prometheus/promql/engine.go
Advait Bhatwadekar 5d401f1e1b Added query logging for prometheus. Issue #1315 (#5794)
* Added query logging for prometheus.
Options added:
1) active.queries.filepath: Filename where queries will be recorded
2) active.queries.filesize: Size of the file where queries will be recorded.

Functionality added:
All active queries are now logged in a file. If prometheus crashes unexpectedly, these queries are also printed out on stdout in the rerun.

Queries are written concurrently to an mmaped file, and removed once they are done. Their positions in the file are reused. They are written in json format. However, due to dynamic nature of application, the json has an extra comma after the last query, and is missing an ending ']'. There may also null bytes in the tail of file.

Signed-off-by: Advait Bhatwadekar <advait123@ymail.com>
2019-07-31 16:12:43 +01:00

1957 lines
56 KiB
Go

// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"container/heap"
"context"
"fmt"
"math"
"regexp"
"runtime"
"sort"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
opentracing "github.com/opentracing/opentracing-go"
"github.com/pkg/errors"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/pkg/gate"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/pkg/timestamp"
"github.com/prometheus/prometheus/pkg/value"
"github.com/prometheus/prometheus/storage"
"github.com/prometheus/prometheus/util/stats"
)
const (
namespace = "prometheus"
subsystem = "engine"
queryTag = "query"
env = "query execution"
// The largest SampleValue that can be converted to an int64 without overflow.
maxInt64 = 9223372036854774784
// The smallest SampleValue that can be converted to an int64 without underflow.
minInt64 = -9223372036854775808
)
var (
// LookbackDelta determines the time since the last sample after which a time
// series is considered stale.
LookbackDelta = 5 * time.Minute
// DefaultEvaluationInterval is the default evaluation interval of
// a subquery in milliseconds.
DefaultEvaluationInterval int64
)
// SetDefaultEvaluationInterval sets DefaultEvaluationInterval.
func SetDefaultEvaluationInterval(ev time.Duration) {
atomic.StoreInt64(&DefaultEvaluationInterval, durationToInt64Millis(ev))
}
// GetDefaultEvaluationInterval returns the DefaultEvaluationInterval as time.Duration.
func GetDefaultEvaluationInterval() int64 {
return atomic.LoadInt64(&DefaultEvaluationInterval)
}
type engineMetrics struct {
currentQueries prometheus.Gauge
maxConcurrentQueries prometheus.Gauge
queryQueueTime prometheus.Summary
queryPrepareTime prometheus.Summary
queryInnerEval prometheus.Summary
queryResultSort prometheus.Summary
}
// convertibleToInt64 returns true if v does not over-/underflow an int64.
func convertibleToInt64(v float64) bool {
return v <= maxInt64 && v >= minInt64
}
type (
// ErrQueryTimeout is returned if a query timed out during processing.
ErrQueryTimeout string
// ErrQueryCanceled is returned if a query was canceled during processing.
ErrQueryCanceled string
// ErrTooManySamples is returned if a query would load more than the maximum allowed samples into memory.
ErrTooManySamples string
// ErrStorage is returned if an error was encountered in the storage layer
// during query handling.
ErrStorage struct{ Err error }
)
func (e ErrQueryTimeout) Error() string {
return fmt.Sprintf("query timed out in %s", string(e))
}
func (e ErrQueryCanceled) Error() string {
return fmt.Sprintf("query was canceled in %s", string(e))
}
func (e ErrTooManySamples) Error() string {
return fmt.Sprintf("query processing would load too many samples into memory in %s", string(e))
}
func (e ErrStorage) Error() string {
return e.Err.Error()
}
// A Query is derived from an a raw query string and can be run against an engine
// it is associated with.
type Query interface {
// Exec processes the query. Can only be called once.
Exec(ctx context.Context) *Result
// Close recovers memory used by the query result.
Close()
// Statement returns the parsed statement of the query.
Statement() Statement
// Stats returns statistics about the lifetime of the query.
Stats() *stats.QueryTimers
// Cancel signals that a running query execution should be aborted.
Cancel()
}
// query implements the Query interface.
type query struct {
// Underlying data provider.
queryable storage.Queryable
// The original query string.
q string
// Statement of the parsed query.
stmt Statement
// Timer stats for the query execution.
stats *stats.QueryTimers
// Result matrix for reuse.
matrix Matrix
// Cancellation function for the query.
cancel func()
// The engine against which the query is executed.
ng *Engine
}
// Statement implements the Query interface.
func (q *query) Statement() Statement {
return q.stmt
}
// Stats implements the Query interface.
func (q *query) Stats() *stats.QueryTimers {
return q.stats
}
// Cancel implements the Query interface.
func (q *query) Cancel() {
if q.cancel != nil {
q.cancel()
}
}
// Close implements the Query interface.
func (q *query) Close() {
for _, s := range q.matrix {
putPointSlice(s.Points)
}
}
// Exec implements the Query interface.
func (q *query) Exec(ctx context.Context) *Result {
if span := opentracing.SpanFromContext(ctx); span != nil {
span.SetTag(queryTag, q.stmt.String())
}
// Log query in active log.
var queryIndex int
if q.ng.activeQueryTracker != nil {
queryIndex = q.ng.activeQueryTracker.Insert(q.q)
}
// Exec query.
res, warnings, err := q.ng.exec(ctx, q)
// Delete query from active log.
if q.ng.activeQueryTracker != nil {
q.ng.activeQueryTracker.Delete(queryIndex)
}
return &Result{Err: err, Value: res, Warnings: warnings}
}
// contextDone returns an error if the context was canceled or timed out.
func contextDone(ctx context.Context, env string) error {
if err := ctx.Err(); err != nil {
return contextErr(err, env)
}
return nil
}
func contextErr(err error, env string) error {
switch err {
case context.Canceled:
return ErrQueryCanceled(env)
case context.DeadlineExceeded:
return ErrQueryTimeout(env)
default:
return err
}
}
// EngineOpts contains configuration options used when creating a new Engine.
type EngineOpts struct {
Logger log.Logger
Reg prometheus.Registerer
MaxConcurrent int
MaxSamples int
Timeout time.Duration
ActiveQueryTracker *ActiveQueryTracker
}
// Engine handles the lifetime of queries from beginning to end.
// It is connected to a querier.
type Engine struct {
logger log.Logger
metrics *engineMetrics
timeout time.Duration
gate *gate.Gate
maxSamplesPerQuery int
activeQueryTracker *ActiveQueryTracker
}
// NewEngine returns a new engine.
func NewEngine(opts EngineOpts) *Engine {
if opts.Logger == nil {
opts.Logger = log.NewNopLogger()
}
metrics := &engineMetrics{
currentQueries: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queries",
Help: "The current number of queries being executed or waiting.",
}),
maxConcurrentQueries: prometheus.NewGauge(prometheus.GaugeOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "queries_concurrent_max",
Help: "The max number of concurrent queries.",
}),
queryQueueTime: prometheus.NewSummary(prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "query_duration_seconds",
Help: "Query timings",
ConstLabels: prometheus.Labels{"slice": "queue_time"},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}),
queryPrepareTime: prometheus.NewSummary(prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "query_duration_seconds",
Help: "Query timings",
ConstLabels: prometheus.Labels{"slice": "prepare_time"},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}),
queryInnerEval: prometheus.NewSummary(prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "query_duration_seconds",
Help: "Query timings",
ConstLabels: prometheus.Labels{"slice": "inner_eval"},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}),
queryResultSort: prometheus.NewSummary(prometheus.SummaryOpts{
Namespace: namespace,
Subsystem: subsystem,
Name: "query_duration_seconds",
Help: "Query timings",
ConstLabels: prometheus.Labels{"slice": "result_sort"},
Objectives: map[float64]float64{0.5: 0.05, 0.9: 0.01, 0.99: 0.001},
}),
}
metrics.maxConcurrentQueries.Set(float64(opts.MaxConcurrent))
if opts.Reg != nil {
opts.Reg.MustRegister(
metrics.currentQueries,
metrics.maxConcurrentQueries,
metrics.queryQueueTime,
metrics.queryPrepareTime,
metrics.queryInnerEval,
metrics.queryResultSort,
)
}
return &Engine{
gate: gate.New(opts.MaxConcurrent),
timeout: opts.Timeout,
logger: opts.Logger,
metrics: metrics,
maxSamplesPerQuery: opts.MaxSamples,
activeQueryTracker: opts.ActiveQueryTracker,
}
}
// NewInstantQuery returns an evaluation query for the given expression at the given time.
func (ng *Engine) NewInstantQuery(q storage.Queryable, qs string, ts time.Time) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
qry := ng.newQuery(q, expr, ts, ts, 0)
qry.q = qs
return qry, nil
}
// NewRangeQuery returns an evaluation query for the given time range and with
// the resolution set by the interval.
func (ng *Engine) NewRangeQuery(q storage.Queryable, qs string, start, end time.Time, interval time.Duration) (Query, error) {
expr, err := ParseExpr(qs)
if err != nil {
return nil, err
}
if expr.Type() != ValueTypeVector && expr.Type() != ValueTypeScalar {
return nil, errors.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", documentedType(expr.Type()))
}
qry := ng.newQuery(q, expr, start, end, interval)
qry.q = qs
return qry, nil
}
func (ng *Engine) newQuery(q storage.Queryable, expr Expr, start, end time.Time, interval time.Duration) *query {
es := &EvalStmt{
Expr: expr,
Start: start,
End: end,
Interval: interval,
}
qry := &query{
stmt: es,
ng: ng,
stats: stats.NewQueryTimers(),
queryable: q,
}
return qry
}
// testStmt is an internal helper statement that allows execution
// of an arbitrary function during handling. It is used to test the Engine.
type testStmt func(context.Context) error
func (testStmt) String() string { return "test statement" }
func (testStmt) stmt() {}
func (ng *Engine) newTestQuery(f func(context.Context) error) Query {
qry := &query{
q: "test statement",
stmt: testStmt(f),
ng: ng,
stats: stats.NewQueryTimers(),
}
return qry
}
// exec executes the query.
//
// At this point per query only one EvalStmt is evaluated. Alert and record
// statements are not handled by the Engine.
func (ng *Engine) exec(ctx context.Context, q *query) (Value, storage.Warnings, error) {
ng.metrics.currentQueries.Inc()
defer ng.metrics.currentQueries.Dec()
ctx, cancel := context.WithTimeout(ctx, ng.timeout)
q.cancel = cancel
execSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.ExecTotalTime)
defer execSpanTimer.Finish()
queueSpanTimer, _ := q.stats.GetSpanTimer(ctx, stats.ExecQueueTime, ng.metrics.queryQueueTime)
if err := ng.gate.Start(ctx); err != nil {
return nil, nil, contextErr(err, "query queue")
}
defer ng.gate.Done()
queueSpanTimer.Finish()
// Cancel when execution is done or an error was raised.
defer q.cancel()
const env = "query execution"
evalSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.EvalTotalTime)
defer evalSpanTimer.Finish()
// The base context might already be canceled on the first iteration (e.g. during shutdown).
if err := contextDone(ctx, env); err != nil {
return nil, nil, err
}
switch s := q.Statement().(type) {
case *EvalStmt:
return ng.execEvalStmt(ctx, q, s)
case testStmt:
return nil, nil, s(ctx)
}
panic(errors.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement()))
}
func timeMilliseconds(t time.Time) int64 {
return t.UnixNano() / int64(time.Millisecond/time.Nanosecond)
}
func durationMilliseconds(d time.Duration) int64 {
return int64(d / (time.Millisecond / time.Nanosecond))
}
// execEvalStmt evaluates the expression of an evaluation statement for the given time range.
func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, storage.Warnings, error) {
prepareSpanTimer, ctxPrepare := query.stats.GetSpanTimer(ctx, stats.QueryPreparationTime, ng.metrics.queryPrepareTime)
querier, warnings, err := ng.populateSeries(ctxPrepare, query.queryable, s)
prepareSpanTimer.Finish()
// XXX(fabxc): the querier returned by populateSeries might be instantiated
// we must not return without closing irrespective of the error.
// TODO: make this semantically saner.
if querier != nil {
defer querier.Close()
}
if err != nil {
return nil, warnings, err
}
evalSpanTimer, ctxInnerEval := query.stats.GetSpanTimer(ctx, stats.InnerEvalTime, ng.metrics.queryInnerEval)
// Instant evaluation. This is executed as a range evaluation with one step.
if s.Start == s.End && s.Interval == 0 {
start := timeMilliseconds(s.Start)
evaluator := &evaluator{
startTimestamp: start,
endTimestamp: start,
interval: 1,
ctx: ctxInnerEval,
maxSamples: ng.maxSamplesPerQuery,
defaultEvalInterval: GetDefaultEvaluationInterval(),
logger: ng.logger,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, warnings, err
}
evalSpanTimer.Finish()
mat, ok := val.(Matrix)
if !ok {
panic(errors.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
}
query.matrix = mat
switch s.Expr.Type() {
case ValueTypeVector:
// Convert matrix with one value per series into vector.
vector := make(Vector, len(mat))
for i, s := range mat {
// Point might have a different timestamp, force it to the evaluation
// timestamp as that is when we ran the evaluation.
vector[i] = Sample{Metric: s.Metric, Point: Point{V: s.Points[0].V, T: start}}
}
return vector, warnings, nil
case ValueTypeScalar:
return Scalar{V: mat[0].Points[0].V, T: start}, warnings, nil
case ValueTypeMatrix:
return mat, warnings, nil
default:
panic(errors.Errorf("promql.Engine.exec: unexpected expression type %q", s.Expr.Type()))
}
}
// Range evaluation.
evaluator := &evaluator{
startTimestamp: timeMilliseconds(s.Start),
endTimestamp: timeMilliseconds(s.End),
interval: durationMilliseconds(s.Interval),
ctx: ctxInnerEval,
maxSamples: ng.maxSamplesPerQuery,
defaultEvalInterval: GetDefaultEvaluationInterval(),
logger: ng.logger,
}
val, err := evaluator.Eval(s.Expr)
if err != nil {
return nil, warnings, err
}
evalSpanTimer.Finish()
mat, ok := val.(Matrix)
if !ok {
panic(errors.Errorf("promql.Engine.exec: invalid expression type %q", val.Type()))
}
query.matrix = mat
if err := contextDone(ctx, "expression evaluation"); err != nil {
return nil, warnings, err
}
// TODO(fabxc): order ensured by storage?
// TODO(fabxc): where to ensure metric labels are a copy from the storage internals.
sortSpanTimer, _ := query.stats.GetSpanTimer(ctx, stats.ResultSortTime, ng.metrics.queryResultSort)
sort.Sort(mat)
sortSpanTimer.Finish()
return mat, warnings, nil
}
// cumulativeSubqueryOffset returns the sum of range and offset of all subqueries in the path.
func (ng *Engine) cumulativeSubqueryOffset(path []Node) time.Duration {
var subqOffset time.Duration
for _, node := range path {
switch n := node.(type) {
case *SubqueryExpr:
subqOffset += n.Range + n.Offset
}
}
return subqOffset
}
func (ng *Engine) populateSeries(ctx context.Context, q storage.Queryable, s *EvalStmt) (storage.Querier, storage.Warnings, error) {
var maxOffset time.Duration
Inspect(s.Expr, func(node Node, path []Node) error {
subqOffset := ng.cumulativeSubqueryOffset(path)
switch n := node.(type) {
case *VectorSelector:
if maxOffset < LookbackDelta+subqOffset {
maxOffset = LookbackDelta + subqOffset
}
if n.Offset+LookbackDelta+subqOffset > maxOffset {
maxOffset = n.Offset + LookbackDelta + subqOffset
}
case *MatrixSelector:
if maxOffset < n.Range+subqOffset {
maxOffset = n.Range + subqOffset
}
if n.Offset+n.Range+subqOffset > maxOffset {
maxOffset = n.Offset + n.Range + subqOffset
}
}
return nil
})
mint := s.Start.Add(-maxOffset)
querier, err := q.Querier(ctx, timestamp.FromTime(mint), timestamp.FromTime(s.End))
if err != nil {
return nil, nil, err
}
var warnings storage.Warnings
Inspect(s.Expr, func(node Node, path []Node) error {
var set storage.SeriesSet
var wrn storage.Warnings
params := &storage.SelectParams{
Start: timestamp.FromTime(s.Start),
End: timestamp.FromTime(s.End),
Step: durationToInt64Millis(s.Interval),
}
// We need to make sure we select the timerange selected by the subquery.
// TODO(gouthamve): cumulativeSubqueryOffset gives the sum of range and the offset
// we can optimise it by separating out the range and offsets, and substracting the offsets
// from end also.
subqOffset := ng.cumulativeSubqueryOffset(path)
offsetMilliseconds := durationMilliseconds(subqOffset)
params.Start = params.Start - offsetMilliseconds
switch n := node.(type) {
case *VectorSelector:
params.Start = params.Start - durationMilliseconds(LookbackDelta)
params.Func = extractFuncFromPath(path)
if n.Offset > 0 {
offsetMilliseconds := durationMilliseconds(n.Offset)
params.Start = params.Start - offsetMilliseconds
params.End = params.End - offsetMilliseconds
}
set, wrn, err = querier.Select(params, n.LabelMatchers...)
warnings = append(warnings, wrn...)
if err != nil {
level.Error(ng.logger).Log("msg", "error selecting series set", "err", err)
return err
}
n.unexpandedSeriesSet = set
case *MatrixSelector:
params.Func = extractFuncFromPath(path)
// For all matrix queries we want to ensure that we have (end-start) + range selected
// this way we have `range` data before the start time
params.Start = params.Start - durationMilliseconds(n.Range)
if n.Offset > 0 {
offsetMilliseconds := durationMilliseconds(n.Offset)
params.Start = params.Start - offsetMilliseconds
params.End = params.End - offsetMilliseconds
}
set, wrn, err = querier.Select(params, n.LabelMatchers...)
warnings = append(warnings, wrn...)
if err != nil {
level.Error(ng.logger).Log("msg", "error selecting series set", "err", err)
return err
}
n.unexpandedSeriesSet = set
}
return nil
})
return querier, warnings, err
}
// extractFuncFromPath walks up the path and searches for the first instance of
// a function or aggregation.
func extractFuncFromPath(p []Node) string {
if len(p) == 0 {
return ""
}
switch n := p[len(p)-1].(type) {
case *AggregateExpr:
return n.Op.String()
case *Call:
return n.Func.Name
case *BinaryExpr:
// If we hit a binary expression we terminate since we only care about functions
// or aggregations over a single metric.
return ""
}
return extractFuncFromPath(p[:len(p)-1])
}
func checkForSeriesSetExpansion(ctx context.Context, expr Expr) {
switch e := expr.(type) {
case *MatrixSelector:
if e.series == nil {
series, err := expandSeriesSet(ctx, e.unexpandedSeriesSet)
if err != nil {
panic(err)
} else {
e.series = series
}
}
case *VectorSelector:
if e.series == nil {
series, err := expandSeriesSet(ctx, e.unexpandedSeriesSet)
if err != nil {
panic(err)
} else {
e.series = series
}
}
}
}
func expandSeriesSet(ctx context.Context, it storage.SeriesSet) (res []storage.Series, err error) {
for it.Next() {
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
res = append(res, it.At())
}
return res, it.Err()
}
// An evaluator evaluates given expressions over given fixed timestamps. It
// is attached to an engine through which it connects to a querier and reports
// errors. On timeout or cancellation of its context it terminates.
type evaluator struct {
ctx context.Context
startTimestamp int64 // Start time in milliseconds.
endTimestamp int64 // End time in milliseconds.
interval int64 // Interval in milliseconds.
maxSamples int
currentSamples int
defaultEvalInterval int64
logger log.Logger
}
// errorf causes a panic with the input formatted into an error.
func (ev *evaluator) errorf(format string, args ...interface{}) {
ev.error(errors.Errorf(format, args...))
}
// error causes a panic with the given error.
func (ev *evaluator) error(err error) {
panic(err)
}
// recover is the handler that turns panics into returns from the top level of evaluation.
func (ev *evaluator) recover(errp *error) {
e := recover()
if e == nil {
return
}
if err, ok := e.(runtime.Error); ok {
// Print the stack trace but do not inhibit the running application.
buf := make([]byte, 64<<10)
buf = buf[:runtime.Stack(buf, false)]
level.Error(ev.logger).Log("msg", "runtime panic in parser", "err", e, "stacktrace", string(buf))
*errp = errors.Wrap(err, "unexpected error")
} else {
*errp = e.(error)
}
}
func (ev *evaluator) Eval(expr Expr) (v Value, err error) {
defer ev.recover(&err)
return ev.eval(expr), nil
}
// EvalNodeHelper stores extra information and caches for evaluating a single node across steps.
type EvalNodeHelper struct {
// Evaluation timestamp.
ts int64
// Vector that can be used for output.
out Vector
// Caches.
// dropMetricName and label_*.
dmn map[uint64]labels.Labels
// signatureFunc.
sigf map[uint64]uint64
// funcHistogramQuantile.
signatureToMetricWithBuckets map[uint64]*metricWithBuckets
// label_replace.
regex *regexp.Regexp
// For binary vector matching.
rightSigs map[uint64]Sample
matchedSigs map[uint64]map[uint64]struct{}
resultMetric map[uint64]labels.Labels
}
// dropMetricName is a cached version of dropMetricName.
func (enh *EvalNodeHelper) dropMetricName(l labels.Labels) labels.Labels {
if enh.dmn == nil {
enh.dmn = make(map[uint64]labels.Labels, len(enh.out))
}
h := l.Hash()
ret, ok := enh.dmn[h]
if ok {
return ret
}
ret = dropMetricName(l)
enh.dmn[h] = ret
return ret
}
// signatureFunc is a cached version of signatureFunc.
func (enh *EvalNodeHelper) signatureFunc(on bool, names ...string) func(labels.Labels) uint64 {
if enh.sigf == nil {
enh.sigf = make(map[uint64]uint64, len(enh.out))
}
f := signatureFunc(on, names...)
return func(l labels.Labels) uint64 {
h := l.Hash()
ret, ok := enh.sigf[h]
if ok {
return ret
}
ret = f(l)
enh.sigf[h] = ret
return ret
}
}
// rangeEval evaluates the given expressions, and then for each step calls
// the given function with the values computed for each expression at that
// step. The return value is the combination into time series of all the
// function call results.
func (ev *evaluator) rangeEval(f func([]Value, *EvalNodeHelper) Vector, exprs ...Expr) Matrix {
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
matrixes := make([]Matrix, len(exprs))
origMatrixes := make([]Matrix, len(exprs))
originalNumSamples := ev.currentSamples
for i, e := range exprs {
// Functions will take string arguments from the expressions, not the values.
if e != nil && e.Type() != ValueTypeString {
// ev.currentSamples will be updated to the correct value within the ev.eval call.
matrixes[i] = ev.eval(e).(Matrix)
// Keep a copy of the original point slices so that they
// can be returned to the pool.
origMatrixes[i] = make(Matrix, len(matrixes[i]))
copy(origMatrixes[i], matrixes[i])
}
}
vectors := make([]Vector, len(exprs)) // Input vectors for the function.
args := make([]Value, len(exprs)) // Argument to function.
// Create an output vector that is as big as the input matrix with
// the most time series.
biggestLen := 1
for i := range exprs {
vectors[i] = make(Vector, 0, len(matrixes[i]))
if len(matrixes[i]) > biggestLen {
biggestLen = len(matrixes[i])
}
}
enh := &EvalNodeHelper{out: make(Vector, 0, biggestLen)}
seriess := make(map[uint64]Series, biggestLen) // Output series by series hash.
tempNumSamples := ev.currentSamples
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
ev.error(err)
}
// Reset number of samples in memory after each timestamp.
ev.currentSamples = tempNumSamples
// Gather input vectors for this timestamp.
for i := range exprs {
vectors[i] = vectors[i][:0]
for si, series := range matrixes[i] {
for _, point := range series.Points {
if point.T == ts {
if ev.currentSamples < ev.maxSamples {
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, Point: point})
// Move input vectors forward so we don't have to re-scan the same
// past points at the next step.
matrixes[i][si].Points = series.Points[1:]
ev.currentSamples++
} else {
ev.error(ErrTooManySamples(env))
}
}
break
}
}
args[i] = vectors[i]
}
// Make the function call.
enh.ts = ts
result := f(args, enh)
if result.ContainsSameLabelset() {
ev.errorf("vector cannot contain metrics with the same labelset")
}
enh.out = result[:0] // Reuse result vector.
ev.currentSamples += len(result)
// When we reset currentSamples to tempNumSamples during the next iteration of the loop it also
// needs to include the samples from the result here, as they're still in memory.
tempNumSamples += len(result)
if ev.currentSamples > ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
// If this could be an instant query, shortcut so as not to change sort order.
if ev.endTimestamp == ev.startTimestamp {
mat := make(Matrix, len(result))
for i, s := range result {
s.Point.T = ts
mat[i] = Series{Metric: s.Metric, Points: []Point{s.Point}}
}
ev.currentSamples = originalNumSamples + mat.TotalSamples()
return mat
}
// Add samples in output vector to output series.
for _, sample := range result {
h := sample.Metric.Hash()
ss, ok := seriess[h]
if !ok {
ss = Series{
Metric: sample.Metric,
Points: getPointSlice(numSteps),
}
}
sample.Point.T = ts
ss.Points = append(ss.Points, sample.Point)
seriess[h] = ss
}
}
// Reuse the original point slices.
for _, m := range origMatrixes {
for _, s := range m {
putPointSlice(s.Points)
}
}
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
mat := make(Matrix, 0, len(seriess))
for _, ss := range seriess {
mat = append(mat, ss)
}
ev.currentSamples = originalNumSamples + mat.TotalSamples()
return mat
}
// evalSubquery evaluates given SubqueryExpr and returns an equivalent
// evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set.
func (ev *evaluator) evalSubquery(subq *SubqueryExpr) *MatrixSelector {
val := ev.eval(subq).(Matrix)
ms := &MatrixSelector{
Range: subq.Range,
Offset: subq.Offset,
series: make([]storage.Series, 0, len(val)),
}
for _, s := range val {
ms.series = append(ms.series, NewStorageSeries(s))
}
return ms
}
// eval evaluates the given expression as the given AST expression node requires.
func (ev *evaluator) eval(expr Expr) Value {
// This is the top-level evaluation method.
// Thus, we check for timeout/cancellation here.
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
ev.error(err)
}
numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1
switch e := expr.(type) {
case *AggregateExpr:
if s, ok := e.Param.(*StringLiteral); ok {
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.aggregation(e.Op, e.Grouping, e.Without, s.Val, v[0].(Vector), enh)
}, e.Expr)
}
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
var param float64
if e.Param != nil {
param = v[0].(Vector)[0].V
}
return ev.aggregation(e.Op, e.Grouping, e.Without, param, v[1].(Vector), enh)
}, e.Param, e.Expr)
case *Call:
if e.Func.Name == "timestamp" {
// Matrix evaluation always returns the evaluation time,
// so this function needs special handling when given
// a vector selector.
vs, ok := e.Args[0].(*VectorSelector)
if ok {
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return e.Func.Call([]Value{ev.vectorSelector(vs, enh.ts)}, e.Args, enh)
})
}
}
// Check if the function has a matrix argument.
var matrixArgIndex int
var matrixArg bool
for i, a := range e.Args {
if _, ok := a.(*MatrixSelector); ok {
matrixArgIndex = i
matrixArg = true
break
}
// SubqueryExpr can be used in place of MatrixSelector.
if subq, ok := a.(*SubqueryExpr); ok {
matrixArgIndex = i
matrixArg = true
// Replacing SubqueryExpr with MatrixSelector.
e.Args[i] = ev.evalSubquery(subq)
break
}
}
if !matrixArg {
// Does not have a matrix argument.
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return e.Func.Call(v, e.Args, enh)
}, e.Args...)
}
inArgs := make([]Value, len(e.Args))
// Evaluate any non-matrix arguments.
otherArgs := make([]Matrix, len(e.Args))
otherInArgs := make([]Vector, len(e.Args))
for i, e := range e.Args {
if i != matrixArgIndex {
otherArgs[i] = ev.eval(e).(Matrix)
otherInArgs[i] = Vector{Sample{}}
inArgs[i] = otherInArgs[i]
}
}
sel := e.Args[matrixArgIndex].(*MatrixSelector)
checkForSeriesSetExpansion(ev.ctx, sel)
mat := make(Matrix, 0, len(sel.series)) // Output matrix.
offset := durationMilliseconds(sel.Offset)
selRange := durationMilliseconds(sel.Range)
stepRange := selRange
if stepRange > ev.interval {
stepRange = ev.interval
}
// Reuse objects across steps to save memory allocations.
points := getPointSlice(16)
inMatrix := make(Matrix, 1)
inArgs[matrixArgIndex] = inMatrix
enh := &EvalNodeHelper{out: make(Vector, 0, 1)}
// Process all the calls for one time series at a time.
it := storage.NewBuffer(selRange)
for i, s := range sel.series {
points = points[:0]
it.Reset(s.Iterator())
ss := Series{
// For all range vector functions, the only change to the
// output labels is dropping the metric name so just do
// it once here.
Metric: dropMetricName(sel.series[i].Labels()),
Points: getPointSlice(numSteps),
}
inMatrix[0].Metric = sel.series[i].Labels()
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
step++
// Set the non-matrix arguments.
// They are scalar, so it is safe to use the step number
// when looking up the argument, as there will be no gaps.
for j := range e.Args {
if j != matrixArgIndex {
otherInArgs[j][0].V = otherArgs[j][0].Points[step].V
}
}
maxt := ts - offset
mint := maxt - selRange
// Evaluate the matrix selector for this series for this step.
points = ev.matrixIterSlice(it, mint, maxt, points)
if len(points) == 0 {
continue
}
inMatrix[0].Points = points
enh.ts = ts
// Make the function call.
outVec := e.Func.Call(inArgs, e.Args, enh)
enh.out = outVec[:0]
if len(outVec) > 0 {
ss.Points = append(ss.Points, Point{V: outVec[0].Point.V, T: ts})
}
// Only buffer stepRange milliseconds from the second step on.
it.ReduceDelta(stepRange)
}
if len(ss.Points) > 0 {
if ev.currentSamples < ev.maxSamples {
mat = append(mat, ss)
ev.currentSamples += len(ss.Points)
} else {
ev.error(ErrTooManySamples(env))
}
}
}
if mat.ContainsSameLabelset() {
ev.errorf("vector cannot contain metrics with the same labelset")
}
putPointSlice(points)
return mat
case *ParenExpr:
return ev.eval(e.Expr)
case *UnaryExpr:
mat := ev.eval(e.Expr).(Matrix)
if e.Op == ItemSUB {
for i := range mat {
mat[i].Metric = dropMetricName(mat[i].Metric)
for j := range mat[i].Points {
mat[i].Points[j].V = -mat[i].Points[j].V
}
}
if mat.ContainsSameLabelset() {
ev.errorf("vector cannot contain metrics with the same labelset")
}
}
return mat
case *BinaryExpr:
switch lt, rt := e.LHS.Type(), e.RHS.Type(); {
case lt == ValueTypeScalar && rt == ValueTypeScalar:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
val := scalarBinop(e.Op, v[0].(Vector)[0].Point.V, v[1].(Vector)[0].Point.V)
return append(enh.out, Sample{Point: Point{V: val}})
}, e.LHS, e.RHS)
case lt == ValueTypeVector && rt == ValueTypeVector:
switch e.Op {
case ItemLAND:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorAnd(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh)
}, e.LHS, e.RHS)
case ItemLOR:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorOr(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh)
}, e.LHS, e.RHS)
case ItemLUnless:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorUnless(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh)
}, e.LHS, e.RHS)
default:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorBinop(e.Op, v[0].(Vector), v[1].(Vector), e.VectorMatching, e.ReturnBool, enh)
}, e.LHS, e.RHS)
}
case lt == ValueTypeVector && rt == ValueTypeScalar:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorscalarBinop(e.Op, v[0].(Vector), Scalar{V: v[1].(Vector)[0].Point.V}, false, e.ReturnBool, enh)
}, e.LHS, e.RHS)
case lt == ValueTypeScalar && rt == ValueTypeVector:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return ev.VectorscalarBinop(e.Op, v[1].(Vector), Scalar{V: v[0].(Vector)[0].Point.V}, true, e.ReturnBool, enh)
}, e.LHS, e.RHS)
}
case *NumberLiteral:
return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector {
return append(enh.out, Sample{Point: Point{V: e.Val}})
})
case *VectorSelector:
checkForSeriesSetExpansion(ev.ctx, e)
mat := make(Matrix, 0, len(e.series))
it := storage.NewBuffer(durationMilliseconds(LookbackDelta))
for i, s := range e.series {
it.Reset(s.Iterator())
ss := Series{
Metric: e.series[i].Labels(),
Points: getPointSlice(numSteps),
}
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
_, v, ok := ev.vectorSelectorSingle(it, e, ts)
if ok {
if ev.currentSamples < ev.maxSamples {
ss.Points = append(ss.Points, Point{V: v, T: ts})
ev.currentSamples++
} else {
ev.error(ErrTooManySamples(env))
}
}
}
if len(ss.Points) > 0 {
mat = append(mat, ss)
}
}
return mat
case *MatrixSelector:
if ev.startTimestamp != ev.endTimestamp {
panic(errors.New("cannot do range evaluation of matrix selector"))
}
return ev.matrixSelector(e)
case *SubqueryExpr:
offsetMillis := durationToInt64Millis(e.Offset)
rangeMillis := durationToInt64Millis(e.Range)
newEv := &evaluator{
endTimestamp: ev.endTimestamp - offsetMillis,
interval: ev.defaultEvalInterval,
ctx: ev.ctx,
currentSamples: ev.currentSamples,
maxSamples: ev.maxSamples,
defaultEvalInterval: ev.defaultEvalInterval,
logger: ev.logger,
}
if e.Step != 0 {
newEv.interval = durationToInt64Millis(e.Step)
}
// Start with the first timestamp after (ev.startTimestamp - offset - range)
// that is aligned with the step (multiple of 'newEv.interval').
newEv.startTimestamp = newEv.interval * ((ev.startTimestamp - offsetMillis - rangeMillis) / newEv.interval)
if newEv.startTimestamp < (ev.startTimestamp - offsetMillis - rangeMillis) {
newEv.startTimestamp += newEv.interval
}
res := newEv.eval(e.Expr)
ev.currentSamples = newEv.currentSamples
return res
}
panic(errors.Errorf("unhandled expression of type: %T", expr))
}
func durationToInt64Millis(d time.Duration) int64 {
return int64(d / time.Millisecond)
}
// vectorSelector evaluates a *VectorSelector expression.
func (ev *evaluator) vectorSelector(node *VectorSelector, ts int64) Vector {
checkForSeriesSetExpansion(ev.ctx, node)
var (
vec = make(Vector, 0, len(node.series))
)
it := storage.NewBuffer(durationMilliseconds(LookbackDelta))
for i, s := range node.series {
it.Reset(s.Iterator())
t, v, ok := ev.vectorSelectorSingle(it, node, ts)
if ok {
vec = append(vec, Sample{
Metric: node.series[i].Labels(),
Point: Point{V: v, T: t},
})
ev.currentSamples++
}
if ev.currentSamples >= ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
}
return vec
}
// vectorSelectorSingle evaluates a instant vector for the iterator of one time series.
func (ev *evaluator) vectorSelectorSingle(it *storage.BufferedSeriesIterator, node *VectorSelector, ts int64) (int64, float64, bool) {
refTime := ts - durationMilliseconds(node.Offset)
var t int64
var v float64
ok := it.Seek(refTime)
if !ok {
if it.Err() != nil {
ev.error(it.Err())
}
}
if ok {
t, v = it.Values()
}
if !ok || t > refTime {
t, v, ok = it.PeekBack(1)
if !ok || t < refTime-durationMilliseconds(LookbackDelta) {
return 0, 0, false
}
}
if value.IsStaleNaN(v) {
return 0, 0, false
}
return t, v, true
}
var pointPool = sync.Pool{}
func getPointSlice(sz int) []Point {
p := pointPool.Get()
if p != nil {
return p.([]Point)
}
return make([]Point, 0, sz)
}
func putPointSlice(p []Point) {
//lint:ignore SA6002 relax staticcheck verification.
pointPool.Put(p[:0])
}
// matrixSelector evaluates a *MatrixSelector expression.
func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix {
checkForSeriesSetExpansion(ev.ctx, node)
var (
offset = durationMilliseconds(node.Offset)
maxt = ev.startTimestamp - offset
mint = maxt - durationMilliseconds(node.Range)
matrix = make(Matrix, 0, len(node.series))
)
it := storage.NewBuffer(durationMilliseconds(node.Range))
for i, s := range node.series {
if err := contextDone(ev.ctx, "expression evaluation"); err != nil {
ev.error(err)
}
it.Reset(s.Iterator())
ss := Series{
Metric: node.series[i].Labels(),
}
ss.Points = ev.matrixIterSlice(it, mint, maxt, getPointSlice(16))
if len(ss.Points) > 0 {
matrix = append(matrix, ss)
} else {
putPointSlice(ss.Points)
}
}
return matrix
}
// matrixIterSlice populates a matrix vector covering the requested range for a
// single time series, with points retrieved from an iterator.
//
// As an optimization, the matrix vector may already contain points of the same
// time series from the evaluation of an earlier step (with lower mint and maxt
// values). Any such points falling before mint are discarded; points that fall
// into the [mint, maxt] range are retained; only points with later timestamps
// are populated from the iterator.
func (ev *evaluator) matrixIterSlice(it *storage.BufferedSeriesIterator, mint, maxt int64, out []Point) []Point {
if len(out) > 0 && out[len(out)-1].T >= mint {
// There is an overlap between previous and current ranges, retain common
// points. In most such cases:
// (a) the overlap is significantly larger than the eval step; and/or
// (b) the number of samples is relatively small.
// so a linear search will be as fast as a binary search.
var drop int
for drop = 0; out[drop].T < mint; drop++ {
}
copy(out, out[drop:])
out = out[:len(out)-drop]
// Only append points with timestamps after the last timestamp we have.
mint = out[len(out)-1].T + 1
} else {
out = out[:0]
}
ok := it.Seek(maxt)
if !ok {
if it.Err() != nil {
ev.error(it.Err())
}
}
buf := it.Buffer()
for buf.Next() {
t, v := buf.At()
if value.IsStaleNaN(v) {
continue
}
// Values in the buffer are guaranteed to be smaller than maxt.
if t >= mint {
if ev.currentSamples >= ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
out = append(out, Point{T: t, V: v})
ev.currentSamples++
}
}
// The seeked sample might also be in the range.
if ok {
t, v := it.Values()
if t == maxt && !value.IsStaleNaN(v) {
if ev.currentSamples >= ev.maxSamples {
ev.error(ErrTooManySamples(env))
}
out = append(out, Point{T: t, V: v})
ev.currentSamples++
}
}
return out
}
func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...)
// The set of signatures for the right-hand side Vector.
rightSigs := map[uint64]struct{}{}
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
rightSigs[sigf(rs.Metric)] = struct{}{}
}
for _, ls := range lhs {
// If there's a matching entry in the right-hand side Vector, add the sample.
if _, ok := rightSigs[sigf(ls.Metric)]; ok {
enh.out = append(enh.out, ls)
}
}
return enh.out
}
func (ev *evaluator) VectorOr(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...)
leftSigs := map[uint64]struct{}{}
// Add everything from the left-hand-side Vector.
for _, ls := range lhs {
leftSigs[sigf(ls.Metric)] = struct{}{}
enh.out = append(enh.out, ls)
}
// Add all right-hand side elements which have not been added from the left-hand side.
for _, rs := range rhs {
if _, ok := leftSigs[sigf(rs.Metric)]; !ok {
enh.out = append(enh.out, rs)
}
}
return enh.out
}
func (ev *evaluator) VectorUnless(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector {
if matching.Card != CardManyToMany {
panic("set operations must only use many-to-many matching")
}
sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...)
rightSigs := map[uint64]struct{}{}
for _, rs := range rhs {
rightSigs[sigf(rs.Metric)] = struct{}{}
}
for _, ls := range lhs {
if _, ok := rightSigs[sigf(ls.Metric)]; !ok {
enh.out = append(enh.out, ls)
}
}
return enh.out
}
// VectorBinop evaluates a binary operation between two Vectors, excluding set operators.
func (ev *evaluator) VectorBinop(op ItemType, lhs, rhs Vector, matching *VectorMatching, returnBool bool, enh *EvalNodeHelper) Vector {
if matching.Card == CardManyToMany {
panic("many-to-many only allowed for set operators")
}
sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...)
// The control flow below handles one-to-one or many-to-one matching.
// For one-to-many, swap sidedness and account for the swap when calculating
// values.
if matching.Card == CardOneToMany {
lhs, rhs = rhs, lhs
}
// All samples from the rhs hashed by the matching label/values.
if enh.rightSigs == nil {
enh.rightSigs = make(map[uint64]Sample, len(enh.out))
} else {
for k := range enh.rightSigs {
delete(enh.rightSigs, k)
}
}
rightSigs := enh.rightSigs
// Add all rhs samples to a map so we can easily find matches later.
for _, rs := range rhs {
sig := sigf(rs.Metric)
// The rhs is guaranteed to be the 'one' side. Having multiple samples
// with the same signature means that the matching is many-to-many.
if duplSample, found := rightSigs[sig]; found {
// oneSide represents which side of the vector represents the 'one' in the many-to-one relationship.
oneSide := "right"
if matching.Card == CardOneToMany {
oneSide = "left"
}
matchedLabels := rs.Metric.MatchLabels(matching.On, matching.MatchingLabels...)
// Many-to-many matching not allowed.
ev.errorf("found duplicate series for the match group %s on the %s hand-side of the operation: [%s, %s]"+
";many-to-many matching not allowed: matching labels must be unique on one side", matchedLabels.String(), oneSide, rs.Metric.String(), duplSample.Metric.String())
}
rightSigs[sig] = rs
}
// Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one
// the value is a set of signatures to detect duplicated result elements.
if enh.matchedSigs == nil {
enh.matchedSigs = make(map[uint64]map[uint64]struct{}, len(rightSigs))
} else {
for k := range enh.matchedSigs {
delete(enh.matchedSigs, k)
}
}
matchedSigs := enh.matchedSigs
// For all lhs samples find a respective rhs sample and perform
// the binary operation.
for _, ls := range lhs {
sig := sigf(ls.Metric)
rs, found := rightSigs[sig] // Look for a match in the rhs Vector.
if !found {
continue
}
// Account for potentially swapped sidedness.
vl, vr := ls.V, rs.V
if matching.Card == CardOneToMany {
vl, vr = vr, vl
}
value, keep := vectorElemBinop(op, vl, vr)
if returnBool {
if keep {
value = 1.0
} else {
value = 0.0
}
} else if !keep {
continue
}
metric := resultMetric(ls.Metric, rs.Metric, op, matching, enh)
insertedSigs, exists := matchedSigs[sig]
if matching.Card == CardOneToOne {
if exists {
ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)")
}
matchedSigs[sig] = nil // Set existence to true.
} else {
// In many-to-one matching the grouping labels have to ensure a unique metric
// for the result Vector. Check whether those labels have already been added for
// the same matching labels.
insertSig := metric.Hash()
if !exists {
insertedSigs = map[uint64]struct{}{}
matchedSigs[sig] = insertedSigs
} else if _, duplicate := insertedSigs[insertSig]; duplicate {
ev.errorf("multiple matches for labels: grouping labels must ensure unique matches")
}
insertedSigs[insertSig] = struct{}{}
}
enh.out = append(enh.out, Sample{
Metric: metric,
Point: Point{V: value},
})
}
return enh.out
}
// signatureFunc returns a function that calculates the signature for a metric
// ignoring the provided labels. If on, then the given labels are only used instead.
func signatureFunc(on bool, names ...string) func(labels.Labels) uint64 {
sort.Strings(names)
if on {
return func(lset labels.Labels) uint64 {
h, _ := lset.HashForLabels(make([]byte, 0, 1024), names...)
return h
}
}
return func(lset labels.Labels) uint64 {
h, _ := lset.HashWithoutLabels(make([]byte, 0, 1024), names...)
return h
}
}
// resultMetric returns the metric for the given sample(s) based on the Vector
// binary operation and the matching options.
func resultMetric(lhs, rhs labels.Labels, op ItemType, matching *VectorMatching, enh *EvalNodeHelper) labels.Labels {
if enh.resultMetric == nil {
enh.resultMetric = make(map[uint64]labels.Labels, len(enh.out))
}
// op and matching are always the same for a given node, so
// there's no need to include them in the hash key.
// If the lhs and rhs are the same then the xor would be 0,
// so add in one side to protect against that.
lh := lhs.Hash()
h := (lh ^ rhs.Hash()) + lh
if ret, ok := enh.resultMetric[h]; ok {
return ret
}
lb := labels.NewBuilder(lhs)
if shouldDropMetricName(op) {
lb.Del(labels.MetricName)
}
if matching.Card == CardOneToOne {
if matching.On {
Outer:
for _, l := range lhs {
for _, n := range matching.MatchingLabels {
if l.Name == n {
continue Outer
}
}
lb.Del(l.Name)
}
} else {
lb.Del(matching.MatchingLabels...)
}
}
for _, ln := range matching.Include {
// Included labels from the `group_x` modifier are taken from the "one"-side.
if v := rhs.Get(ln); v != "" {
lb.Set(ln, v)
} else {
lb.Del(ln)
}
}
ret := lb.Labels()
enh.resultMetric[h] = ret
return ret
}
// VectorscalarBinop evaluates a binary operation between a Vector and a Scalar.
func (ev *evaluator) VectorscalarBinop(op ItemType, lhs Vector, rhs Scalar, swap, returnBool bool, enh *EvalNodeHelper) Vector {
for _, lhsSample := range lhs {
lv, rv := lhsSample.V, rhs.V
// lhs always contains the Vector. If the original position was different
// swap for calculating the value.
if swap {
lv, rv = rv, lv
}
value, keep := vectorElemBinop(op, lv, rv)
// Catch cases where the scalar is the LHS in a scalar-vector comparison operation.
// We want to always keep the vector element value as the output value, even if it's on the RHS.
if op.isComparisonOperator() && swap {
value = rv
}
if returnBool {
if keep {
value = 1.0
} else {
value = 0.0
}
keep = true
}
if keep {
lhsSample.V = value
if shouldDropMetricName(op) || returnBool {
lhsSample.Metric = enh.dropMetricName(lhsSample.Metric)
}
enh.out = append(enh.out, lhsSample)
}
}
return enh.out
}
func dropMetricName(l labels.Labels) labels.Labels {
return labels.NewBuilder(l).Del(labels.MetricName).Labels()
}
// scalarBinop evaluates a binary operation between two Scalars.
func scalarBinop(op ItemType, lhs, rhs float64) float64 {
switch op {
case ItemADD:
return lhs + rhs
case ItemSUB:
return lhs - rhs
case ItemMUL:
return lhs * rhs
case ItemDIV:
return lhs / rhs
case ItemPOW:
return math.Pow(lhs, rhs)
case ItemMOD:
return math.Mod(lhs, rhs)
case ItemEQL:
return btos(lhs == rhs)
case ItemNEQ:
return btos(lhs != rhs)
case ItemGTR:
return btos(lhs > rhs)
case ItemLSS:
return btos(lhs < rhs)
case ItemGTE:
return btos(lhs >= rhs)
case ItemLTE:
return btos(lhs <= rhs)
}
panic(errors.Errorf("operator %q not allowed for Scalar operations", op))
}
// vectorElemBinop evaluates a binary operation between two Vector elements.
func vectorElemBinop(op ItemType, lhs, rhs float64) (float64, bool) {
switch op {
case ItemADD:
return lhs + rhs, true
case ItemSUB:
return lhs - rhs, true
case ItemMUL:
return lhs * rhs, true
case ItemDIV:
return lhs / rhs, true
case ItemPOW:
return math.Pow(lhs, rhs), true
case ItemMOD:
return math.Mod(lhs, rhs), true
case ItemEQL:
return lhs, lhs == rhs
case ItemNEQ:
return lhs, lhs != rhs
case ItemGTR:
return lhs, lhs > rhs
case ItemLSS:
return lhs, lhs < rhs
case ItemGTE:
return lhs, lhs >= rhs
case ItemLTE:
return lhs, lhs <= rhs
}
panic(errors.Errorf("operator %q not allowed for operations between Vectors", op))
}
type groupedAggregation struct {
labels labels.Labels
value float64
mean float64
groupCount int
heap vectorByValueHeap
reverseHeap vectorByReverseValueHeap
}
// aggregation evaluates an aggregation operation on a Vector.
func (ev *evaluator) aggregation(op ItemType, grouping []string, without bool, param interface{}, vec Vector, enh *EvalNodeHelper) Vector {
result := map[uint64]*groupedAggregation{}
var k int64
if op == ItemTopK || op == ItemBottomK {
f := param.(float64)
if !convertibleToInt64(f) {
ev.errorf("Scalar value %v overflows int64", f)
}
k = int64(f)
if k < 1 {
return Vector{}
}
}
var q float64
if op == ItemQuantile {
q = param.(float64)
}
var valueLabel string
if op == ItemCountValues {
valueLabel = param.(string)
if !model.LabelName(valueLabel).IsValid() {
ev.errorf("invalid label name %q", valueLabel)
}
if !without {
grouping = append(grouping, valueLabel)
}
}
sort.Strings(grouping)
lb := labels.NewBuilder(nil)
buf := make([]byte, 0, 1024)
for _, s := range vec {
metric := s.Metric
if op == ItemCountValues {
lb.Reset(metric)
lb.Set(valueLabel, strconv.FormatFloat(s.V, 'f', -1, 64))
metric = lb.Labels()
}
var (
groupingKey uint64
)
if without {
groupingKey, buf = metric.HashWithoutLabels(buf, grouping...)
} else {
groupingKey, buf = metric.HashForLabels(buf, grouping...)
}
group, ok := result[groupingKey]
// Add a new group if it doesn't exist.
if !ok {
var m labels.Labels
if without {
lb.Reset(metric)
lb.Del(grouping...)
lb.Del(labels.MetricName)
m = lb.Labels()
} else {
m = make(labels.Labels, 0, len(grouping))
for _, l := range metric {
for _, n := range grouping {
if l.Name == n {
m = append(m, l)
break
}
}
}
sort.Sort(m)
}
result[groupingKey] = &groupedAggregation{
labels: m,
value: s.V,
mean: s.V,
groupCount: 1,
}
inputVecLen := int64(len(vec))
resultSize := k
if k > inputVecLen {
resultSize = inputVecLen
}
if op == ItemStdvar || op == ItemStddev {
result[groupingKey].value = 0.0
} else if op == ItemTopK || op == ItemQuantile {
result[groupingKey].heap = make(vectorByValueHeap, 0, resultSize)
heap.Push(&result[groupingKey].heap, &Sample{
Point: Point{V: s.V},
Metric: s.Metric,
})
} else if op == ItemBottomK {
result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 0, resultSize)
heap.Push(&result[groupingKey].reverseHeap, &Sample{
Point: Point{V: s.V},
Metric: s.Metric,
})
}
continue
}
switch op {
case ItemSum:
group.value += s.V
case ItemAvg:
group.groupCount++
group.mean += (s.V - group.mean) / float64(group.groupCount)
case ItemMax:
if group.value < s.V || math.IsNaN(group.value) {
group.value = s.V
}
case ItemMin:
if group.value > s.V || math.IsNaN(group.value) {
group.value = s.V
}
case ItemCount, ItemCountValues:
group.groupCount++
case ItemStdvar, ItemStddev:
group.groupCount++
delta := s.V - group.mean
group.mean += delta / float64(group.groupCount)
group.value += delta * (s.V - group.mean)
case ItemTopK:
if int64(len(group.heap)) < k || group.heap[0].V < s.V || math.IsNaN(group.heap[0].V) {
if int64(len(group.heap)) == k {
heap.Pop(&group.heap)
}
heap.Push(&group.heap, &Sample{
Point: Point{V: s.V},
Metric: s.Metric,
})
}
case ItemBottomK:
if int64(len(group.reverseHeap)) < k || group.reverseHeap[0].V > s.V || math.IsNaN(group.reverseHeap[0].V) {
if int64(len(group.reverseHeap)) == k {
heap.Pop(&group.reverseHeap)
}
heap.Push(&group.reverseHeap, &Sample{
Point: Point{V: s.V},
Metric: s.Metric,
})
}
case ItemQuantile:
group.heap = append(group.heap, s)
default:
panic(errors.Errorf("expected aggregation operator but got %q", op))
}
}
// Construct the result Vector from the aggregated groups.
for _, aggr := range result {
switch op {
case ItemAvg:
aggr.value = aggr.mean
case ItemCount, ItemCountValues:
aggr.value = float64(aggr.groupCount)
case ItemStdvar:
aggr.value = aggr.value / float64(aggr.groupCount)
case ItemStddev:
aggr.value = math.Sqrt(aggr.value / float64(aggr.groupCount))
case ItemTopK:
// The heap keeps the lowest value on top, so reverse it.
sort.Sort(sort.Reverse(aggr.heap))
for _, v := range aggr.heap {
enh.out = append(enh.out, Sample{
Metric: v.Metric,
Point: Point{V: v.V},
})
}
continue // Bypass default append.
case ItemBottomK:
// The heap keeps the lowest value on top, so reverse it.
sort.Sort(sort.Reverse(aggr.reverseHeap))
for _, v := range aggr.reverseHeap {
enh.out = append(enh.out, Sample{
Metric: v.Metric,
Point: Point{V: v.V},
})
}
continue // Bypass default append.
case ItemQuantile:
aggr.value = quantile(q, aggr.heap)
default:
// For other aggregations, we already have the right value.
}
enh.out = append(enh.out, Sample{
Metric: aggr.labels,
Point: Point{V: aggr.value},
})
}
return enh.out
}
// btos returns 1 if b is true, 0 otherwise.
func btos(b bool) float64 {
if b {
return 1
}
return 0
}
// shouldDropMetricName returns whether the metric name should be dropped in the
// result of the op operation.
func shouldDropMetricName(op ItemType) bool {
switch op {
case ItemADD, ItemSUB, ItemDIV, ItemMUL, ItemPOW, ItemMOD:
return true
default:
return false
}
}
// documentedType returns the internal type to the equivalent
// user facing terminology as defined in the documentation.
func documentedType(t ValueType) string {
switch t {
case "vector":
return "instant vector"
case "matrix":
return "range vector"
default:
return string(t)
}
}