// NewHistogramChunk returns a new chunk with histogram encoding of the given
// size.
func NewHistogramChunk() *HistogramChunk {
b := make([]byte, 3, 128)
return &HistogramChunk{b: bstream{stream: b, count: 0}}
}
// Encoding returns the encoding type.
func (c *HistogramChunk) Encoding() Encoding {
return EncHistogram
}
// Bytes returns the underlying byte slice of the chunk.
func (c *HistogramChunk) Bytes() []byte {
return c.b.bytes()
}
// NumSamples returns the number of samples in the chunk.
func (c *HistogramChunk) NumSamples() int {
return int(binary.BigEndian.Uint16(c.Bytes()))
}
// Layout returns the histogram layout. Only call this on chunks that have at
// least one sample.
func (c *HistogramChunk) Layout() (
schema int32, zeroThreshold float64,
negativeSpans, positiveSpans []histogram.Span,
err error,
) {
if c.NumSamples() == 0 {
panic("HistoChunk.Layout() called on an empty chunk")
}
b := newBReader(c.Bytes()[2:])
return readHistogramChunkLayout(&b)
}
// CounterResetHeader defines the first 2 bits of the chunk header.
type CounterResetHeader byte
const (
// CounterReset means there was definitely a counter reset that resulted in this chunk.
CounterReset CounterResetHeader = 0b10000000
// NotCounterReset means there was definitely no counter reset when cutting this chunk.
NotCounterReset CounterResetHeader = 0b01000000
// GaugeType means this chunk contains a gauge histogram, where counter resets do not happen.
GaugeType CounterResetHeader = 0b11000000
// UnknownCounterReset means we cannot say if this chunk was created due to a counter reset or not.
// An explicit counter reset detection needs to happen during query time.
UnknownCounterReset CounterResetHeader = 0b00000000
)
// SetCounterResetHeader sets the counter reset header.
func (c *HistogramChunk) SetCounterResetHeader(h CounterResetHeader) {
switch h {
case CounterReset, NotCounterReset, GaugeType, UnknownCounterReset:
bytes := c.Bytes()
bytes[2] = (bytes[2] & 0b00111111) | byte(h)
default:
panic("invalid CounterResetHeader type")
}
}
// GetCounterResetHeader returns the info about the first 2 bits of the chunk
// header.
func (c *HistogramChunk) GetCounterResetHeader() CounterResetHeader {
return CounterResetHeader(c.Bytes()[2] & 0b11000000)
}
// Compact implements the Chunk interface.
func (c *HistogramChunk) Compact() {
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold {
buf := make([]byte, l)
copy(buf, c.b.stream)
c.b.stream = buf
}
}
// Appender implements the Chunk interface.
func (c *HistogramChunk) Appender() (Appender, error) {
it := c.iterator(nil)
// To get an appender, we must know the state it would have if we had
// appended all existing data from scratch. We iterate through the end
// and populate via the iterator's state.
for it.Next() == ValHistogram {
}
if err := it.Err(); err != nil {
return nil, err
}
a := &HistogramAppender{
b: &c.b,
schema: it.schema,
zThreshold: it.zThreshold,
pSpans: it.pSpans,
nSpans: it.nSpans,
t: it.t,
cnt: it.cnt,
zCnt: it.zCnt,
tDelta: it.tDelta,
cntDelta: it.cntDelta,
zCntDelta: it.zCntDelta,
pBuckets: it.pBuckets,
nBuckets: it.nBuckets,
pBucketsDelta: it.pBucketsDelta,
nBucketsDelta: it.nBucketsDelta,
sum: it.sum,
leading: it.leading,
trailing: it.trailing,
}
if it.numTotal == 0 {
a.leading = 0xff
}
return a, nil
}
func countSpans(spans []histogram.Span) int {
var cnt int
for _, s := range spans {
cnt += int(s.Length)
}
return cnt
}
func newHistogramIterator(b []byte) *histogramIterator {
it := &histogramIterator{
br: newBReader(b),
numTotal: binary.BigEndian.Uint16(b),
t: math.MinInt64,
}
// The first 3 bytes contain chunk headers.
// We skip that for actual samples.
_, _ = it.br.readBits(24)
return it
}
func (c *HistogramChunk) iterator(it Iterator) *histogramIterator {
// This comment is copied from XORChunk.iterator:
// Should iterators guarantee to act on a copy of the data so it doesn't lock append?
// When using striped locks to guard access to chunks, probably yes.
// Could only copy data if the chunk is not completed yet.
if histogramIter, ok := it.(*histogramIterator); ok {
histogramIter.Reset(c.b.bytes())
return histogramIter
}
return newHistogramIterator(c.b.bytes())
}
// Iterator implements the Chunk interface.
func (c *HistogramChunk) Iterator(it Iterator) Iterator {
return c.iterator(it)
}
// HistogramAppender is an Appender implementation for sparse histograms.
type HistogramAppender struct {
b *bstream
// Layout:
schema int32
zThreshold float64
pSpans, nSpans []histogram.Span
// Although we intend to start new chunks on counter resets, we still
// have to handle negative deltas for gauge histograms. Therefore, even
// deltas are signed types here (even for tDelta to not treat that one
// specially).
t int64
cnt, zCnt uint64
tDelta, cntDelta, zCntDelta int64
pBuckets, nBuckets []int64
pBucketsDelta, nBucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
}
// Append implements Appender. This implementation panics because normal float
// samples must never be appended to a histogram chunk.
func (a *HistogramAppender) Append(int64, float64) {
panic("appended a float sample to a histogram chunk")
}
// Appendable returns whether the chunk can be appended to, and if so
// whether any recoding needs to happen using the provided interjections
// (in case of any new buckets, positive or negative range, respectively).
//
// The chunk is not appendable in the following cases:
//
// • The schema has changed.
//
// • The threshold for the zero bucket has changed.
//
// • Any buckets have disappeared.
//
// • There was a counter reset in the count of observations or in any bucket,
// including the zero bucket.
//
// • The last sample in the chunk was stale while the current sample is not stale.
//
// The method returns an additional boolean set to true if it is not appendable
// because of a counter reset. If the given sample is stale, it is always ok to
// append. If counterReset is true, okToAppend is always false.
func (a *HistogramAppender) Appendable(h *histogram.Histogram) (
positiveInterjections, negativeInterjections []Interjection,
okToAppend, counterReset bool,
) {
if value.IsStaleNaN(h.Sum) {
// This is a stale sample whose buckets and spans don't matter.
okToAppend = true
return
}
if value.IsStaleNaN(a.sum) {
// If the last sample was stale, then we can only accept stale
// samples in this chunk.
return
}
if h.Count < a.cnt {
// There has been a counter reset.
counterReset = true
return
}
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold {
return
}
if h.ZeroCount < a.zCnt {
// There has been a counter reset since ZeroThreshold didn't change.
counterReset = true
return
}
var ok bool
positiveInterjections, ok = compareSpans(a.pSpans, h.PositiveSpans)
if !ok {
counterReset = true
return
}
negativeInterjections, ok = compareSpans(a.nSpans, h.NegativeSpans)
if !ok {
counterReset = true
return
}
if counterResetInAnyBucket(a.pBuckets, h.PositiveBuckets, a.pSpans, h.PositiveSpans) ||
counterResetInAnyBucket(a.nBuckets, h.NegativeBuckets, a.nSpans, h.NegativeSpans) {
counterReset, positiveInterjections, negativeInterjections = true, nil, nil
return
}
okToAppend = true
return
}
// counterResetInAnyBucket returns true if there was a counter reset for any
// bucket. This should be called only when the bucket layout is the same or new
// buckets were added. It does not handle the case of buckets missing.
func counterResetInAnyBucket(oldBuckets, newBuckets []int64, oldSpans, newSpans []histogram.Span) bool {
if len(oldSpans) == 0 || len(oldBuckets) == 0 {
return false
}
oldSpanSliceIdx, newSpanSliceIdx := 0, 0 // Index for the span slices.
oldInsideSpanIdx, newInsideSpanIdx := uint32(0), uint32(0) // Index inside a span.
oldIdx, newIdx := oldSpans[0].Offset, newSpans[0].Offset
oldBucketSliceIdx, newBucketSliceIdx := 0, 0 // Index inside bucket slice.
oldVal, newVal := oldBuckets[0], newBuckets[0]
// Since we assume that new spans won't have missing buckets, there will never be a case
// where the old index will not find a matching new index.
for {
if oldIdx == newIdx {
if newVal < oldVal {
return true
}
}
if oldIdx <= newIdx {
// Moving ahead old bucket and span by 1 index.
if oldInsideSpanIdx == oldSpans[oldSpanSliceIdx].Length-1 {
// Current span is over.
oldSpanSliceIdx++
oldInsideSpanIdx = 0
if oldSpanSliceIdx >= len(oldSpans) {
// All old spans are over.
break
}
oldIdx += 1 + oldSpans[oldSpanSliceIdx].Offset
} else {
oldInsideSpanIdx++
oldIdx++
}
oldBucketSliceIdx++
oldVal += oldBuckets[oldBucketSliceIdx]
}
if oldIdx > newIdx {
// Moving ahead new bucket and span by 1 index.
if newInsideSpanIdx == newSpans[newSpanSliceIdx].Length-1 {
// Current span is over.
newSpanSliceIdx++
newInsideSpanIdx = 0
if newSpanSliceIdx >= len(newSpans) {
// All new spans are over.
// This should not happen, old spans above should catch this first.
panic("new spans over before old spans in counterReset")
}
newIdx += 1 + newSpans[newSpanSliceIdx].Offset
} else {
newInsideSpanIdx++
newIdx++
}
newBucketSliceIdx++
newVal += newBuckets[newBucketSliceIdx]
}
}
return false
}
// AppendHistogram appends a histogram to the chunk. The caller must ensure that
// the histogram is properly structured, e.g. the number of buckets used
// corresponds to the number conveyed by the span structures. First call
// Appendable() and act accordingly!
func (a *HistogramAppender) AppendHistogram(t int64, h *histogram.Histogram) {
var tDelta, cntDelta, zCntDelta int64
num := binary.BigEndian.Uint16(a.b.bytes())
if value.IsStaleNaN(h.Sum) {
// Emptying out other fields to write no buckets, and an empty
// layout in case of first histogram in the chunk.
h = &histogram.Histogram{Sum: h.Sum}
}
if num == 0 {
// The first append gets the privilege to dictate the layout
// but it's also responsible for encoding it into the chunk!
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans)
a.schema = h.Schema
a.zThreshold = h.ZeroThreshold
if len(h.PositiveSpans) > 0 {
a.pSpans = make([]histogram.Span, len(h.PositiveSpans))
copy(a.pSpans, h.PositiveSpans)
} else {
a.pSpans = nil
}
if len(h.NegativeSpans) > 0 {
a.nSpans = make([]histogram.Span, len(h.NegativeSpans))
copy(a.nSpans, h.NegativeSpans)
} else {
a.nSpans = nil
}
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans)
if numPBuckets > 0 {
a.pBuckets = make([]int64, numPBuckets)
a.pBucketsDelta = make([]int64, numPBuckets)
} else {
a.pBuckets = nil
a.pBucketsDelta = nil
}
if numNBuckets > 0 {
a.nBuckets = make([]int64, numNBuckets)
a.nBucketsDelta = make([]int64, numNBuckets)
} else {
a.nBuckets = nil
a.nBucketsDelta = nil
}
// Now store the actual data.
putVarbitInt(a.b, t)
putVarbitUint(a.b, h.Count)
putVarbitUint(a.b, h.ZeroCount)
a.b.writeBits(math.Float64bits(h.Sum), 64)
for _, b := range h.PositiveBuckets {
putVarbitInt(a.b, b)
}
for _, b := range h.NegativeBuckets {
putVarbitInt(a.b, b)
}
} else {
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
// so we don't need a separate single delta logic for the 2nd sample.
tDelta = t - a.t
cntDelta = int64(h.Count) - int64(a.cnt)
zCntDelta = int64(h.ZeroCount) - int64(a.zCnt)
tDod := tDelta - a.tDelta
cntDod := cntDelta - a.cntDelta
zCntDod := zCntDelta - a.zCntDelta
if value.IsStaleNaN(h.Sum) {
cntDod, zCntDod = 0, 0
}
putVarbitInt(a.b, tDod)
putVarbitInt(a.b, cntDod)
putVarbitInt(a.b, zCntDod)
a.writeSumDelta(h.Sum)
for i, b := range h.PositiveBuckets {
delta := b - a.pBuckets[i]
dod := delta - a.pBucketsDelta[i]
putVarbitInt(a.b, dod)
a.pBucketsDelta[i] = delta
}
for i, b := range h.NegativeBuckets {
delta := b - a.nBuckets[i]
dod := delta - a.nBucketsDelta[i]
putVarbitInt(a.b, dod)
a.nBucketsDelta[i] = delta
}
}
binary.BigEndian.PutUint16(a.b.bytes(), num+1)
a.t = t
a.cnt = h.Count
a.zCnt = h.ZeroCount
a.tDelta = tDelta
a.cntDelta = cntDelta
a.zCntDelta = zCntDelta
copy(a.pBuckets, h.PositiveBuckets)
copy(a.nBuckets, h.NegativeBuckets)
// Note that the bucket deltas were already updated above.
a.sum = h.Sum
}
// Recode converts the current chunk to accommodate an expansion of the set of
// (positive and/or negative) buckets used, according to the provided
// interjections, resulting in the honoring of the provided new positive and
// negative spans. To continue appending, use the returned Appender rather than
// the receiver of this method.
func (a *HistogramAppender) Recode(
positiveInterjections, negativeInterjections []Interjection,
positiveSpans, negativeSpans []histogram.Span,
) (Chunk, Appender) {
// TODO(beorn7): This currently just decodes everything and then encodes
// it again with the new span layout. This can probably be done in-place
// by editing the chunk. But let's first see how expensive it is in the
// big picture. Also, in-place editing might create concurrency issues.
byts := a.b.bytes()
it := newHistogramIterator(byts)
hc := NewHistogramChunk()
app, err := hc.Appender()
if err != nil {
panic(err)
}
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans)
for it.Next() == ValHistogram {
tOld, hOld := it.AtHistogram()
// We have to newly allocate slices for the modified buckets
// here because they are kept by the appender until the next
// append.
// TODO(beorn7): We might be able to optimize this.
var positiveBuckets, negativeBuckets []int64
if numPositiveBuckets > 0 {
positiveBuckets = make([]int64, numPositiveBuckets)
}
if numNegativeBuckets > 0 {
negativeBuckets = make([]int64, numNegativeBuckets)
}
// Save the modified histogram to the new chunk.
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans
if len(positiveInterjections) > 0 {
hOld.PositiveBuckets = interject(hOld.PositiveBuckets, positiveBuckets, positiveInterjections)
}
if len(negativeInterjections) > 0 {
hOld.NegativeBuckets = interject(hOld.NegativeBuckets, negativeBuckets, negativeInterjections)
}
app.AppendHistogram(tOld, hOld)
}
hc.SetCounterResetHeader(CounterResetHeader(byts[2] & 0b11000000))
return hc, app
}
func (a *HistogramAppender) writeSumDelta(v float64) {
xorWrite(a.b, v, a.sum, &a.leading, &a.trailing)
}
type histogramIterator struct {
br bstreamReader
numTotal uint16
numRead uint16
// Layout:
schema int32
zThreshold float64
pSpans, nSpans []histogram.Span
// For the fields that are tracked as deltas and ultimately dod's.
t int64
cnt, zCnt uint64
tDelta, cntDelta, zCntDelta int64
pBuckets, nBuckets []int64 // Delta between buckets.
pFloatBuckets, nFloatBuckets []float64 // Absolute counts.
pBucketsDelta, nBucketsDelta []int64
// The sum is Gorilla xor encoded.
sum float64
leading uint8
trailing uint8
// Track calls to retrieve methods. Once they have been called, we
// cannot recycle the bucket slices anymore because we have returned
// them in the histogram.
atHistogramCalled, atFloatHistogramCalled bool
err error
}
func (it *histogramIterator) Seek(t int64) ValueType {
if it.err != nil {
return ValNone
}
for t > it.t || it.numRead == 0 {
if it.Next() == ValNone {
return ValNone
}
}
return ValHistogram
}
func (it *histogramIterator) At() (int64, float64) {
panic("cannot call histogramIterator.At")
}
func (it *histogramIterator) AtHistogram() (int64, *histogram.Histogram) {
if value.IsStaleNaN(it.sum) {
return it.t, &histogram.Histogram{Sum: it.sum}
}
it.atHistogramCalled = true
return it.t, &histogram.Histogram{
Count: it.cnt,
ZeroCount: it.zCnt,
Sum: it.sum,
ZeroThreshold: it.zThreshold,
Schema: it.schema,
PositiveSpans: it.pSpans,
NegativeSpans: it.nSpans,
PositiveBuckets: it.pBuckets,
NegativeBuckets: it.nBuckets,
}
}
func (it *histogramIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
if value.IsStaleNaN(it.sum) {
return it.t, &histogram.FloatHistogram{Sum: it.sum}
}
it.atFloatHistogramCalled = true
return it.t, &histogram.FloatHistogram{
Count: float64(it.cnt),
ZeroCount: float64(it.zCnt),
Sum: it.sum,
ZeroThreshold: it.zThreshold,
Schema: it.schema,
PositiveSpans: it.pSpans,
NegativeSpans: it.nSpans,
PositiveBuckets: it.pFloatBuckets,
NegativeBuckets: it.nFloatBuckets,
}
}
func (it *histogramIterator) AtT() int64 {
return it.t
}
func (it *histogramIterator) Err() error {
return it.err
}
func (it *histogramIterator) Reset(b []byte) {
// The first 3 bytes contain chunk headers.
// We skip that for actual samples.
it.br = newBReader(b[3:])
it.numTotal = binary.BigEndian.Uint16(b)
it.numRead = 0
it.t, it.cnt, it.zCnt = 0, 0, 0
it.tDelta, it.cntDelta, it.zCntDelta = 0, 0, 0
// Recycle slices that have not been returned yet. Otherwise, start from
// scratch.
if it.atHistogramCalled {
it.atHistogramCalled = false
it.pBuckets, it.nBuckets = nil, nil
} else {
it.pBuckets = it.pBuckets[:0]
it.nBuckets = it.nBuckets[:0]
}
if it.atFloatHistogramCalled {
it.atFloatHistogramCalled = false
it.pFloatBuckets, it.nFloatBuckets = nil, nil
} else {
it.pFloatBuckets = it.pFloatBuckets[:0]
it.nFloatBuckets = it.nFloatBuckets[:0]
}
it.pBucketsDelta = it.pBucketsDelta[:0]
it.nBucketsDelta = it.nBucketsDelta[:0]
it.sum = 0
it.leading = 0
it.trailing = 0
it.err = nil
}
func (it *histogramIterator) Next() ValueType {
if it.err != nil || it.numRead == it.numTotal {
return ValNone
}
if it.numRead == 0 {
// The first read is responsible for reading the chunk layout
// and for initializing fields that depend on it. We give
// counter reset info at chunk level, hence we discard it here.
schema, zeroThreshold, posSpans, negSpans, err := readHistogramChunkLayout(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.schema = schema
it.zThreshold = zeroThreshold
it.pSpans, it.nSpans = posSpans, negSpans
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans)
// The code below recycles existing slices in case this iterator
// was reset and already has slices of a sufficient capacity.
if numPBuckets > 0 {
it.pBuckets = append(it.pBuckets, make([]int64, numPBuckets)...)
it.pBucketsDelta = append(it.pBucketsDelta, make([]int64, numPBuckets)...)
it.pFloatBuckets = append(it.pFloatBuckets, make([]float64, numPBuckets)...)
}
if numNBuckets > 0 {
it.nBuckets = append(it.nBuckets, make([]int64, numNBuckets)...)
it.nBucketsDelta = append(it.nBucketsDelta, make([]int64, numNBuckets)...)
it.nFloatBuckets = append(it.nFloatBuckets, make([]float64, numNBuckets)...)
}
// Now read the actual data.
t, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.t = t
cnt, err := readVarbitUint(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.cnt = cnt
zcnt, err := readVarbitUint(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.zCnt = zcnt
sum, err := it.br.readBits(64)
if err != nil {
it.err = err
return ValNone
}
it.sum = math.Float64frombits(sum)
var current int64
for i := range it.pBuckets {
v, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.pBuckets[i] = v
current += it.pBuckets[i]
it.pFloatBuckets[i] = float64(current)
}
current = 0
for i := range it.nBuckets {
v, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.nBuckets[i] = v
current += it.nBuckets[i]
it.nFloatBuckets[i] = float64(current)
}
it.numRead++
return ValHistogram
}
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
// so we don't need a separate single delta logic for the 2nd sample.
// Recycle bucket slices that have not been returned yet. Otherwise,
// copy them.
if it.atHistogramCalled {
it.atHistogramCalled = false
if len(it.pBuckets) > 0 {
newBuckets := make([]int64, len(it.pBuckets))
copy(newBuckets, it.pBuckets)
it.pBuckets = newBuckets
} else {
it.pBuckets = nil
}
if len(it.nBuckets) > 0 {
newBuckets := make([]int64, len(it.nBuckets))
copy(newBuckets, it.nBuckets)
it.nBuckets = newBuckets
} else {
it.nBuckets = nil
}
}
// FloatBuckets are set from scratch, so simply create empty ones.
if it.atFloatHistogramCalled {
it.atFloatHistogramCalled = false
if len(it.pFloatBuckets) > 0 {
it.pFloatBuckets = make([]float64, len(it.pFloatBuckets))
} else {
it.pFloatBuckets = nil
}
if len(it.nFloatBuckets) > 0 {
it.nFloatBuckets = make([]float64, len(it.nFloatBuckets))
} else {
it.nFloatBuckets = nil
}
}
tDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.tDelta = it.tDelta + tDod
it.t += it.tDelta
cntDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.cntDelta = it.cntDelta + cntDod
it.cnt = uint64(int64(it.cnt) + it.cntDelta)
zcntDod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.zCntDelta = it.zCntDelta + zcntDod
it.zCnt = uint64(int64(it.zCnt) + it.zCntDelta)
ok := it.readSum()
if !ok {
return ValNone
}
if value.IsStaleNaN(it.sum) {
it.numRead++
return ValHistogram
}
var current int64
for i := range it.pBuckets {
dod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.pBucketsDelta[i] += dod
it.pBuckets[i] += it.pBucketsDelta[i]
current += it.pBuckets[i]
it.pFloatBuckets[i] = float64(current)
}
current = 0
for i := range it.nBuckets {
dod, err := readVarbitInt(&it.br)
if err != nil {
it.err = err
return ValNone
}
it.nBucketsDelta[i] += dod
it.nBuckets[i] += it.nBucketsDelta[i]
current += it.nBuckets[i]
it.nFloatBuckets[i] = float64(current)
}
it.numRead++
return ValHistogram
}
func (it *histogramIterator) readSum() bool {
err := xorRead(&it.br, &it.sum, &it.leading, &it.trailing)
if err != nil {
it.err = err
return false
}
return true
}