prometheus/storage/metric/stochastic_test.go
Matt T. Proud db4ffbb262 Wrap dto.SampleKey with business logic type.
The curator work can be done easier if dto.SampleKey is no longer
directly accessed but rather has a higher level type around it that
captures a certain modicum of business logic.  This doesn't look
terribly interesting today, but it will get more so.
2013-04-21 20:38:39 +02:00

651 lines
16 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"github.com/prometheus/prometheus/coding"
"github.com/prometheus/prometheus/coding/indexable"
"github.com/prometheus/prometheus/model"
dto "github.com/prometheus/prometheus/model/generated"
"github.com/prometheus/prometheus/utility/test"
"math"
"math/rand"
"testing"
"testing/quick"
"time"
)
const (
stochasticMaximumVariance = 8
)
func BasicLifecycleTests(p MetricPersistence, t test.Tester) {
if p == nil {
t.Errorf("Received nil Metric Persistence.\n")
return
}
}
func ReadEmptyTests(p MetricPersistence, t test.Tester) {
hasLabelPair := func(x int) (success bool) {
name := model.LabelName(string(x))
value := model.LabelValue(string(x))
labelSet := model.LabelSet{
name: value,
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
if err != nil {
t.Error(err)
return
}
success = len(fingerprints) == 0
if !success {
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
}
return
}
err := quick.Check(hasLabelPair, nil)
if err != nil {
t.Error(err)
return
}
hasLabelName := func(x int) (success bool) {
labelName := model.LabelName(string(x))
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
success = len(fingerprints) == 0
if !success {
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
}
return
}
err = quick.Check(hasLabelName, nil)
if err != nil {
t.Error(err)
return
}
}
func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := model.SampleValue(x)
ts := time.Unix(int64(x), int64(x))
labelName := model.LabelName(x)
labelValue := model.LabelValue(x)
l := model.Metric{labelName: labelValue}
sample := model.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSample(sample)
success = err == nil
if !success {
t.Error(err)
}
return
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := model.SampleValue(x)
ts := time.Unix(int64(x), int64(x))
labelName := model.LabelName(x)
labelValue := model.LabelValue(x)
l := model.Metric{labelName: labelValue}
sample := model.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSample(sample)
if err != nil {
t.Error(err)
return
}
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
fingerprints, err = p.GetFingerprintsForLabelSet(model.LabelSet{
labelName: labelValue,
})
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
return true
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) bool {
sample := model.Sample{
Value: model.SampleValue(x),
Timestamp: time.Unix(int64(x), 0),
Metric: model.Metric{model.MetricNameLabel: "my_metric"},
}
err := p.AppendSample(sample)
return err == nil
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func levelDBGetRangeValues(l *LevelDBMetricPersistence, fp model.Fingerprint, i model.Interval) (samples model.Values, err error) {
k := &dto.SampleKey{
Fingerprint: fp.ToDTO(),
Timestamp: indexable.EncodeTime(i.OldestInclusive),
}
e, err := coding.NewProtocolBuffer(k).Encode()
if err != nil {
return
}
iterator := l.metricSamples.NewIterator(true)
defer iterator.Close()
for valid := iterator.Seek(e); valid; valid = iterator.Next() {
retrievedKey, err := extractSampleKey(iterator)
if err != nil {
return samples, err
}
if retrievedKey.FirstTimestamp.After(i.NewestInclusive) {
break
}
if !retrievedKey.Fingerprint.Equal(fp) {
break
}
retrievedValue, err := extractSampleValues(iterator)
if err != nil {
return nil, err
}
for _, value := range retrievedValue.Value {
samples = append(samples, model.SamplePair{
Value: model.SampleValue(*value.Value),
Timestamp: time.Unix(*value.Timestamp, 0),
})
}
}
return
}
func StochasticTests(persistenceMaker func() (MetricPersistence, test.Closer), t test.Tester) {
stochastic := func(x int) (success bool) {
p, closer := persistenceMaker()
defer closer.Close()
defer p.Close()
seed := rand.NewSource(int64(x))
random := rand.New(seed)
numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1
numberOfSharedLabels := random.Intn(stochasticMaximumVariance)
numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance)
numberOfSamples := random.Intn(stochasticMaximumVariance) + 2
numberOfRangeScans := random.Intn(stochasticMaximumVariance)
metricTimestamps := map[int]map[int64]bool{}
metricEarliestSample := map[int]int64{}
metricNewestSample := map[int]int64{}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
sample := model.Sample{
Metric: model.Metric{},
}
v := model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
sample.Metric[model.MetricNameLabel] = v
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
l := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
v := model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex))
sample.Metric[l] = v
}
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
v := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
sample.Metric[l] = v
}
timestamps := map[int64]bool{}
metricTimestamps[metricIndex] = timestamps
var (
newestSample int64 = math.MinInt64
oldestSample int64 = math.MaxInt64
nextTimestamp func() int64
)
nextTimestamp = func() int64 {
var candidate int64
candidate = random.Int63n(math.MaxInt32 - 1)
if _, has := timestamps[candidate]; has {
// WART
candidate = nextTimestamp()
}
timestamps[candidate] = true
if candidate < oldestSample {
oldestSample = candidate
}
if candidate > newestSample {
newestSample = candidate
}
return candidate
}
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
sample.Timestamp = time.Unix(nextTimestamp(), 0)
sample.Value = model.SampleValue(sampleIndex)
err := p.AppendSample(sample)
if err != nil {
t.Error(err)
return
}
}
metricEarliestSample[metricIndex] = oldestSample
metricNewestSample[metricIndex] = newestSample
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
labelPair := model.LabelSet{
model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)): model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)),
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelPair)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) == 0 {
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
return
}
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) == 0 {
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
return
}
}
}
for sharedIndex := 0; sharedIndex < numberOfSharedLabels; sharedIndex++ {
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedIndex))
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != numberOfMetrics {
t.Errorf("expected fingerprint count of %d, got %d", numberOfMetrics, len(fingerprints))
return
}
}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
labelName := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
labelValue := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
labelSet := model.LabelSet{
labelName: labelValue,
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
}
metric := model.Metric{}
metric[model.MetricNameLabel] = model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
for i := 0; i < numberOfSharedLabels; i++ {
l := model.LabelName(fmt.Sprintf("shared_label_%d", i))
v := model.LabelValue(fmt.Sprintf("label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfUnsharedLabels; i++ {
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i))
v := model.LabelValue(fmt.Sprintf("private_label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfRangeScans; i++ {
timestamps := metricTimestamps[metricIndex]
var first int64 = 0
var second int64 = 0
for {
firstCandidate := random.Int63n(int64(len(timestamps)))
secondCandidate := random.Int63n(int64(len(timestamps)))
smallest := int64(-1)
largest := int64(-1)
if firstCandidate == secondCandidate {
continue
} else if firstCandidate > secondCandidate {
largest = firstCandidate
smallest = secondCandidate
} else {
largest = secondCandidate
smallest = firstCandidate
}
j := int64(0)
for i := range timestamps {
if j == smallest {
first = i
} else if j == largest {
second = i
break
}
j++
}
break
}
begin := first
end := second
if second < first {
begin, end = second, first
}
interval := model.Interval{
OldestInclusive: time.Unix(begin, 0),
NewestInclusive: time.Unix(end, 0),
}
samples := model.Values{}
fp := model.NewFingerprintFromMetric(metric)
switch persistence := p.(type) {
case *LevelDBMetricPersistence:
var err error
samples, err = levelDBGetRangeValues(persistence, fp, interval)
if err != nil {
t.Fatal(err)
return
}
default:
samples = p.GetRangeValues(fp, interval)
}
if len(samples) < 2 {
t.Errorf("expected sample count less than %d, got %d", 2, len(samples))
return
}
}
}
return true
}
if err := quick.Check(stochastic, nil); err != nil {
t.Error(err)
}
}
// Test Definitions Follow
var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests)
func TestLevelDBBasicLifecycle(t *testing.T) {
testLevelDBBasicLifecycle(t)
}
func BenchmarkLevelDBBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBBasicLifecycle(b)
}
}
var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests)
func TestLevelDBReadEmpty(t *testing.T) {
testLevelDBReadEmpty(t)
}
func BenchmarkLevelDBReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBReadEmpty(b)
}
}
var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests)
func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSparseAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSparseAppend(b)
}
}
var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests)
func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) {
testLevelDBAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsSparseAppendWithReads(b)
}
}
var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests)
func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSingleEntityAppend(b)
}
}
func testLevelDBStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
temporaryDirectory := test.NewTemporaryDirectory("test_leveldb_stochastic", t)
p, err := NewLevelDBMetricPersistence(temporaryDirectory.Path())
if err != nil {
t.Errorf("Could not start up LevelDB: %q\n", err)
}
return p, temporaryDirectory
}
StochasticTests(persistenceMaker, t)
}
func TestLevelDBStochastic(t *testing.T) {
testLevelDBStochastic(t)
}
func BenchmarkLevelDBStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBStochastic(b)
}
}
var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests)
func TestMemoryBasicLifecycle(t *testing.T) {
testMemoryBasicLifecycle(t)
}
func BenchmarkMemoryBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryBasicLifecycle(b)
}
}
var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests)
func TestMemoryReadEmpty(t *testing.T) {
testMemoryReadEmpty(t)
}
func BenchmarkMemoryReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryReadEmpty(b)
}
}
var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests)
func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) {
testMemoryAppendSampleAsPureSparseAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSparseAppend(b)
}
}
var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests)
func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) {
testMemoryAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsSparseAppendWithReads(b)
}
}
var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests)
func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testMemoryAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSingleEntityAppend(b)
}
}
func testMemoryStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
return NewMemorySeriesStorage(), test.NilCloser
}
StochasticTests(persistenceMaker, t)
}
func TestMemoryStochastic(t *testing.T) {
testMemoryStochastic(t)
}
func BenchmarkMemoryStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryStochastic(b)
}
}